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Abstract
Multiple sequence alignments have much to offer to the understanding of protein
structure, evolution and function. We are developing approaches to use this infor-
mation in predicting protein-binding specificity, intra-protein and protein-protein
interactions, and in reconstructing protein interaction networks. Copyright  2003
John Wiley & Sons, Ltd.
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Multiple sequence alignments are a precious repos-
itory of the successful evolutionary strategies
explored by proteins [24]. We are interested in the
development of computational methods able to sys-
tematically recover part of this information. A first
line of research addressed the detection of positions
with patterns of variation characteristic of the inter-
nal structure of the corresponding protein families.
These ‘tree determinant residues’ are distributed
in close proximity to regions dedicated to specific
molecular recognition (e.g. binding sites, protein
interaction regions) [5]. Indeed, by manipulating
these residues it is possible to modulate protein-
binding specificity [1] (Figure 1). The possibility
of using predicted specificity sites for the pre-
diction of the corresponding molecular functions
still remains unexplored. We have initiated a com-
plementary route for the exploration of potential
binding regions by training neural networks with
proteins with known interaction sites and the cor-
responding multiple sequence alignments [9]. In
the future, we would like to include in this neu-
ral network framework the information concerning
‘tree-determinant’ residues to improve the quality
of the predictions of protein binding/specific sites
with sequence, or with combinations of sequence
and structural information.

A second line of research studies the small vari-
ations in multiple sequence alignments that may
be presented by amino acids that act in associa-
tion to maintain protein stability against random
mutational drift. These correlated positions present
a weak correlation with physical proximity in pro-
tein structures [11,15] and can be combined with
other signals to predict three-dimensional contacts
[7,8]. Interestingly, they seem to be more effective
in the detection of protein–protein interactions than
in the prediction of intra-protein contacts [17] and,
as such, can be used to build models of protein
complexes [2] (Figure 2).

Sparked by the growing interest in deciphering
protein interaction networks (Table 1), we extended
both approaches to the prediction of protein inter-
action partners. The ‘mirror-tree’ method [18] and
the ‘in-silico-2-hybrid’ method [19,23] are based
on the concepts of tree-determinants and corre-
lated mutations, respectively. Recently, we have
systematically evaluated the reliability of the pro-
tein interaction network prediction methods, using
our previous developments for directly assess-
ing the presence of the interactions in published
papers. The predictions compared include those
generated by each one of these two methods for the
E. coli genome, those by other previous publi-
shed methods based on information about genome
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Figure 1. Swap of function (binding partner) between related proteins. Ras and Ral are very similar proteins of the larger
ras super-family that bind to very different effectors: Rlip in the case of Ral, and Ras Binding Domain containing proteins for
the ras proteins. The prediction of two residues key for the functional differentiation of the sequences was generated with
the SequenceSpace software, based on the tendency of these two positions to contain information specific for each one of
the two families [1]. The experimental exchange between the corresponding amino acids in these two positions produced
a complete swap of the corresponding substrate-binding specificities. In this case the Ras double mutant bound Rlip and not
the ras binding domain containing proteins and the Ral double mutant bound Ras Binding domain proteins and not Rlip [1]

Table 1. Current genome and sequence-based methods for the prediction of protein–protein interactions

Method References Description

Gene neighbours 3,16 Uses the proximity of genes in bacterial genomes as criteria for the prediction of
functional relations

Gene fusion 6,13,14 Explores the presence of fused genes producing a single peptide chain in some
genomes for the prediction of interactions

Patterns of gene presence 10,20 Genes with a similar distribution in complete genomes are predicted to have related
functions

Domain architecture 12,22 The domain composition of complex proteins is exploited for the prediction of
associations between them

Mirror trees 18 The similarity of the gene trees of different protein families is quantified and used for
the prediction of interactions

In silico-2-hybrid 19 The presence of ‘correlated positions’ between pairs of positions in pairs of multiple
sequence alignments is used as indicative of their potential molecular interaction
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Figure 2. Proposed model of polymerization for FtsA.
The residues participating in correlations are coloured
red and green. The model was selected as the docking
model that best fits the distance constraints imposed by
the correlated residues. The model is compatible with the
position of a peptide able to interrupt dimer formation,
which corresponds to an interface region highlighted in
yellow in the picture. Reproduced from [2] by permission
of John Wiley and Sons Ltd

organization [3,6,20], and a set of results based
on an experimental two-hybrid approach [21]. Our
results show [4] that all the computational methods
have a similar coverage and accuracy, which are

also similar to those obtained with the experimen-
tal approach. This analysis opens new possibilities
for a combination of these methods for an effective
reconstruction of protein interaction networks.
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