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ABSTRACT

Gene set enrichment testing can enhance the biologi-
cal interpretation of ChIP-seq data. Here, we develop
a method, ChIP-Enrich, for this analysis which em-
pirically adjusts for gene locus length (the length of
the gene body and its surrounding non-coding se-
quence). Adjustment for gene locus length is neces-
sary because it is often positively associated with the
presence of one or more peaks and because many bi-
ologically defined gene sets have an excess of genes
with longer or shorter gene locus lengths. Unlike al-
ternative methods, ChIP-Enrich can account for the
wide range of gene locus length-to-peak presence
relationships (observed in ENCODE ChIP-seq data
sets). We show that ChIP-Enrich has a well-calibrated
type I error rate using permuted ENCODE ChIP-seq
data sets; in contrast, two commonly used gene set
enrichment methods, Fisher’s exact test and the bi-
nomial test implemented in Genomic Regions Enrich-
ment of Annotations Tool (GREAT), can have highly
inflated type I error rates and biases in ranking. We
identify DNA-binding proteins, including CTCF, JunD
and glucocorticoid receptor � (GR�), that show dif-
ferent enrichment patterns for peaks closer to ver-
sus further from transcription start sites. We also
identify known and potential new biological func-
tions of GR� . ChIP-Enrich is available as a web inter-
face (http://chip-enrich.med.umich.edu) and Biocon-
ductor package.

INTRODUCTION

Genome-wide high-throughput experiments can assess
transcription factor binding, epigenetic marks, differential
gene expression or disease association, and often result in

thousands of identified genomic regions or genes. Gene set
enrichment testing is one way to determine how these lists
of genomic regions or genes are related biologically, e.g. by
assessment of Gene Ontology (GO) terms (1–3). For ChIP-
seq experiments, oftentimes thousands of transcription fac-
tor binding sites or histone modification sites are identified.
Enrichment testing of this data, or with a union or intersec-
tion of multiple ChIP-seq data sets, can identify key biolog-
ical processes, functions, disease gene signatures or other bi-
ological concepts regulated by the factor(s) under the given
experimental conditions (4). Conversely, ChIP-seq data can
be used to create gene sets against which other experimental
data sets can be tested for significant enrichment, including
other ChIP-seq data (5,6).

Gene set enrichment tests can generally be classified as
competitive (2,7,8), self-contained (9) or a hybrid (9,10), as
discussed by Efron and Tibshirani in (11). The hypothesis of
competitive approaches is that there is a higher proportion
of identified genes (or a higher level of significance over-
all) in the gene set of interest than in the remaining genes.
In contrast, self-contained methods only use information
about the genes in the gene set of interest, and test whether
the significance level of the set is greater than expected given
a null hypothesis. The enrichment testing methods used for
sets of genomic regions (ChIP-seq data), including Fisher’s
exact test (FET) and binomial based tests, are all competi-
tive approaches (3,12).

FET, and slight variations on it, has traditionally been
used for gene set enrichment in microarray gene expression
data (2,13–16). FET makes the assumption that each gene
has an equal probability of being identified as significant.
Across gene sets, this means that each gene set is expected
under the null hypothesis to have approximately the same
proportion of significant genes as the overall proportion of
significant genes. In contrast to microarray data, the data
generated from ChIP-seq, RNA-seq and genome-wide as-
sociation studies (GWASs) often show a positive correla-
tion between the length of the relevant genomic region and
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detection of the gene (17–19). In ChIP-seq data, the prob-
ability of a peak occurring within a gene or its surround-
ing non-coding sequence, which together we denote as the
gene locus, is often positively correlated with the length of
the locus (20). Due to this correlation, genes with longer
locus lengths contribute a disproportionate amount to the
enrichment signal, and this bias introduced in the signal due
to gene locus length violates the assumptions of FET. Fur-
thermore, because many commonly tested gene sets con-
tain genes with substantially longer (e.g. developmentally
and nervous system-related genes) or shorter (e.g. electron
transport, ribosomal ribonucleic acid (rRNA) processing)
than average locus length (20), the gene sets with longer or
shorter than average locus length are more or less likely,
respectively, to be detected as significantly enriched (18).
Therefore, lack of effective adjustment for gene locus length
can lead to false positive findings.

Several approaches have been developed to adjust for lo-
cus length in ChIP-seq (12), RNA-seq (for example, GOseq
(19)) and GWAS data (17,21). For ChIP-seq data, a com-
monly used binomial-based test asks if the total number of
peaks within the loci in a gene set is greater than expected,
given the total locus length of the gene set, the total number
of peaks and the corresponding length of the genome (im-
plemented in Genomic Regions Enrichment of Annotations
Tool (GREAT)) (12,18). In contrast to FET, the assump-
tions of the binomial test are met when the number of peaks
in a locus is proportional to locus length and the variabil-
ity of peak counts among genes, given gene locus length, is
consistent with that expected by the binomial distribution.

We examined the gene locus length-to-peak presence re-
lationships in 63 ENCODE ChIP-seq GM12878 data sets
and found they ranged from no relationship to strongly
positively correlated. Given these observations, our goal
was to develop a gene set enrichment method for ChIP-
seq data (ChIP-Enrich) that empirically models and ad-
justs for the relationship between locus length and peak
presence. ChIP-Enrich maintained the expected type I er-
ror rate (false positive rate) in all tested data sets, whereas
FET and the binomial test did not. For each deoxyribonu-
cleic acid (DNA)-binding protein (DBP), we asked if dif-
ferent (potential) regulatory region definitions would iden-
tify different enriched/disenriched gene sets. For the glu-
cocorticoid receptor � (GR�), we examined the ability of
ChIP-Enrich to detect known and potentially novel func-
tions. Our method is freely available in the R Bioconduc-
tor package chipenrich and as a web-based program (http:
//chip-enrich.med.umich.edu).

MATERIALS AND METHODS

Experimental ChIP-seq peak data sets

We used ENCODE ChIP-seq peak data sets from 63 DBPs
for cell line GM12878 (22) (see http://chip-enrich.med.
umich.edu/summaryReport.jsp) (Supplementary Table S1).
We used the existing peak calls, which were called by the
original authors using one or two of three peak calling
methods (MACS, spp or Scripture (23–25)). For the sub-
set of data sets that were called by two callers (MACS and
spp), we use results from MACS, as we generally observed
a larger number of called peaks for MACS than for spp.

Gene loci definitions and presence of peaks in a locus

We define a gene as the region between the furthest up-
stream transcription start site (TSS) and furthest down-
stream transcription end site (TES) for that gene. The posi-
tions of the TSSs and TESs for each gene were extracted
from the UCSC knownGene table (human genome build
hg19). We removed small nuclear RNAs as they are likely to
have different regulatory mechanisms than other genes and
often reside within the boundaries of other genes. For gene
set enrichment testing we assign ChIP-seq peaks to genes
(based on the peak midpoint) using three primary defini-
tions of a gene’s designated regulatory region (locus defini-
tions). (i) ‘Nearest TSS’: the region between the upstream
and downstream midpoints between a gene and the two ad-
jacent genes’ TSSs. This is equivalent to assigning each peak
to the gene with the nearest TSS. (ii) ‘Nearest gene’: the
region from the midpoint between the TSS and the adja-
cent gene’s TSS or TSE (whichever is closest) to the mid-
point between the TES and the adjacent gene’s TSS or TES
(whichever is closest). This is equivalent to assigning peaks
to the nearest gene. (iii) ‘≤1 kb from TSS’: the region within
1 kb of all TSSs in a gene. If TSSs from the adjacent gene(s)
are less than 2 kb away, we use the midpoint between the
two TSSs as the boundary of the locus for each gene. Addi-
tionally we define ‘≤5 kb from TSS’, using the same rules as
we defined ‘≤1 kb from TSS’, and we define ‘>10 kb from
TSS’, by subtracting the 10-kb regions around the TSS from
the ‘nearest TSS’ locus definition. We define peak presence
in a locus as ≥1 peak midpoint within the gene locus bound-
aries.

GO terms

GO terms from GO molecular functions, GO cellular com-
ponents and GO biological processes were extracted from
Bioconductor species specific annotation packages and the
GO.db R package. We removed genes from each GO term
that do not exist in our gene locus definitions as these genes
could not have a peak assigned to them. For testing in the
manuscript and in our tool, we exclude GO terms with <10
genes as they have more limited power to detect significant
results, and as a rule of thumb logistic regression requires
at least 10 events for each explaining variable (26). In the
manuscript, we also exclude reporting GO terms with >500
genes, as the categories become broader and less informa-
tive in interpreting the results. Q-values were calculated us-
ing all GO terms with 10–2000 genes (our tool’s defaults).

Overdispersion test of peak count (given locus length) in each
gene set

Overdispersion is defined as higher variability in a data set
than expected based on the distribution used to model it.
The binomial test in GREAT uses a binomial distribution
to model the combined number of peaks for all genes in a
gene set, so if significant overdispersion in peak counts ex-
ists among genes, the binomial distribution assumption is
not satisfied. We tested for overdispersion in the number of
peaks per gene (given locus length) in each gene set using
Tarone’s Z statistic (27). Tarone’s Z allows better estimates
of overdispersion when the binomial probabilities are close
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to 0 or 1 (the probabilities of having a peak for each base
pair are very close to 0). We tested all gene sets with a min-
imum of 50 genes (as gene sets with fewer genes often do
not have adequate power for this test) and a maximum of
500 genes (the maximum gene set size used throughout the
paper). For each DBP, we reported the proportion of gene
sets that had significantly higher variability than expected
based on the binomial distribution (q-value ≤0.05).

Mappability calculations

To estimate the mappable proportion of each gene locus for
different read lengths, we first calculated base pair mappa-
bility for reads of lengths 24, 36, 40, 50, 75 and 100 base
pairs using mappability data for Homo sapiens (build hg19)
from the UCSC Genome Browser. The UCSC browser
mappability tracks provide, for each base pair i, the recipro-
cal of the number of locations in the genome to which a read
beginning at i and extending for read length K could map;
a value of 1 indicates the read maps to one location in the
genome, a smaller value indicates the read maps to two or
more locations. We set reads with mappability <1 to 0 and
calculated base pair mappability as the average read map-
pability of all possible reads of size K that include a specific
base pair location, i:

Bi =
(

1
2K − 1

) i+(K−1)∑
j=i−K+1

Mj , (1)

where Bi is the mappability of base pair i and Mj is the read
mappability (based on UCSC’s mappability track) of a read
of length K beginning at position j. We define gene locus
mappability, m, as the average of all base pair mappabil-
ity, Bi, values for a gene locus; each gene locus mappability
score m represents the proportion of the gene locus that is
uniquely mappable (given the read length of the data).

ChIP-Enrich method

We developed a logistic regression approach to test for gene
set enrichment while adjusting for log10 mappable locus
length for each gene. Suppose that for a given set of genomic
regions (referred to as peaks), we have assigned each peak
to a gene locus. The dependent variable is a binary vector
defined as 1 if ≥1 peak is assigned to a gene’s locus, and 0
if none are assigned to the gene’s locus. For each gene set,
the explanatory variable of interest is gene set membership,
g, defined as 1 for genes in the gene set, and 0 for all other
genes. Let L be the locus length, such that m·L is the map-
pable locus length. Let π be the probability that a gene with
gene set membership g, and adjusted for mappable locus
length, has ≥1 peak. Then π

/
(1 − π ) are the correspond-

ing odds that a gene, given g = 0 or 1 and mappable locus
length m·L, has ≥1 peak. If the log-odds differ by gene set
membership adjusted for (mappable) locus length, then we
conclude that peak presence is associated with the gene set.
Our model is

log
π

1 − π
= β0 + β1g + f (log10 (mL + 1)) , (2)

where β0 is the intercept, β1 is the coefficient of interest and
the function f(log10 (m·L+1)) is a binomial cubic smooth-

ing spline term that adjusts for log10 mappable locus length
(or log10 locus length if m is omitted). We apply the log10
transformation to locus length as this improves the model
fit (data not shown). The smoothing spline is estimated with
a penalized spline using a cubic spline basis fit with 10 knots
distributed evenly throughout the data. Placing a knot at
each data point as in a true smoothing spline would not
be computationally feasible. The model is fit using penal-
ized likelihood maximization, where the smoothing penalty
is the squared second derivative penalty, and generalized
cross-validation is used to choose the optimal value for the
smoothing parameter, λ (28,29). We use the gam function of
the R package mgcv to fit the model (30) and the Wald statis-
tic to test for significance of the gene set term, β1, which is
calculated as

W =
(

β̂1

sβ̂1

)2

, (3)

where β̂1 is the penalized maximum likelihood estimate for
β1 and sβ̂1 is the standard error for β̂1. W is distributed as
χ2 with one degree of freedom under the null hypothesis β1
= 0, and P-values are calculated accordingly for the alter-
native hypothesis, β1 �= 0. P-values for the gene sets are cor-
rected for multiple testing using the Benjamini–Hochberg
false discovery rate approach (31). To be included in the
analysis, genes had to be annotated in GO and have a locus
defined. For example, we have 19 051 human genes with the
‘nearest TSS’ locus definition and 16 653 (87.4%) of these
genes have ≥1 GO term annotation (with no restriction for
GO term size).

R package and website

Our ChIP-Enrich gene set enrichment testing method is im-
plemented in the chipenrich package for the R statistical
software environment and available through Bioconductor,
and as a web version at http://chip-enrich.med.umich.edu/.
We also provide FET as an alternative enrichment method.
In addition to GO, we include 12 additional annotation
sources containing over 20 000 total gene sets (32). We cur-
rently support the human genome (hg19), mouse genome
(mm9, mm10) and rat genome (rn4). Precomputed mappa-
bility is available for hg19 (for read lengths specified above)
and for mm9 (read lengths 36, 40, 50, 75 and 100 base pairs).
Users may either supply an R data frame (for the R pack-
age) or a BED format file containing the peak locations as
input. Runtime is typically 10–14 min for testing all GO
terms but varies depending on the data set, number of cores
and choice of locus definition. In addition to the ‘nearest
TSS’, ‘nearest gene’, ‘≤1 kb from TSS’ and ‘≤5 kb from
TSS’ locus definitions, described above, in ChIP-Enrich we
also offer ’Exons’: peaks are assigned to gene exons, ignor-
ing all peaks outside of an exon. Users may also supply their
own custom locus definition and/or mappability file. This
enables users to study functional binding patterns relative
to alternative gene features (e.g. 3′UTRs; untranslated re-
gions) or at different distances from TSSs and to use dif-
ferent estimates of the observable region for each gene lo-
cus. Diagnostic plots are available to visualize the relation-
ship between locus length and proportion of genes with a
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peak and to examine the proportion of peaks binding prox-
imal or distal to TSSs. We also offer an ENCODE ChIP-
Enrich Results website (http://chip-enrich.med.umich.edu/
summaryReport.jsp), where users can download enrich-
ment testing results for individual DBPs or in bulk for the
GM12878 and K562 cell lines.

FET for gene set enrichment testing of ChIP-seq data

For each GO term, we tested for association of peak pres-
ence and GO term membership using a two-sided FET. For
inclusion in the analysis, genes had to be annotated in GO
and have a locus defined.

Binomial test for GO term enrichment testing of ChIP-seq
data

We used a slight modification of the one-sided binomial
test for GO term enrichment described by Taher and
Ovcharenko (18) and implemented in GREAT (12). We cal-
culate the one-sided probability of seeing greater than or
equal to the number of peaks we observe for a GO term, j,
with the following formula:∑n

i=kj

(
n
i

)
pi

j (1 − p j )n−i , (4)

where n is the total number of peaks within gene loci present
in any GO term and kj is the number of peaks annotated
to GO term j. We define pj as the expected proportion of
peaks in GO term j, as the total non-gapped length of the
gene loci in the GO term, divided by the total non-gapped
length of loci with ≥1 GO term annotation. P-values are
calculated as the probability of observing kj or greater num-
ber of peaks in the GO term. Our implementation is consis-
tent with other GO term enrichment programs that restrict
the background gene set to those annotated in GO (33). In
contrast, GREAT uses the total non-gapped genome as the
denominator for pj and defines n as all observed peaks.

Permutations to create ENCODE ChIP-seq data with no bi-
ological enrichment

We performed permutations to assess the behavior of each
enrichment test under two null scenarios of no true enrich-
ment. For both scenarios, we used three ENCODE ChIP-
seq data sets from cell line GM12878: SIX5 (Figure 1a and
d), PAX5 (Figure 1b and e) and H3K27me3 (Figure 1c and
f). For each of the two permutation scenarios below, we per-
form 300 permutations and test each permuted data set for
GO term enrichment (5519 GO terms) using the three tests
(ChIP-Enrich, FET and the binomial test).

Under both permutation scenarios, we do not expect to
detect enrichment, as we have removed any association be-
tween gene membership in GO terms and the count of
peaks. To help visualize the two scenarios, consider a data
table, where each row represents a gene and contains the
following columns: count of peaks per gene, locus length
of each gene and one column for each GO term contain-
ing a (0,1) indicator variable for whether the gene belongs
to that GO term. In the ‘GO term permutations’ scenario,
we randomly permute the count of peaks per gene and the

locus length as a unit. This results in a data set where genes
(identified by their peak count and locus length) have been
reassigned to new GO terms and the locus length bias in-
herent in GO terms has been removed, but the number of
genes per GO term, correlations between GO terms and the
relationship between locus length and count of peaks have
all been preserved. In the ‘GO term permutation by locus
length bin’ scenario, we first order the data by locus length
and then randomly permute peak count and locus length as
a unit, but restrict this permutation within successive bins of
gene locus length (100 genes per bin). This is similar to the
first scenario, but preserves the relationship between locus
length and GO term membership.

GR� analysis

We applied ChIP-Enrich to ChIP-seq peaks for GR� data
from the A549 cell line from Reddy et al. (47): ChIP-seq
peaks with FDR < 0.02 (4392 peaks). In (47), sequence
reads of 36-mer length were generated from Illumina GA1,
aligned using ELAND, and peaks were called using MACS.
Reddy et al. (47) identified 209 genes as differentially ex-
pressed based on RNA-seq data from A549 cells that were
treated for 1 h with 100 mM of Dexamethasone (DEX)
or with 0.02% Ethanol control (EtOH). Briefly, in (47),
gene expression levels were estimated using ERANGE to
calculate reads per kilobase per million tags sequenced
(RPKM) values, which were then adjusted for dependence
of variance on expression level. A custom maximum like-
lihood approach was used to calculate P-values for the ob-
served change in gene expression between DEX-treated and
ethanol-treated cells. Finally, genes with False Discovery
Rate (FDR) < 0.05 were called significant (34). Using the
209 reported differentially expressed genes, we tested for
GO term enrichment (over-representation) with the R pack-
age goseq (19). For Table 3, we pruned the list of top-ranked,
enriched GO terms of closely related terms for presentation
by removing terms whose parents, children or siblings in
the ontology tree were present at a higher rank in the list.
We used the R package GO.db to determine relationships
among GO terms.

RESULTS

Observed relationship between gene locus length and presence
of at least one peak in ENCODE ChIP-seq data sets

We first explore the relationship between gene locus length
and the presence of a peak in 63 ENCODE ChIP-seq
data sets from tier 1 cell line GM12878 (22,35) using a bi-
nomial cubic smoothing spline to model the relationship
(see the Experimental ChIP-seq peak data sets and ChIP-
Enrich method sections of the Materials and Methods sec-
tion) (28,29). GM12878 is a lymphoblastoid cell line, trans-
formed using Epstein-Barr Virus, and which has a normal
karyotype. Lymphoblasts are immature cells that typically
differentiate into lymphocytes and serve as a good model for
functional studies as they are known to express a wide range
of metabolic pathways (36). This exploration of ChIP-seq
data is motivated by the opposing assumptions underlying
FET and the binomial test: for FET that there is no asso-
ciation between locus length and presence of a peak, and
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Figure 1. Gene locus length-to-peak presence relationship becomes
stronger as the total number of peaks increases. The relationship between
gene locus length and proportion of genes with ≥1 peak in a gene locus
varies widely in 63 ENCODE ChIP-seq data sets, from no relationship to
strongly positive. DNA-binding proteins (DBPs) from the GM12878 cell
line were categorized into three groups of 21 DBPs by the total number of
peaks. For each DBP, the relationship between log10 locus length and pro-
portion of genes with a peak was modeled using a binomial cubic smooth-
ing spline (see the Materials and Methods section). (a)–(c) Bar plots show
the average proportion of peaks present within the specified distance from
the TSS (kb) (gray bar) and the proportions for individual DBPs (colored
dots, the same color as the line in the corresponding plot). DBPs with fewer
peaks tend to have a higher proportion of binding close to TSSs. (d) The
locus length-to peak presence relationship tends to be weak for data sets
with few peaks. (e) and (f) The relationship becomes strongest when the
number of peaks is highest (f). None of the DBPs in (d), two of the DBPs
in (e) and 10 of the DBPs in (f) are histone modifications.

for binomial-based tests that the number of peaks per lo-
cus is proportional to locus length. In Figure 1, we assigned
peaks to the gene with the nearest TSS (see the Materi-
als and Methods section) and grouped the ENCODE data
sets based on the total number of peaks (three equal sized
groups). For data sets with the smallest number of peaks,
we noticed that a large fraction of peaks were close to a
TSS, and most DBPs showed no or little relationship be-
tween locus length and probability of a peak (Figure 1a and
d; n = 21) which is consistent with the assumptions of FET,
although a few showed a moderate relationship. All were
transcription factor data sets. In contrast, data sets with the
largest number of peaks tended to have the smallest pro-
portion of peaks within 1 kb of a TSS and had a strong
positive locus length-to-peak presence relationship (Figure
1c and f; n = 21), which is potentially consistent with the as-
sumptions of the binomial test. Many of these data sets were
histone modifications that tend to occur much more widely
across the genome than TF binding. The locus length-to-
peak presence patterns within data sets with intermediate
numbers of peaks show larger variability and are often not
consistent with either FET or the binomial test assumptions
(Figure 1b and e).

The binomial test sums the peaks over all the genes/loci
in a gene set. This summation assumes that the underlying
probability of a peak per unit length is the same for each

gene in the gene set (and the same for each gene not in the
gene set), i.e. the variance of peak counts among genes in a
gene set is no greater than expected based on the binomial
distribution. We tested for variability greater than that of
the binomial distribution, in GO terms containing between
50 and 500 genes. All DBPs showed a substantial propor-
tion of GO terms with significantly (FDR < 0.05) higher
variability than expected, with many DBPs having over 99%
of GO terms with significant extra variability (Supplemen-
tary Table S2) (see the overdispersion test in the Materials
and Methods section). Thus, even DBPs that have a strong
positive relationship between the number of peaks and locus
length (Figure 1f) do not satisfy the binomial test assump-
tions.

ChIP-Enrich method

Given the observed locus length-to-peak presence relation-
ships, we sought to develop a gene set enrichment testing
approach for ChIP-seq data that would empirically model
this relationship (Figure 2). To capture different aspects of
the underlying regulatory biology, we define gene loci based
on one or more genomic features and assign peaks in the
defined genomic regions to genes (locus definitions). In this
paper, we use as primary locus definitions: (i) the region(s)
within 1 kb of every TSS of a gene (≤1 kb from TSS), (ii) the
region between the upstream and downstream midpoints
between a gene’s TSS and the adjacent genes’ TSSs (nearest
TSS) and (iii) the gene and half the intergenic region be-
tween adjacent genes, defined by the closest TSS/TES of
each gene (nearest gene) (see the Gene loci definitions sec-
tion of the Materials and Methods section for more details).
Consistent with previous observations (20), genes with long
locus lengths defined by the nearest TSS definition were sig-
nificantly enriched for neuronal processes, development and
adhesion (Supplementary Table S3), while genes with short
locus lengths were enriched for translation and chromatin-
related processes (Supplementary Table S4).

We test for gene set enrichment using a logistic regression
model and adjust for the probability of a peak as a func-
tion of log10(observable locus length) using a binomial cu-
bic smoothing spline (see the ChIP-Enrich method section
of the Materials and Methods section). Since a logistic re-
gression model without the smoothing spline term approxi-
mately corresponds to FET, our model is motivated by FET
while accounting for locus length. Because we observed that
the average mappability of gene loci both differed substan-
tially among genes and that many GO terms were enriched
with highly or lowly mappable genes (Supplementary text
and Supplementary Figure S1), we also account for the av-
erage mappability of each gene locus. We calculate the pro-
portion of each locus length that is uniquely mappable as
the mappability score and use locus length × mappability
as an estimate of the observable locus length (see the Map-
pability calculations section of the Materials and Methods
section). Although mappability often improved the spline
fit (Supplementary Figure S2), it had little effect on the re-
sults of these analyses. Our R package and web-based tool
offer a number of additional options, including custom lo-
cus and mappability definitions (see the R package and web-
site section of the Materials and Methods section). Thirteen
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Figure 2. Overview of ChIP-Enrich. We describe ChIP-Enrich in four steps. (1) ChIP-seq peaks are assigned to genes using a chosen gene locus definition.
Definitions include: ‘nearest gene’, ‘≤1kb from TSS’ and ‘nearest TSS’. (2) It is determined whether ≥1 peak is present in each gene locus. (3) Gene
set enrichment is performed for each gene set using a logistic regression model, adjusting for locus length with a binomial cubic smoothing spline term
(represented as f in the model equation). (4) Data and results are summarized. (a) Plot of observed spline fit for log10 locus length versus proportion of genes
with a peak (orange). Expected line if no relationship between log10 locus length and proportion of genes with a peak (dark gray, satisfies Fisher’s exact
test assumptions). Expected line if the number of peaks observed is proportional to locus length (light gray, binomial test assumption). For visualization
only, each point is the proportion of genes that are assigned a peak within sequential bins of 25 genes. (b) Bar plot of the proportion of peaks found at
various distances from the TSS. (c) Abbreviated ChIP-Enrich output.

gene annotation databases (32) are available for testing; for
simplicity, we use GO terms to illustrate our method in our
analyses below (see the GO terms section of the Materials
and Methods section).

Comparison of ChIP-Enrich, FET and the binomial test for
permuted and non-permuted ENCODE data sets
To illustrate the performance of the different tests, we se-
lected three ENCODE GM12878 DBPs with different lo-
cus length-to-peak presence relationships: SIX homeobox 5
(SIX5) (weak relationship, Figure 1d), paired box 5 (PAX5)
(moderate positive relationship, Figure 1e) and trimethy-
lation of histone 3 lysine 27 (H3K27me3) (strong positive
relationship, Figure 1f) (Supplementary Figure S3). These
DBPs have 75, 26 and 5% of peaks ≤1 kb from a TSS (Fig-
ure 1a–c) and 4442, 19 618 and 41 464 total peaks, respec-
tively. We first tested for GO term enrichment with FET, the
binomial test and ChIP-Enrich in the original data (see the
Materials and Methods section for implementation details
of FET and the binomial test). The top-ranked terms from
the three tests were highly different for H3K27me3, moder-
ately different for PAX5 and similar for SIX5 where several
very strongly enriched GO terms were identified by all tests
(Table 1). However, other data sets with total peaks counts
similar to SIX5 (few peaks) (Figure 1a and d) had less

agreement between the top-ranked terms for ChIP-Enrich
and the binomial test (data not shown).

Under the null hypothesis of no true gene set enrichment,
the type I error rate for a data set at a given threshold �
is the proportion of gene sets with P-value less than �. A
method with type I error rate higher than the expected �
level will have an increased number of false positives. There-
fore, we investigated the type I error rates for ChIP-Enrich,
the binomial test and FET. We assessed the type I error
rate using two permutation scenarios that preserve the GO
term correlation structure but under which no biological en-
richment exists, and therefore none should be detected. In
the first scenario, we grouped gene locus length and gene
peak count and permuted them together across all genes,
which removes any relationship between GO term member-
ship and locus length (permutations across all genes). In the
second scenario, we grouped locus length and gene peak
count and permuted them together within bins of 100 genes
ordered by locus length, which retains the GO term–locus
length relationship (permutations within locus length bins)
(see ‘permutations’ methods in the Materials and Methods
section).

In the permutations across all genes, ChIP-Enrich and
FET showed slightly conservative type I error for both per-
mutation scenarios at � = 0.05 and 0.001 (Table 2 and Sup-
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Table 1. Comparison of top five ranked GO terms for three DBPs from cell line GM12878 using ChIP-Enrich, FET and the binomial test

CE
rank

Binom
rank

FET
rank GO term CE q-value Binom q-value FET q-value Percentile*

(a) H3K27me3
1 898 1 Extracellular matrix 1.5 × 10−9 0.013 2.2 × 10−20 69.6
2 14 4 Regulation of hormone levels 3.3 × 10−7 4.4 × 10−16 3.9 × 10−13 58
3 1633 3 Proteinaceous extracellular

matrix
3.8 × 10−7 0.15 9.2 × 10−17 70.4

4 648 311 Cytokine activity 2.7 × 10−6 2.6 × 10−3 1.2 × 10−3 20.9
5 1137 122 Anchored to membrane 2.9 × 10−6 0.036 1.6 × 10−5 88.2
691 1 1066 3′,5′-cyclic-GMP

phosphodiesterase activity
0.28 9.8 × 10−32 0.089 52.1

986 2 3715 IgG binding 0.41 1.9 × 10−26 0.77 1.8
256 3 2696 Pancreatic ribonuclease activity 0.095 1.10 × 10−24 0.77 0.1
3537 4 3186 Cytoplasmic dynein complex 0.87 9.28 × 10−23 1 37.4
2842 5 3049 Localization within membrane 0.99 2.6 × 10−21 0.92 42
14 4946 2 Synapse 1.7 × 10−4 1.0 3.6 × 10−17 91.6
21 1250 5 Sensory organ development 8.7 × 10−4 0.053 4.6 × 10−13 77.8
*Average locus length percentile for the top 20 terms for H3K27me3 for ChIP-Enrich: 59.1; binomial test: 41.6; FET: 82.2.

(b) PAX5
1 6 2 Immune response-regulating

signaling pathway
1.4 × 10−7 1.1 × 10−53 4.5 × 10−10 39.6

2 4 1 Immune response-activating
signal transduction

1.5 × 10−7 3.0 × 10−54 4.5 × 10−10 39.2

3 111 13 Protein localization to organelle 2.8 × 10−7 9.0 × 10−17 4.8 × 10−6 27
4 13 66 Viral reproduction 3.2 × 10−7 1.4 × 10−41 5.8 × 10−4 9.3
5 3 3 Leukocyte activation 5.8 × 10−7 1.3 × 10−54 5.0 × 10−9 48.9
20 1 39 Regulation of immune response 8.6 × 10−5 5.2 × 10−74 1.1 × 10−4 28.5
170 2 405 Innate immune response 0.024 4.2 × 10−61 0.10 20.9
49 5 31 Induction of apoptosis 5.2 × 10−4 3.3 × 10−54 8.6 × 10−5 30.9
6 11 4 Lymphocyte activation 1.3 × 10−6 5.5 × 10−44 9.8 × 10−9 52
8 19 5 Immune response-activating cell

surface receptor signaling
pathway

7.1 × 10−6 8.7 × 10−37 4.8 × 10−8 46.7

*Average locus length percentile for the top 20 terms for PAX5 for ChIP-Enrich: 25.9; binomial test: 33.3; FET: 48.6.

(c) SIX5
1 1 1 Ribosome 4.4 × 10−32 1.5 × 10−60 1.9 × 10−34 3.4
2 4 2 Structural constituent of

ribosome
9.8 × 10−25 4.2 × 10−49 1.7 × 10−27 3.1

3 6 4 Establishment of protein
localization to organelle

2.6 × 10−23 1.1 × 10−43 8.4 × 10−24 8.6

4 28 6 mRNA processing 6.2 × 10−23 5.8 × 10−26 2.3 × 10−22 22.7
5 3 5 ncRNA metabolic process 1.0 × 10−22 1.0 × 10−49 8.8 × 10−23 6.6
6 2 6 Viral reproduction 1.1 × 10−22 1.0 × 10−52 2.3 × 10−22 9.3
7 5 3 Ribosomal subunit 2.5 × 10−22 1.0 × 10−46 2.9 × 10−24 2.6
*Average locus length percentile for the top 20 terms for X5 for ChIP-Enrich: 8.4; binomial test: 5.1; FET: 8.0.

(a) H3K27me3, (b) PAX5 and (c) SIX5. The most extreme differences are observed for H3K27me3, which also had the highest type I error rate for the
binomial test. Differences among the tests are more moderate for PAX5. SIX5 had several extremely significant GO terms with ChIP-Enrich, which were
also easily detected by the other two methods. All tests were performed using the ‘nearest TSS’ locus definition. CE: ChIP-Enrich; Binom: binomial test;
FET: Fisher’s exact test.

plementary text), with the slight deflation expected due to
the discrete nature of the data (37). The lack of inflation for
FET was expected since this permutation breaks the GO
term–locus length relationship. In contrast, the binomial
test had very high type I error rates at all three tested alpha
levels (Table 2).

For the permutations within locus length bins, ChIP-
Enrich again had the expected type I error rate (Table
2). FET showed inflation of type I error rates for PAX5
and H3K27me3, but not for SIX5. SIX5 shows little re-
lationship between locus length and peak presence, and
therefore the assumptions for FET are approximately satis-

fied. As a check of the ChIP-Enrich method, we compared
the –log10(P-values) in the original SIX5 data and found
they were highly correlated between ChIP-Enrich and FET
(Pearson’s r = 0.97), illustrating that in this case ChIP-
Enrich closely approximates FET. The binomial test again
had very high type I error rates for every DBP, with par-
ticularly high error for H3k27me3 (minimum permuted P-
value = 1 × 10−57). Using the binomial test we observed 761
gene sets with P < 0.001 in the original H3k27me3 data,
compared to a median of 618 for the permutated data, im-
plying that most of the significant results for the original
H3k27me3 data are false positives. For SIX5 using permu-
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Table 2. FET and the binomial test, but not ChIP-Enrich, show strongly inflated type I error rates

� level = 0.05 � level = 0.001 � level = 10−4

CE Binom FET CE Binom FET CE Binom FET

Permuted across
all gene

SIX5 0.038 0.11 0.038 6.2 × 10−4 0.012 5.9 × 10−4 6.5 × 10−5 .0033 6.4 × 10−5

PAX5 0.043 0.25 0.040 4.3 × 10−4 0.093 7.8 × 10−4 2.8 × 10−5 0.054 6.9 × 10−5

H3k27me3 0.045 0.30 0.040 4.7 × 10−4 0.14 7.4 × 10−4 3.9 × 10−5 0.096 5.1 × 10−5

Permuted within
locus length bins

SIX5 0.038 0.13 0.039 7.4 × 10−4 0.034 7.3 × 10−4 6.7 × 10−5 0.019 6.2 × 10−5

PAX5 0.043 0.25 0.073 3.9 × 10−4 0.11 0.0046 3.4 × 10−5 0.073 0.0011
H3k27me3 0.044 0.32 0.18 4.2 × 10−4 0.17 0.044 3.1 × 10−5 0.12 0.024

ChIP-Enrich shows the expected type I error rate in permuted ENCODE GM12878 ChIP-seq data; Fisher’s exact test and the binomial test can show
substantial inflation of type I error rate. Values represent the proportion of tests with P-value less than the given � level. For both permutation scenarios
(permuted overall and permuted in locus length bins), a well-calibrated test should have type I error rate approximately equal to the � level. The total
number of tests was 300 permutations × 5519 GO terms = 1 655 700 tests. CE: ChIP-Enrich; Binom: binomial test; FET: Fisher’s exact test.

Table 3. Most significant GO terms from GR� ChIP-Enrich analysis using ‘nearest TSS’ and ‘≤1 kb from TSS’ locus definitions show a large degree of
overlap with significant GO terms from RNA-seq data from the same cell line

ChIP-Enrich q-value

CE rank nearest
TSS RNA-seq rank GO term Nearest TSS

≤1 kb from
TSS

GOseq
q-value

(a)
1 22 Epithelial cell differentiation 1.8 × 10−6 1.0 1.2 × 10−6

2 936 Adherens junction 5.3 × 10−5 1.0 0.39
4 85 Negative regulation of sequence-specific

DNA binding transcription factor activity
5.5 × 10−5 1.0 3.0 × 10−4

5 9 Anti-apoptosis 5.5 × 10−5 0.34 3.2 × 10−9

7 1040 Basolateral plasma membrane 1.7 × 10−4 1.0 0.52
8 501 Unsaturated fatty acid metabolic process 3.2 × 10−4 0.028 0.063
10 872 Focal adhesion 4.5 × 10−4 1.0 0.32
13 132 Regulation of small GTPase-mediated

signal transduction
8.6 × 10−4 1.0 1.3 × 10−3

14 95 Response to inorganic substance 1.2 × 10−3 0.075 4.3 × 10−4

15 1616 Response to growth hormone stimulus 1.4 × 10−3 1.0 1.0

ChIP-Enrich q-value

CE rank ≤1 kb
from TSS

RNA-seq rank GO Term ≤1 kb from
TSS

Nearest TSS GOseq
q-value

(b)
1 267 Negative regulation of blood coagulation 3.2 × 10−7 0.077 0.010
7 1143 Intrinsic to external side of plasma

membrane
1.8 × 10−4 0.062 0.68

8 1648 Leukotriene metabolic process 2.2 × 10−4 6.4 × 10−3 1.0
10 4193 Anchored to plasma membrane 2.1 × 10−3 0.39 1.0
14 323 Positive regulation of leukocyte chemotaxis 3.5 × 10−3 0.092 0.017
15 1091 Platelet alpha granule lumen 4.7 × 10−3 0.25 0.61
18 1099 Ameboidal cell migration 5.2 × 10−3 0.31 0.94
19 1108 Regulation of nuclease activity 5.2 × 10−3 0.083 0.66
20 192 Cellular response to biotic stimulus 5.2 × 10−3 6.1 × 10−3 3.7 × 10−3

22 876 Nucleotide-binding domain, leucine-rich
repeat containing receptor signaling
pathway

6.1 × 10−3 0.15 0.010

Most highly significant GO terms (after collapsing related terms; q-value ≤ 0.05) detected using ChIP-Enrich with the (a) ‘nearest TSS’ and (b) ‘≤1 kb
from TSS’ locus definitions. The highest ranked GO term from each related set of GO terms is displayed. Bold rows designate GO terms with q-value ≤0.05
in GOseq analysis of RNA-seq data. In total, 458 GO terms (with ≤500 genes) were significantly enriched for the RNA-seq results.
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tations within locus length bin, >75% of gene sets with short
average locus lengths had P-values <0.05 with the binomial
test, whereas nearly all the gene sets with long average locus
lengths had P-values >0.9. The binomial model assumes
that genes with longer locus length will have proportionally
more peaks, which is not satisfied in the SIX5 data (Supple-
mentary Figure S4a). We observed the same behavior us-
ing the GREAT program (Supplementary text and Supple-
mentary Figure S5), but not for ChIP-Enrich (Supplemen-
tary Figure S4b). To see whether the bias in ranks based
on locus length for the binomial test carried over from the
permuted to the original unpermuted data, we asked if the
ranks for original and permuted SIX5 data sets were corre-
lated. We observed a high correlation for the binomial test
(r = 0.71) between the ranks of results from the original
SIX5 data and the average ranks from permutations within
locus length bins, but not for permutations across all genes
(Supplementary Figure S6a and b), indicating that the cor-
relation is due to locus length. With ChIP-Enrich, there was
no correlation between ranks of the original and permuted
data (r = −0.02) as expected (Supplementary Figure S6c
and d).

To complement our permutation study, we also simu-
lated ChIP-seq peak data sets with no true biological en-
richment under various scenarios and tested for enrichment
with ChIP-Enrich, the binomial test and FET. In these sim-
ulations, the binomial test had an inflated type I error rate
when peak counts were not proportional to locus length or
when extra variability (overdispersion) was added to gene
peak counts. Only ChIP-Enrich showed the expected type I
error rate in all simulations (Supplementary text and Sup-
plementary Figures S7 and S8).

Influence of locus definition on detection of gene set enrich-
ment

For each of the 63 GM12878 ChIP-seq data sets, we asked
if dissimilar sets of biologically related genes were detected
using different locus definitions, as a way to identify DBPs
that regulate distinct biological functions from different reg-
ulatory regions. Comparing ChIP-Enrich results for peaks
assigned to the ‘nearest TSS’ to those of the ‘nearest gene’,
we found moderate to high correlations in the enrichment
results (Pearson’s r = 0.62–0.99 for –log10 P-values) and P-
values of similar magnitude, indicating that the two defini-
tions are capturing similar information.

We observed much greater variability in comparisons be-
tween the ‘≤1 kb from TSS’ and ‘nearest TSS’ locus defi-
nitions, with four distinct patterns emerging (Figure 3 and
Supplementary Figure S9). (i) We found similar results for
‘≤1 kb from TSS’ and ‘nearest TSS’ for DBPs that tend to
bind near TSSs, such as SIX5 (Figure 3a), and for a subset
of other DBPs (Supplementary Figure S9). (ii) We identi-
fied distinct GO terms for ‘≤1 kb from TSS’ and ‘nearest
TSS’ for JunD and a small number of other DBPs (Fig-
ure 3b). JunD showed strong enrichment for calcium ion-
related terms only within 1 kb of a TSS and enrichment
for the JNK (Jun N-terminal kinase) and MAPK (Mitogen-
activated protein kinase) cascades only using ‘nearest TSS’
(not shown). JunD regulates varied physiological processes
(38); these results suggest it may regulate different processes

Figure 3. Representative plots of the four patterns of enrichment compar-
ing the ‘≤1kb from TSS and nearest TSS’ locus definitions. Gene set en-
richment testing using the ‘≤1kb from TSS’ and ‘nearest TSS’ locus defi-
nitions may identify similar (a) or different (b) sets of significant GO terms
for the same DBP. Alternatively, most of the enrichment signal may come
from ‘nearest TSS’ that uses all peaks (c) or ‘≤1 kb from TSS’ that ignores
peaks >1 kb from a TSS (d). (a)–(d) Upper plot: bar plot of the propor-
tion of peaks at different distances from the TSS. Lower plot: comparison
of –log10(P-values) from ChIP-Enrich GO term enrichment testing using
‘≤1 kb from TSS’ versus ‘nearest TSS’ locus definitions in ENCODE data
for the GM12878 cell line. GO terms enriched with FDR ≤ 0.05 for: ‘≤1
kb from TSS’ only (green); ‘nearest TSS’ only (blue); ‘≤1 kb from TSS’
and ‘nearest TSS’ (orange); neither analysis (black). r, Pearson correlation
coefficient. These patterns are representative of patterns present in 63 EN-
CODE DBPs from the GM12878 cell line.

from near versus far TSSs. (iii) We identified much stronger
enrichment using ‘nearest TSS’ than ‘≤1 kb from TSS’ for
H3K36me3 (Figure 3c), H3k79me2 and H4k20me1 (Sup-
plementary Figure S9) which bind along gene bodies (39).
(iv) Finally, we saw much stronger GO term enrichment us-
ing ‘≤1 kb from TSS’ than using ‘nearest TSS’ for CTCF
(Figure 3d), WHIP and a subset of DBPs with a small per-
cent of peaks ≤1 kb from the TSS (Supplementary Figure
S9).

Although CTCF is a well-known insulator in intergenic
regions, both CTCF binding and housekeeping genes are
enriched in the boundary regions of genomic topological
domains (40), and we see many of the same strongly en-
riched GO terms for CTCF binding ≤1 kb from a TSS
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(RNA processing, mitochondrion and cell cycle) as for
genes identified at the boundary regions. WHIP binds to
damaged DNA and in that capacity is not expected to bind
within or near genes with specific functions (41,42). The
most highly enriched gene sets for WHIP using the ‘≤1
kb from TSS’ definition included DNA repair (P = 1.1 ×
10−17), chromatin organization (P = 3.6 × 10−15) and cell
cycle regulation suggesting transcriptional roles of WHIP
related to its direct function in DNA repair. Other DBPs
with relatively small percentages of peaks near a TSS also
showed stronger ‘≤1 kb from TSS’ enrichment results; these
have known transcriptional functions and/or involvement
in DNA repair (ZNF143, CHD2) (43,44), chromatin struc-
ture (EBF1) (45) or centromere formation (SMC3) (46),
which may explain the lack of biological enrichment from
more distal peaks (Supplementary Figure S9).

ChIP-Enrich analysis of the GR�

We asked whether ChIP-Enrich could identify known and
potential new biology of a well-characterized transcrip-
tion factor, the GR� (47). Previous analysis identified 4392
peaks in A549 cells treated with 100-nM DEX (dexam-
ethasone stimulates GR activity); only 4.7% of the peaks
were within 1 kb of a TSS (Figure 4a). GO term enrich-
ment testing yielded largely distinct subsets of significant
(FDR ≤ 0.05) terms for ‘nearest TSS’ (195 terms) and ‘≤1
kb from TSS’ (72 terms) with only 16 overlapping terms
(Figure 4b and d; Supplementary Table S5). The most sig-
nificant terms (after collapsing similar terms) are shown in
Table 3. Terms significant using one or both locus defini-
tions include ‘epithelial cell differentiation’ (q-values: near-
est TSS = 1.8 × 10−6; ≤1 kb from TSS = 1.0) and ‘nega-
tive regulation of blood coagulation’ (q-values: nearest TSS
= 0.077; ≤1 kb from TSS = 3.19 × 10−7, with the related
term ‘regulation of wound healing’ (q-values: nearest TSS
= 0.0064; ≤1 kb from TSS = 0.0029). In addition, we ob-
served ‘response to glucocorticoid stimulus’ (q-values: near-
est TSS = 0.0035; ≤1 kb from TSS = 0.55) and ‘regulation
of lipid metabolic process’ (q-values: nearest TSS = 0.0062;
≤1 kb from TSS = 0.74). GR� is known to be involved
in the response to steroids and the activation of lipolysis
(48,49), although knowledge of the transcriptional role of
GR� in wound healing and blood coagulation is more lim-
ited. We also tested for enrichment using non-overlapping
locus definitions for regions closer to a TSS (≤5 kb from
TSS; 14.5% of peaks) and further from a TSS (>10 kb from
TSS; 75.6% of peaks) and again identified largely distinct
gene sets (Supplementary Figure S10).

We also compared the enrichment results (using ‘nearest
TSS’) from ChIP-Enrich with those using the binomial test
and FET. Due to inflated type I error rates for the bino-
mial test and FET for ‘nearest TSS’, the specific P-values
and number of terms with FDR < 0.05 cannot be used. In-
stead, we compared the top-ranked terms among the meth-
ods, using the number of top-ranked terms with FDR <
0.05 for ChIP-Enrich (195). There was substantial overlap,
with 57 (29%) GO terms identified by all three methods and
150 (77%) identified by at least two (Figure 4c). Both FET
and the binomial test had higher overlap with ChIP-Enrich
than with each other, consistent with the fact that the lo-

cus length-to-peak presence relationship modeled by ChIP-
Enrich is intermediate between the assumptions of FET and
the binomial test.

To evaluate the biological relevance of our results, we
compared the ChIP-seq enrichment results from ChIP-
Enrich with RNA-seq enrichment results based on differen-
tial expression between control and 100-nm-DEX-treated
A549 cells (47) (see the GR� analysis section of the Mate-
rials and Methods section). Of 4544 GO terms tested for
enrichment based on RNA-seq differential expression, 458
(10%) were significant at FDR ≤ 0.05. ‘Vascular develop-
ment’, the most significant GO term based on differential
expression, was also significantly enriched for GR� bind-
ing using the ‘nearest TSS’ analysis (q-value = 0.0047) but
not using ‘≤1 kb from TSS’ (q-value = 0.97). Eighty six
(29%) of the significant terms from RNA-seq were signif-
icant with one or both of the locus definitions in ChIP-seq
data (Figure 4b). From the ChIP-seq perspective, many of
the most highly significant terms using ‘nearest TSS’ and
‘<1 kb from TSS’ were significant for RNA-seq (Table 3
and Figure 4e and f). Seventy two (37%) of the significant
GO terms for ‘nearest TSS’ were significant for RNA-seq,
whereas only 20 (28%) of the significant GO terms for ‘≤1
kb from TSS’ were significant for RNA-seq, indicating po-
tentially stronger correspondence of the gene expression
data with the GR� peaks captured by the ‘nearest TSS’
definition than only those peaks ≤1 kb from a TSS. GO
terms enriched only in RNA-seq may be regulated by genes
downstream of those directly regulated by GR� or be GR�-
independent DEX effects. GO terms enriched only in ChIP-
seq data may indicate pathways that are poised to be reg-
ulated, either from proximal promoter or more distal en-
hancer regions.

DISCUSSION

We developed a gene set enrichment testing method for
ChIP-seq data, ChIP-Enrich, that empirically models and
adjusts for the effect of gene locus length. In contrast to
Fisher’s exact and the binomial test, ChIP-Enrich maintains
the correct type I error rate for data sets with a wide range
of locus length-to-peak presence relationships. FET and the
binomial test make assumptions that are inconsistent with
the observed relationships, which can lead to inflated type
I error rates (false positive results). Strikingly, the binomial
test often has significantly more false positives than FET.

ChIP-Enrich uses a binomial smoothing spline to empir-
ically model the relationship with gene locus length, an ap-
proach similar to that employed by GOseq, which was de-
veloped for RNA-seq data (19). Whereas GOseq uses ei-
ther a resampling approach or the approximate Wallenius
method to calculate GO term enrichment P-values, ChIP-
Enrich incorporates the smoothing spline in a logistic re-
gression model, allowing more precise P-value calculations
and in less time than a resampling approach requires.

For many DBPs, particularly those with more binding
near TSSs, testing for enrichment using the ‘nearest TSS’
and ‘≤1 kb from TSS’ locus definitions identifies largely
overlapping gene sets, suggesting the two definitions often
capture similar regulatory information. However, for a sub-
set of DBPs, these two locus definitions detect very differ-
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Figure 4. Comparison of GR� enrichment results for ChIP-seq (using two locus definitions) and RNA-seq data from A549 cells. Enriched GO terms
for differentially expressed transcripts and GR� binding following 100-nM DEX treatment show stronger overlap using the ‘nearest TSS’ locus definition
than using the ‘≤1 kb from TSS’ definition. (a) Observed spline fit for GR� fits neither FET nor the binomial test assumption (orange); bar plot of the
proportion of peaks at different distances from the TSS. See Figure 2(4a) and (b) for further details. (b) Using the ‘nearest TSS’ locus definition with GR�
results in more overlapping terms with RNA-seq results than using ‘≤1 kb from TSS’. (c) Using the top 195 ranked terms for each test, FET and the
binomial test have more overlap with ChIP-Enrich than with each other. (d)–(f) Comparison of –log10(P-values) for GO term enrichment tests based on
ChIP-seq data (ChIP-Enrich) and/or RNA-seq (GOseq) data. (f) Many enriched RNA-seq terms would have been missed in the ChIP-seq data if only
peaks in promoter regions were considered. GO terms enriched and FDR ≤ 0.05: for Y-axis test only (green); for X-axis test only (blue); for X- and Y-axis
tests (orange); for neither (black). Vasculature development and related GO terms (triangles). The majority of GO terms that overlap between ‘≤1 kb from
TSS’ and ‘nearest TSS’ are related to fatty acid metabolism, reactive oxygen species and unfolded proteins, or blood coagulation.

ent enriched gene sets. JunD, for example, may be regulating
different biological processes nearer to and further from the
TSS, possibly with different cooperating factors. For data
sets with a small proportion of peaks ≤1 kb of a TSS, but
stronger levels of enrichment detected with those peaks (ex-
amples WHIP and CTCF), it is possible that DBP bind-
ing >1 kb from the TSS may not be properly assigned to
the regulated gene(s) or that some of the widespread DBP
binding may not regulate genes in any specific biological
processes. Thus for DBPs with unknown function, compar-
isons of patterns of gene set enrichment could help predict
an alternative role for the DBP, such as DNA repair and/or
chromatin remodeling or looping.

To further explore the biological relevance of our results,
we compared the gene sets enriched for differential expres-
sion of messenger RNA (mRNA) following activation of
GR� to the gene sets enriched for GR� binding (47). For
GR� a subset of gene sets, many of which were not de-
tected using the ‘≤1 kb from TSS’ locus definition and in-
cluding vasculature development, showed substantial en-
richment for both differential expression and GR� binding.

GR� has been reported to play a limited role in vascula-
ture development, mainly through non-transcription factor
activities; the extent to which it directly regulates vascula-
ture development genes as a group was thus far unknown
(50–52). This suggests that GR� regulates many genes and
functions via binding further from TSSs, consistent with the
observations of Reddy et al. (47), and this regulation would
be missed if only peaks within 1 kb were examined (such as
could be tested without bias using FET).

Unlike the binomial test, ChIP-Enrich results are not in-
fluenced by a single gene or few genes with a large number
of peaks because it does not consider the number of bind-
ing sites per gene. However, because higher numbers of a
bound DBP in a gene locus may exert stronger biological
effects (49), the use of a model based on peak counts per
gene, which accounts for extra variability and diverse locus
length-to-peak count relationships, could be considered.
For example, a negative binomial or beta binomial model
may be able to account for the extra-variability among genes
in the peak count data. However, it is unclear whether these
models can fully account for both the extra variability and
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the observed negative correlation between peak occurrence
rate and locus length, or how best to empirically adjust for
locus length.

In conclusion, we developed a gene set enrichment test-
ing method, ChIP-Enrich, which allows enrichment anal-
ysis of ChIP-seq data with any locus length-to-peak pres-
ence relationship with the expected type I error rate. This is
in contrast to currently available methods, which often ex-
hibit highly elevated type I error and/or gene set ranking
biased toward genes with long or short locus length, lead-
ing to false positive results. Based on our observations, we
recommend testing each set of genomic regions for enrich-
ment with both a locus definition representing promoter
regions (e.g. ‘≤1 kb from TSS’ or ‘≤5 kb from TSS’) and
a locus definition representing all regions or regions more
distal to TSSs (e.g. ‘nearest TSS’, ‘nearest gene’, or ‘>10
kb from TSS’). ChIP-Enrich can be used to further assess
and refine regulatory region definitions, based on empiri-
cal exploration, and to identify biological functions of re-
gions exhibiting various complex patterns of histone marks
or protein binding using the wealth of biological data from
ENCODE, the Roadmap Epigenomics Program and other
public and non-public sources. With the option for user-
defined locus definitions and/or mappability tracks, this
framework can also be used with other genome-wide se-
quencing data such as RNA-seq (with potential bias from
transcript length and/or read depth) or bisulfite sequenc-
ing data (with potential bias from the number of measured
CpG sites).
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