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On the convective heat and zero 
nanoparticle mass flux conditions in 
the flow of 3D MHD Couple Stress 
nanofluid over an exponentially 
stretched surface
Muhammad Ramzan1,2, Mohsen Sheikholeslami3, Maria Saeed4 & Jae Dong Chung2

Three dimensional problems reflect more imperative understanding to real world issues in comparison 
to two dimensional problems. Keeping this fact in mind, a mathematical model is designed to deliberate 
the 3D magnetohydrodynamic couple stress nanofluid flow with joule heating and viscous dissipation 
effects past an exponential stretched surface. The analysis is performed keeping in mind the physical 
effects of Brownian motion and thermophoresis combined with convective heat condition. This paper 
also distinctly introduces a more realistic boundary constraint for nanoliquid flow model. For instance, 
zero mass flux condition has been instituted for the first time for 3D couple stress nanofluid model 
as far as the exponential stretched surface is concerned. Self-similar transformations are engaged to 
obtain a system of ordinary differential equations possessing high nonlinearity from the system of 
boundary layer partial differential equations. Analytic solution is constructed in the form of series using 
Homotopy Analysis Method (HAM). Numerically calculated values of Skin friction and local Nusselt 
number are also given with suitable analysis. Moreover, the influences of sundry parameters on velocity 
distribution, and heat and mass transfer rates are deliberated and depicted through relevant graphs. 
The results obtained clearly show that the Biot number and Hartmann number possess increasing effect 
on temperature distribution. To authenticate our obtained results, a comparison in limiting case is also 
given.

The term “nanofluid” refers to the nanoparticles (having size less than 100 nm) suspended into the base fluid. 
Typical examples of nanoparticles include metals such as Copper, Aluminum and Silver, oxides e.g., Aluminum 
Oxide, carbides such as Silicon Carbides, nitrides like Silicon Nitride and Aluminum Nitride, and nonmetals such 
as graphite or carbon nanotubes. The customary fluids are ethylene glycol, water, and oil. The amalgamation of 
nanoparticles with the common fluid tremendously improves the thermal traits of the base fluid.

Choi and Eastman1 were the pioneer to introduce the term nanofluid and the fact that several heat transfer 
physiognomies of the base fluids, such as thermal conductivity is enhanced by insertion of nanoparticles into 
it. Later, Wang and Arun2 deliberated that convective characteristics of base fluid are enhanced by addition of 
metallic and non-metallic particles into it. This was followed by an experimental study by Eastman3 who claimed 
that thermal conductivity of the ethylene glycol is improved by 40% once copper nanoparticles are inserted in it. 
Subsequently, Eastman4 also examined that the shape of nanoparticles has a pivotal role in increasing the thermal 
conductivity of base fluid. The decree of Eastman was verified by Murshed5 who studied that the amalgamation 
of water with spherical shaped nanoparticles (Titanium oxide) with sizes more than 40 nm, increases the thermal 
conductivity of the base fluid by 33%. The use of nanofluids is very common in cooling the transformers and 
nuclear reactors. In medical, magneto nanofluids are also being utilized in cancer treatment, hyperthermia and 
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MRI (Magnetic Resonance Imaging). The use of nanofluids is also imperative in making the germs free surgical 
instruments and removal of tumors.

In the literature, generally nanofluid flow can be modelled in two ways. Since the nanoparticles are smaller 
in size and can be mixed effortlessly in the base fluid so in the first case nanofluid is considered as a single phase 
flow6. In this case the dispersion of the nanoparticles in the base fluid is uniform and stable. Here, the impact of 
nanoparticles may be taken into consideration by deliberating the thermophysical characteristics of the nanoflu-
ids in the model equations. In the second case, named as two-phase flow, the association between liquid matrix 
and the nanoparticles is considered7. The two phase model was introduced by Buongiorno8, however, Tiwari and 
Das9 initiated the single phase model. Following these two proposed models, numerous researchers deliberated 
the thermal role of nanofluids to analyze the effective fluid characteristics10–19.

Investigation of non-Newtonian fluids is still a subject of curiosity for scientists and researchers because of 
their numerous applications in engineering and industry. Examples of non-Newtonian fluids may embrace sham-
poo, ketchup, polymer solutions, paper pulp and paints etc. Because of many complexities, non-Newtonian fluids 
cannot be expressed by a solitary constitutive relation in contrast to Newtonian fluids20. Therefore, several math-
ematical models for studying non-Newtonian fluids have been suggested by researchers in the past.

Couple stress fluid model is one amongst various proposed viscoelastic fluid models that exhibits behavior of 
the non-Newtonian fluids. Couple stress fluid model is considered as generalization of classical fluid model (i.e., 
the viscous fluid), and is comprises of couple stresses and body couples21. Examples of couple stress fluids may 
include animal and human blood, colloidal fluids, liquid crystals and liquids with long chain molecules. Basically, 
in these kind of fluids, the constitutive equations associate angular part of the velocity to the gradient of the angu-
lar velocity and the stress tensor’s skew symmetric part to the couple stress22. Erigen23 was the pioneer who used 
the term micropolar fluid for polar fluid; whereas dipolar fluids are recognized by their initiators Bleustein and 
Green24. The juncture of polar and dipolar fluids is phrased as couple stress fluids and was introduced by Stokes25. 
As the couple stress fluid’s stress tensor is not symmetric therefore Navier-Stokes equations are not adequate to 
model such fluids. Thus, the fluids with solid particles dangling in a viscid medium i.e., the synthetic fluids, the 
lubricants with small amount of polymer preservative and the blood may be treated as couple stress fluids26.

On account of such important applications of couple stress fluid in various engineering fields, numerous 
researchers and authors have highlighted the various aspects of such fluids. Amongst these, Ramzan et al.27 found 
analytical solution via Homotopy analysis method (HAM) of three-dimensional couple stress fluid flow with 
Newtonian heating. Khan et al.28 examined numerical solution of time dependent magneto hydrodynamic couple 
stress fluid flow past a rotating disk. Hayat et al.29 deliberated analytic solution of three-dimensional magneto 
hydrodynamic couple stress nanofluid flow past a nonlinear stretched surface with convective heat and mass 
boundary conditions. Ramzan30 found series solutions of three-dimensional couple stress nanofluid flow with 
joule heating using HAM. Lately, Hayat et al.31 investigated series solution of three-dimensional magneto hydro-
dynamic couple stress nanofluid flow with heat generation/absorption under the effects of convective condition. 
Recently, Hayat et al.32 deliberated the 3D couple stress nanofluid flow in attendance of Cattaneo- Christov heat 
flux.

From aforementioned literature review, it is found that flow of 3D magneto hydrodynamic couple stress nano-
fluid past an exponential stretched surface with convective heat and zero mass flux conditions is still a scarce. 
Effects of viscous dissipation and Joule heating are also deliberated to analyze of the flow problem. The system 
of partial differential equations acquired from boundary layer theory are converted to set of nonlinear differen-
tial equations using apposite transformations. Renowned Homotopy analysis method (HAM)33–41 is engaged to 
solve this system of ordinary differential equations. Graphical images depicting impacts of varied parameters 
on involved distributions with mandatory conversation are also given. An appraisal of the presented results to a 
previous study is also given to authenticate our results.

Mathematical Modelling
Consider a 3D incompressible couple stress nanofluid flow past an exponential stretched surface with convective 
heat and zero mass flux conditions. It is assumed that = =

+

u U x y U e( , ) ,w 0
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L  and υ = =
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V x y V e( , )w 0
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L (with U0, 
V0 are constants) are stretched velocities of the surface along x− and y− directions respectively. Impact of Joule 
heating and viscous dissipation are also considered. Couple stress nanofluid is electrically conducting with uni-
form magnetic field in a direction along z− axis (Fig. 1).

It is presumed that magnetic Reynolds number is small and owing to this assumption, the induced magnetic 
field is ignored when we compare it with the applied magnetic field. Also, (u, v, w) are velocities components 
along (x, y, z) directions respectively. Also, T, C, T∞ and C∞ represent the fluid’s temperature, the concentration, 
the ambient temperature and the ambient concentration respectively. Fluid flow is represented by the boundary 
layer equations as appended below:
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f , n, k, Cp, DB, Tf, L, τ, and DT are the constants, kinematic viscosity, couple 

stress viscosity, heat transfer coefficient, density, temperature exponent, electric charge density, couple stress vis-
cosity parameter, thermal conductivity, specific heat, Brownian diffusion coefficient, convective fluid temperature 
below the moving surface, reference length, the quotient of the effective heat capacity of the fluid to the heat 
capacity of the nanoparticle material fluid, and thermophoretic diffusion coefficient respectively. The second term 
in equation 2 represents the couple stress fluid component along x− direction and third term relates the compo-
nent of magnetic field along x− direction. Similarly, the second and third terms in equation 3 point out the couple 
stress fluid component and magnetic field component along y− direction. In equation 4, the second and third 
terms symbolize the viscous dissipation and the fourth term denote the Joule heating. The fifth term in equation 4 
indicates the Brownian motion due to nanofluids and the second term in equation 5 designates the thermopho-
resis diffusion term due to nanofluids. Using the under mentioned transformations
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Eq. (1) is satisfied inevitably and Eqs (2–6) take the form
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Figure 1.  Fluid flow geometry.
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Here, prime denotes differentiation w.r.tη. However, K, M, α, Pr, Sc, Ec, Nb, γ and Nt represent dimensionless 
couple stress parameter, Hartmann number, ratio of rates parameter, Prandtl number, Schmidt number, Eckert 
number, Brownian motion parameter, Biot number and thermophoresis parameter respectively. Values of these 
parameters are given as under:
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In non-dimension form, Skin friction coefficient and local Nusselt number are represented by
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is the local Reynolds number.

Series Solutions
To solve the presented modeled problem, Homotopy Analysis method (HAM) is engaged to obtain the series 
solutions for the system of nonlinear differential equations with allied boundary conditions. Over the years 
numerical techniques are developed but owing to obvious restrictions42, analytical techniques are adopted as 
an alternative by the scientists. Amongst these, Perturbation techniques are the most popular methods and are 
extensively applied in engineering and science problems43. One prime limitation of these techniques that they 
highly rely on small/large physical parameters, and owing to this deficiency these are valid only for weakly non-
linear problems and are not in the preferred list to solve the highly nonlinear problems. Thus, non-perturbation 
techniques like the variational iteration method44, the expansion method45, the Lyapunov’s artificial small param-
eter method46, and Adomian decomposition method47 and so on, are introduced to address this shortcoming of 
dependency on small/large parameters. But, the convergence of series solutions is not guaranteed in these meth-
ods. These are in principle applicable only for weakly nonlinear problems too. Whereas HAM suggested by Liao48 
is a generalized analytical approach to address any system with strong nonlinearity, with ample choice to ensure 
series solutions’ convergence. This technique is even good for far-field boundary conditions in contrast with the 
numerical techniques. The basic features of this techniques are as under:

	 i.	 Perturbation technique only produces convergent solution when the parameter values are kept small or 
large but not for both cases. However, HAM solutions are independent of the choice of parameter’s values, 
as it generates solution on the idea of Homotopic deformation from an initial guess estimate to the final 
solution.

	 ii.	 The convergence is controlled using an additional parameter in the solution rather than using some 
physical parameter. This parameter does not have physical significance but its values help us to control the 
divergence of a solution. So a proper choice of the value of ℏ offers us a convergent solution48.

	 iii.	 HAM gives us the freedom to produce solutions in terms of polynomials, exponential, logarithmic or trig-
onometric functions by choosing a base function. By looking at the physical system we can define the base 
functions accordingly. Like if we have damping problem we can choose e−x type base function, if we have 
some oscillating phenomenon, we can choose trigonometric functions etc.48.

A comprehensive detail of this method with examples may be found at49. The initial guesses with respective 
linear operators required for the particular problem are given as under:
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in which Ai(i = 1 − 10) are the arbitrary constants.

Convergence Analysis
In this section we will define the series solutions’ convergence by via HAM. The HAM solutions encompass aux-
iliary parameters ℏf, ℏg, ℏθ and ℏφ. These parameters play a title role in controlling and regulating the convergence 
regions of resultant series solutions. To have the values of same parameters, ℏ− curves are obtained at 9th order 
of approximation. Figure 1 shows the boundaries of the convergence regions −0.9 ≤ ℏf ≤ −0.5, −1 ≤ ℏg ≤ −0.4, 
−1.0 ≤ ℏθ ≤ −0.5 and −1.15 ≤ ℏφ ≤ −0.5. Table 1 presents the numerically calculated values of convergence up to 
25th order of approximations and it can also be presented as the counter check to ℏ− curves drawn in Fig. 2. Both 
Fig. 2 and Table 1 are correlated and are in good concurrence.

Discussion
The goal of this portion is to portray the significant characteristics of arising parameters on velocity components, 
temperature, and concentration distributions, Skin friction and the Nusselt number.

Figures 3 and 4 are drawn to portray the consequence of the ratio of rates parameter α on velocity compo-
nents f′ and g′ along x− and y− axes respectively. It is noticed that an escalation in the values of α, f′ decreases 
however g′ shows an opposite behavior. This is because of the fact that the rate constant of velocity component 
along the y− axis is more dominant in comparison to the velocity component along the x− axis. Figures 5 and 6 
elucidate the impact of couple stress parameter K on the velocity components f′ and g′ respectively. Both velocity 
components decrease with rise in the values of K. The values of K are directly linked with couple stress viscosity 
parameter n. Higher values of K means more viscosity which hinders the movement of the fluid and finally dec-
rement in the velocity components is witnessed. Figure 7 is plotted to show an impact of the Biot number γ on 
temperature profile. From the curves of γ, it is revealed that temperature distribution upsurges for incremented 
values of γ. Actually, escalated heat transfer coefficient is perceived for growing estimates of γ which eventually 
rises the temperature of the fluid. It is also comprehended that temperature of the fluid rises more rapidly near 
the stretched surface for incremented values of γ. The effect of Hartmann number M on the temperature field is 
showed in Fig. 8. It is comprehended that the temperature profile upsurges for higher values of M. Augmentation 
in the Lorentz force is observed because of augmented values of M; due to this phenomenon, resistance in the 

Order of 
estimation −f″(0) −g″(0) −θ′(0) −φ′(0)

1 1.4013 0.14013 0.196030 0.0032671

10 1.4357 0.14357 0.050620 0.0084366

15 1.4359 0.14359 0.048845 0.0081408

20 1.4359 0.14359 0.048492 0.0080819

25 1.4360 0.14360 0.048409 0.0080682

30 1.4360 0.14360 0.048409 0.0080682

Table 1.  Homotopy series solutions’ convergence for various order of estimations.

Figure 2.  ℏ− curves for f, g, θ, φ.
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fluid motion is experienced which results in more collisions of molecules in the fluid and eventually upsurge in 
fluid’s temperature is witnessed. Figure 9 demonstrates the impact of Schmidt number Sc on the concentration 
distribution. A feeble mass diffusivity is witnessed for large values of Sc. This weak mass diffusivity will affect the 
mass concentration of the fluid and consequently decrease in the concentration field is witnessed. Figure 10 is 

Figure 3.  Variation of α versus f′(η).

Figure 4.  Variation of α versus g′(η).

Figure 5.  Variation of K versus f′(η).
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illustrated to depict the behavior of the thermophoresis parameter Nt on concentration distribution. Mounting 
values of Nt push nanoparticles far away from the warm surface, which results in an enriched concentration 
distribution. In Fig. 11, the effect of Brownian motion parameter Nb on concentration field is portrayed. For 
higher values of Nb, reduction in concentration profile is witnessed. Actually, mounting values of Nb are the root 
cause to boost the random motion amongst nanoparticles and as a result decrease in concentration of the fluid 
is witnessed. The impact of Prandtl number Pr on the temperature field is depicted in Fig. 12. As Pr is directly 

Figure 6.  Variation of K versus g′(η).

Figure 7.  Variation of γ versus θ(η).

Figure 8.  Variation of M versus θ(η).



www.nature.com/scientificreports/

8ScIEntIfIc RepOrts |           (2019) 9:562  | DOI:10.1038/s41598-018-37267-2

proportional to momentum diffusivity and inversely proportional to thermal diffusivity. Higher values of Pr 
means there is strong momentum diffusivity as compared to the thermal diffusivity and such weak thermal diffu-
sivity relates to the weaker temperature profile. The effect of Eckert number Ec on the temperature distribution is 
illustrated in Fig. 13. From figure, it is noted that temperature field is an escalating function of Ec. This is because 
of frictional drag that becomes the main source to raise heat energy in the fluid. Figures 14 and 15 are sketched 
to show the impact of the Hartmann number M, the Eckert number Ec and the Prandtl number Pr on Nusselt 

Figure 9.  Variation of Sc versus φ(η).

Figure 10.  Variation of Nt versus φ(η).

Figure 11.  Variation of Nb versus φ(η).
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number −θ′(0). It is detected that Nusselt number is decreasing function of all three parameters. Nusselt number 
is a non-dimensional number that is used to gauge the heat transfer between a solid body and a moving fluid. 
The reason for decrease in value of Nusselt number is because of decline in the natural convection of nanoflu-
ids. Actually, the augmented Lorentz force due to the strong magnetic field weakens the natural convection for 
nanofluids.

Figure 12.  Variation of Pr versus θ(η).

Figure 13.  Variation of Ec versus θ(η).

Figure 14.  Variation of Pr and Ec versus −θ/(η).



www.nature.com/scientificreports/

1 0ScIEntIfIc RepOrts |           (2019) 9:562  | DOI:10.1038/s41598-018-37267-2

Tables 2 and 3 portray the Skin friction coefficients along x− and y− axes for varied values of ratio parameter 
α, couple stress parameter K and Hartmann number M and It is gathered that the Skin friction coefficients are 
enhanced for increasing values of α, K and M. Table 4 is constructed for Nusselt number versus varied values of 
involved parameters. It is witnessed that Nusselt number upsurges for γ, α, A and shows decreasing tendency 
for growing values of K, M, Pr, Ec and Sc. Table 5 is initiated to depict comparison of the presented problem in 
limiting case to a previously done exploration50 and all obtained results are found in an tremendous concurrence. 
Table 6 is erected with the same objective to authenticate our obtained results with Hayat et al.51 in limiting case. 
An excellent concurrence is achieved when the results are compared.

Concluding Remarks
The flow of couple stress nanofluid past an exponential stretched surface with effects of magneto hydrodynamic, 
viscous dissipation and Joule heating is examined here analytically. Impacts of convective heat and zero mass flux 
conditions are also deliberated. The system of nonlinear differential equations is solved using Homotopy analysis 
method. Influences of various parameters on velocity field, temperature field, concentration distribution, Skin 
friction coefficient and the local Nusselt number are depicted through graphical illustrations. The significant 
findings of the present problem are summarized as follows:

Figure 15.  Variation of Pr and M versus −θ/(η).

α K M −C Ref x
/1 2

0.1 1.43588

0.2 1.45336

0.3 1.51480

0.1 0.02 1.48194

0.03 1.58900

0.01 0.1 1.37723

0.2 1.38939

0.3 1.40891

Table 2.  Estimates of Skin friction coefficient C( Re )f x
1/2  for α, K and M.

α K M −C Reg x
1/2

0.1 0.143578

0.2 0.299583

0.3 0.467421

0.4 0.646402

0.1 0.02 0.147835

0.03 0.154193

0.04 0.164643

0.01 0.5 0.146938

0.6 0.150971

0.7 0.155608

Table 3.  Estimate of Skin friction coefficient ( )C Reg x
1/2  for α, K and M.
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γ α K M Pr Ec A Sc ReNu/ x
1/2

0.2 0.3 0.02 0.3 1.0 0.1 0.2 1.0 0.1302

0.5 0.2450

0.7 0.2945

0.9 0.3315

0.2 0.5 0.1314

0.7 0.1327

0.8 0.1330

0.3 0.03 0.1286

0.04 0.1225

0.05 0.1045

0.01 0.3 0.1301

0.5 0.1270

0.7 0.1170

0.1 1.2 0.1310

1.3 0.1305

1.4 0.1295

1.0 0.2 0.1082

0.3 0.1045

0.4 0.1011

0.1 0.3 0.1092

0.4 0.1138

0.5 0.1179

0.1 0.4 0.1310

0.5 0.1306

0.7 0.1302

Table 4.  Numerically calculated values of local Nusselt number for γ α K M Ec A, , , , Pr, ,  and Sc. when  
Nb = 0.6, Nt = 0.2.

Pr A

θ′(0) θ′(0) θ′(0)
52 50 Present

1

−1.5 0.377413 0.37741256 0.37741301

0 −0.549643 −0.54964375 −0.54964339

1 −0.954782 −0.95478270 −0.95478277

3 −1.560294 −1.56029540 −1.56029499

5

−1.5 1.353240 1.35324050 1.35324055

0 −1.521243 −1.52123900 −1.52123893

1 −2.500135 −2.50013157 −2.500135210

3 −3.886555 −3.88655510 −3.88655512

10

−1.5 2.200000 −2.20002816 2.20000798

0 −2.2574249 −2.25742372 −2.25742910

1 −3.660379 −3.66037218 −3.66037911

3 −5.635369 −5.62819631 −5.635316812

Table 5.  Comparison table erected for wall temperature gradient θ′(0) in limiting case in absence of α, γ, K, M 
and nanofluid with Liu et al.50 and Magyari. & Keller52.

α

Hayat et al.51 Present

−f″(0) −g″(0) f(∞) + g(∞) −f″(0) −g″(0) f(∞) + g(∞)

0 1.281809 0 0.905644 1.281809 0 0.905644

0.5 1.569889 0.784944 1.109182 1.569889 0.784944 1.109182

1.0 1.812751 1.812751 1.28077 1.812751 1.812751 1.28077

Table 6.  Comparison table erected for −f″(0), −g″(0) and f(∞) + g(∞) in limiting case in absence of K, M and 
nanofluid with Hayat et al.51.
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•	 For growing values of Brownian motion and thermophoresis parameters, the nanoparticle concentration 
distribution shows decreasing and increasing behavior respectively.

•	 Effective enhancement of ratio of rates parameter α accounts for decrease in velocity component f′ and 
increase in the other velocity component g′.

•	 The temperature distribution enhances versus increasing values of Biot number and Hartmann number.
•	 For the values of K, M, Pr, Ec and Sc, Nusselt number shows escalating behavior.
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