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Introduction

Cellular morphology is influenced by multiple intrinsic and 
extrinsic factors acting on cell physiology. Striking changes 
in morphology are observed when cells are exposed to bio-
logically active small molecules. Compound-induced alter-
ation in morphology is a manifestation of various perturbed 
cellular processes. We can hypothesize that compounds 
with a similar mechanism of action (MoA), which act upon 
the same signaling pathways, will produce comparable phe-
notypes, and that cell morphology can predict compound 
MoA. Multiparametric high-content imaging assays have 
become established across a number of screening groups to 
classify cell phenotypes from functional genomic and 
small-molecule library screening assays.1 The standard 
approach to extracting numerical features from cell mor-
phologies is through the development and application of 
high-content image analysis algorithms, which segment 
cells and subcellular structures into “objects.” Then image-
based measurements on those objects creates a multipara-
metric phenotypic fingerprint for each perturbation.2–5 Such 
methods are routinely applied to further evaluate the MoA 
of hit and lead compounds derived from conventional 

target-based drug discovery programs. This allows the use 
of more physiologically relevant cell-based assay condi-
tions and also provides a phenotypic profile to help eluci-
date the MoA for hits discovered by target-agnostic 
phenotypic screening.6

A landmark paper in the field of high-content phenotypic 
profiling was published in 2004, when Perlman et al. first 
demonstrated that multiparametric phenotypic fingerprints 
could be clustered according to compound MoA using a cus-
tom similarity metric and hierarchical clustering.2 The 
majority of early high-content phenotypic profiling studies, 

820805 JBXXXX10.1177/2472555218820805SLAS DISCOVERY: Advancing Life Sciences R&DWarchal et al.
research-article2019

1Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and 
Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK

Received Aug 9, 2018, and in revised form Nov 14, 2018. Accepted for 
publication Dec 3, 2018.

Supplemental material is available online with this article.

Corresponding Author:
Neil O. Carragher, Cancer Research UK Edinburgh Centre, MRC 
Institute of Genetics and Molecular Medicine, University of Edinburgh, 
Edinburgh EH4 2XR, UK. 
Email: n.carragher@ed.ac.uk

Evaluation of Machine Learning Classifiers 
to Predict Compound Mechanism of Action 
When Transferred across Distinct Cell Lines

Scott J. Warchal1, John C. Dawson1, and Neil O. Carragher1

Abstract
Multiparametric high-content imaging assays have become established to classify cell phenotypes from functional genomic 
and small-molecule library screening assays. Several groups have implemented machine learning classifiers to predict the 
mechanism of action of phenotypic hit compounds by comparing the similarity of their high-content phenotypic profiles with 
a reference library of well-annotated compounds. However, the majority of such examples are restricted to a single cell 
type often selected because of its suitability for simple image analysis and intuitive segmentation of morphological features. 
The aim of the current study was to evaluate and compare the performance of a classic ensemble-based tree classifier 
trained on extracted morphological features and a deep learning classifier using convolutional neural networks (CNNs) 
trained directly on images from the same dataset to predict compound mechanism of action across a morphologically and 
genetically distinct cell panel. Our results demonstrate that application of a CNN classifier delivers equivalent accuracy 
compared with an ensemble-based tree classifier at compound mechanism of action prediction within cell lines. However, 
our CNN analysis performs worse than an ensemble-based tree classifier when trained on multiple cell lines at predicting 
compound mechanism of action on an unseen cell line.

Keywords
high-content screening, cell-based assays, cancer and cancer drugs, machine learning

mailto:n.carragher@ed.ac.uk
https://slasdisc.sagepub.com


Warchal et al. 225

utilizing morphological profiling, applied unsupervised 
hierarchical clustering in order to group treatments into bins 
that produce similar cellular phenotypes.5,7 More recently, 
several groups have evolved phenotypic profiling through 
the application of machine learning classifiers to predict the 
MoA of phenotypic hits, by comparing the similarity of the 
high-content phenotypic profiles with a reference library of 
well-annotated compounds.4,8 This can be performed by 
arranging unannotated compounds in feature space and 
using proximity to nearby labeled data to infer MoA.4,9,10 A 
slightly different approach is to train a classifier with labeled 
data and then attach labels to unknown compounds.11,12 
However, the majority of such examples of compound MoA 
prediction are restricted to a single cell type, often selected 
because of its suitability for simple image analysis and intui-
tive segmentation of morphological features. The restriction 
of multiparametric high-content image analysis to single 
“easy-to-image” cell line models limits the application of 
phenotypic profiling and MoA classification studies across 
more morphologically complex and disease-relevant cell-
based assay systems. Furthermore, the expansion of multi-
parametric high-content studies across broader panels of 
morphologically and genetically distinct cell lines, which 
more accurately represents the heterogeneity of human dis-
ease, has several benefits. This allows correlation of pheno-
typic response data with basal genomic, transcriptomic, or 
proteomic data to support further understanding of com-
pound MoA at the molecular level and identification of bio-
markers of phenotypic response. Such application of 
multiparametric high-content phenotypic screens across 
larger cell line panels, equivalent to the Cancer Cell Line 
Encyclopedia (CCLE) or Genomics of Drug Sensitivity in 
Cancer (GDSC) and new emerging induced pluripotent stem 
cell (iPSC)-derived model resources, can further support 
drug repurposing and pharmacogenomic studies across more 
complex cell-based phenotypes.

The aim of the current study was to evaluate the perfor-
mance of a classic machine learning classifier applied to high-
content morphological feature measurements and deep 
learning network classifiers applied directly to images. Our 
training and test datasets comprise an adaptation of a previ-
ously published cell painting assay13,14 (Suppl. Table S1) 
applied to eight genetically and morphologically distinct 
human breast cancer cell lines, representing four clinical sub-
types (Table 1). Each cell line has been treated with 24 anno-
tated small molecules representing eight therapeutic subclasses 
with the inclusion of two structurally distinct molecules for 
each subclass (Table 2). We present the results of compound 
MoA prediction across all eight breast cancer cell lines from 
our machine learning models using the following methods:

1. Ensemble-based tree classifier trained on extracted 
morphological features from five-channel images 
(CellProfiler)

2. Convolutional neural networks (CNNs) trained on 
five-channel images

More specifically, we evaluate and quantify the perfor-
mance of an ensemble-based tree classifier and a CNN clas-
sifier, with regards to predicting compound MOA, when 
trained and predicted on each individual cell line and on 
“previously unseen” additional cell types.

Materials and Methods

Cell Culture

The breast cancer cell line panel (Table 1) was grown in 
Dulbecco’s modified Eagle’s medium (DMEM; cat. 
 21969-035, Thermo Fisher Lifetech, Paisley, UK) and 
 supplemented with 10% fetal bovine serum and 2 mM 
l-glutamine, incubated at 37 °C humidified and 5% CO2.

Cells were plated in 96-well optical bottom plates (cat. 
165305, Thermo Fisher Lifetech, Paisley, UK) at a density 
of 2500 cells per well in 100 µL of media in the inner 60 
wells and incubated for 24 h before compound treatment.

Compound Treatment

Compounds (Table 2) were diluted in DMSO at a stock con-
centration of 10 mM. Compound plates were prepared in 
V-bottomed 96-well plates (cat. 3363, Costar, Bucks, UK) at 
1000-fold concentration in 100% DMSO by serial dilutions 
ranging from 10 to 0.3 mM in semilog concentrations. We 
selected only three concentrations for this study as the most 
active concentrations (100, 300, and 1000 nM). Compounds 
were added to assay plates containing cells 24 h after initial cell 
plating and incubation by first making a 1:50 dilution in media 
to create an intermediate plate, followed by a 1:20 dilution from 
intermediate plate to the assay plate, with an overall dilution of 
1:1000 from the stock compound plate to the assay plate.

Table 1. Panel of Breast Cancer Cell Lines Chosen for Study.

Mutation Status

Cell Line Subclass PTEN PI3K

MCF7 ER WT E545K
T47D ER WT H1047R
MDA-MB-231 TN WT WT
MDA-MB-157 TN WT WT
HCC1569 HER2 WT WT
SKBR3 HER2 WT WT
HCC1954 HER2 ? H1047R
KPL4 HER2 ? H1047R

PTEN = phosphatase and tensin homolog; PI3K = phosphoinsitide-3-
kinase; ER = estrogen receptor; TN = triple negative; HER2 = human 
epidermal growth factor; WT = wild-type; ? = lack of consensus 
regarding the mutational status. The breast cancer cell line mutational 
status was taken from Dai et al.19
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Modified Cell Painting Staining Protocol

To label cells in 96-well plates, the cells were fixed by add-
ing an equal volume of 8% paraformaldehyde (cat. 28908, 
Thermo) to the existing media, resulting in a final parafor-
maldehyde concentration of 4%, which was left to incubate 
for 30 min at room temperature. The plates were then 
washed with 100 µL of phosphate-buffered saline (PBS) 
and permeabilized with 50 µL of 0.1% Triton X-100 solu-
tion for 20 min at room temperature. A solution of cell 
painting reagents was made up in 1% bovine serum albumin 
(BSA) solution (see Suppl. Table S1). Thirty microliters of 
cell painting solution was added to plates and left to incu-
bate for 30 min at room temperature in the dark. Plates were 
then washed with 100 µL of PBS three times; after the final 
aspiration and addition of PBS, plates were sealed with a 
transparent plate seal (cat. PCR-SP, Corning, UK).

ImageXpress Image Acquisition

Imaging was carried out on an ImageXpress micro XL 
(Molecular Devices, CA), a multiwavelength wide-field 
fluorescent microscope equipped with a robotic plate loader 
(Scara4, PAA, UK). In the cell painting assay used for this 
study, images were acquired in five fluorescent channels  
(as indicated in Suppl. Table S1) at 20× magnification; 

exposure times were kept constant between plates and 
batches as to not influence intensity values. Images were 
captured across four different sites per well, with each site 
containing approximately 50–200 cells in negative control 
wells depending on the cell line, with the MDA-MB-157 
cell line containing fewer cells per image compared with the 
other tested cell lines due to the large cell size characteristics 
of that particular cell line.

CellProfiler Image Analysis and Morphometric 
Feature Data Analysis

Images were analyzed using CellProfiler v2.1.115 to extract 
morphological features. Briefly, cell nuclei were segmented 
in the Hoechst-stained image based on intensity, and 
clumped nuclei were separated based on shape. Nuclei 
objects were used as seeds to detect and segment cell bodies 
in the cytoplasmic stains of the additional channels. 
Subcellular structures such as nucleoli and Golgi apparatus 
were segmented and assigned to parent objects (cells). 
Using these masks marking the boundary of cellular objects, 
we measured morphological features for multiple image 
channels returning per object measurements. Out-of-focus 
and low-quality images were detected through saturation 
and focus measurements and removed from the dataset. 

Table 2. Annotated Compounds and Their Associated MoA Label Used in the Classification Tasks.

Compound Class Subclass Supplier Cat. No.

Paclitaxel Microtubule disrupting Microtubule stabilizer Sigma T7402
Epothilone B Microtubule disrupting Microtubule stabilizer Selleckchem S1364
Colchicine Microtubule disrupting Microtubule destabilizer Sigma C9754
Nocodazole Microtubule disrupting Microtubule destabilizer Sigma M1404
Monastrol Microtubule disrupting Eg5 kinesin inhibitor Sigma M8515
ARQ621 Microtubule disrupting Eg5 kinesin inhibitor Selleckchem S7355
Barasertib Aurora B inhibitor Aurora B inhibitor Selleckchem S1147
ZM447439 Aurora B inhibitor Aurora B inhibitor Selleckchem S1103
Cytochalasin D Actin disrupting Actin disrupter Sigma C8273
Cytochalasin B Actin disrupting Actin disrupter Sigma C6762
Jasplakinolide Actin disrupting Actin stabilizer Tocris 2792
Latrunculin B Actin disrupting Actin stabilizer Sigma L5288
MG132 Protein degradation Proteasome Selleckchem S2619
Lacacystin Protein degradation Proteasome Tocris 2267
ALLN Protein degradation Cysteine/calpain Sigma A6165
ALLM Protein degradation Cysteine/calpain Sigma A6060
Emetine Protein synthesis Protein synthesis Sigma E2375
Cycloheximide Protein synthesis Protein synthesis Sigma 1810
Dasatinib Kinase inhibitor Src-EMT Selleckchem S1021
Saracatinib Kinase inhibitor Src-EMT Selleckchem S1006
Lovastatin Statin Statin Sigma PHR1285
Simvastatin Statin Statin Sigma PHR1438
Camptothecin DNA damaging agent Topoisomerase 1 inhibitor Selleckchem S1288
SN38 DNA damaging agent Topoisomerase 1 inhibitor Selleckchem S4908
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Image averages of single-object (cell) measurements were 
aggregated by taking the median of each measured feature 
per image. Features were normalized on a plate-by-plate 
basis by dividing each feature by the median DMSO 
response for that feature; a z score was then calculated for 
each feature over the entire pooled dataset to standardize 
each feature to a mean of zero and unit variance. Feature 
selection was performed by calculating pairwise correla-
tions of features and removing one of a pair of features that 
have a correlation greater than 0.9, and removing features 
with very low or zero variance of cellular objects.

Ensemble Tree-Based and CNN Classifiers

The ensemble tree-based classifier was implemented using 
scikit-learn’s (version 0.19) “GradientBoostingClassifier” 
with default parameters except for the number of estima-
tors, which was increased from 100 to 600. Data used for 
the tree-based classifier were median profiles representing 
an image average of the morphological features, and test 
accuracy was measured using the Jaccard similarity score.

The CNN classifier was implemented in PyTorch (ver-
sion 0.3.0) by modifying the ResNet18 architecture16 to 
accept input in the form of five-channel arrays rather than 
the typical RGB three-channel images. The models were 
trained with batches of 32 images per graphics processing 
unit (GPU) with random 90° rotations for 20 epochs with an 
initial learning rate of 0.01 with an ADAM optimizer17 
using categorical cross-entropy as the loss function; test 
accuracy was measured with the Jaccard similarity score.

The number of epochs was chosen based as the point at 
which training and validation accuracies plateaued, as well 
as losses stopped decreasing, when training and predicting 
MoAs on a single cell line (Suppl. Fig. S1).

Transfer learning was performed by training a CNN 
model on a dataset of seven cell lines, and then freezing the 
weights of the first six layers of ResNet18 to leave only the 
last convolutional block and the fully connected layer avail-
able for training, and then training on a small dataset of the 
unseen cell line with a reducing learning rate of 0.0001 for 
30 epochs.

Images for the CNN model were created from five-chan-
nel fluorescent images by detecting nuclei locations in the 
Hoechst-stained image based on intensity and cropping the 
image in all five channels to a 300 × 300 pixel bounding 
box centered on the nuclei for each cell in the image. For 
CNN prediction, individual cells within each image were 
classified, and the most common classification for all the 
cells contained within an image was taken as the overall 
image classification.

When training and predicting on a single cell line, the 
single-cell image data were grouped by original image 
labels and randomly shuffled before splitting into 70% 
training and 30% test sets. Grouping by parent image was 

performed to avoid splitting cell images from the same par-
ent image across training and test sets, which would lead to 
overfitting.

Class imbalance due to more training examples in cer-
tain MoAs, such as microtubule disrupters, was addressed 
by randomly undersampling overrepresented training set 
classes so that each training class contained a number of 
examples equal to the smallest class for that cell line.

Three different concentrations were used for each com-
pound, and data relating to different concentrations were 
pooled and treated as a single class.

Transfer learning on a small subset of the data used a 
random 10% subset of the class-balanced dataset for each 
cell line, and testing on the original 30% withheld test set.

Code and Data Availability

Python code and links to datasets are available at www.
github.com/CarragherLab/2018-08_transfer_ML_ 
between_cell_lines.

Results

We present the results of comparing two methods for com-
pound MoA prediction across eight breast cancer cell lines, 
treated with our 24-compound test set. We have used an 
ensemble-based tree classifier applied to image analysis-
based measurements of morphological cell features and a 
CNN classifier applied directly to images. A schematic 
pipeline describing our profiling and classification strategy, 
using ensemble-based tree and CNN classifiers, to predict 
MoA across a panel of human breast cancer cells is pre-
sented in Figure 1.

The results of the application of an ensemble-based tree 
classifier, trained on extracted morphological features from 
five-channel images (CellProfiler), for each individual 
breast cancer cell type, are presented in Figure 2a. The 
results of the application of a deep learning network (CNN), 
trained on five-channel images, for each individual breast 
cancer cell type, are presented in Figure 2b. These data 
demonstrate that when trained and predicted on the same 
cell line, an ensemble-based tree classifier and ResNet18 
CNN classifier show generally equivalent performance in 
compound MoA prediction for the majority (seven out of 
eight) of cells. For one out of the eight cells (MDA-MB-157), 
the ensemble-based tree classifier outperformed the 
ResNet18 CNN classifier.

The predictive performance of the classifiers applied to 
unseen cell lines was compared by training on seven out of 
the eight cell lines and testing on the withheld eighth cell 
line. The ensemble-based tree classifier saw a reasonable 
reduction in classification accuracy when tested on unseen 
cell lines (Fig. 3a). The CNN classifier saw a dramatic 
decrease in prediction performance when trained on the 

www.github.com/CarragherLab/2018-08_transfer_ML_between_cell_lines
www.github.com/CarragherLab/2018-08_transfer_ML_between_cell_lines
www.github.com/CarragherLab/2018-08_transfer_ML_between_cell_lines
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original unbalanced dataset, caused by a strong bias toward 
MoA classes overrepresented in the training set, such as 
microtubule disrupters (Suppl. Fig. S2). Training the CNN 
classifier on a dataset in which the training examples con-
tained equal numbers of each class greatly improved accu-
racy when predicting an unseen cell line. Accuracies were 
slightly below those of the tree-based classifier (Fig. 3b), 
although predictions still seem to be biased toward microtu-
bule disrupters and prediction performance was decreased 
compared with training and predicting on the same cell line. 
It was found that applying the same undersampling balanc-
ing to the dataset used with the tree-based classifier greatly 
reduced prediction accuracies (Suppl. Fig. S3), likely due 
to the reduced number of training examples available.

Transfer learning was applied to the CNN models 
whereby models trained on seven cell lines were then 
trained on a small subset of the unseen cell line, with a 
reduced learning rate and frozen weights to stop the first six 
convolutional blocks from updating during training. This 
produced a large increase in predictive performance on the 
remaining test set of the unseen cell line (Suppl. Fig. S4), 
with accuracies similar to those of ResNet18 models trained 
and tested on the same cell line (Fig. 2b).

In order to assess if training with additional data from 
morphologically distinct cell lines impacts model perfor-
mance when predicting with one particular cell line, we 

trained both tree-based and CNN classifiers with 70% of the 
MDA-MB-231 dataset and combinations of additional cell 
line data and determined the prediction accuracy on the 
remaining MDA-MB-231 test data. It was found that with 
the tree-based classifier the incorporation of additional cell 
lines generally aids classification accuracy, although certain 
combinations decrease model performance below that of 
the baseline of just training and testing with the 
MDA-MB-231 cell line. On the contrary, CNN model per-
formance decreased with the addition of further cell line 
data (Fig. 4). Due to the considerable compute time required 
to train CNN models, not all combinations of additional cell 
lines were assessed.

Discussion

Predicting compound MoA from high-content image-based 
screening is a classification task, which can be approached in 
two ways. The first method is to develop an image analysis 
algorithm to extract morphological information from the 
images of cells and generate a multivariate dataset describing 
cellular phenotypes, which are subsequently used to train a 
classifier.4 The second approach is to use the image data as 
input in an appropriate classifier. Image classification has 
received lots of attention recently due to theoretical and tech-
nological breakthroughs. Such developments include the 

Figure 1. Workflow diagram. (a) Fluorescent cell images are segmented and morphological features are measured in CellProfiler, 
which are used in an ensemble-based tree classifier to train and predict compound MoAs. (b) Fluorescent cell images are chopped 
into 300 × 300 pixel regions around each cell and used as labeled input for a CNN classifier to predict compound MoA.
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a

b

Figure 2. Confusion matrices for MoA prediction when trained and predicted on the same cell line. Data were split into 70%/30% 
training/test sets. (a) Ensemble-based tree classifier. (b) ResNet18 CNN classifier.
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a

b

Figure 3. Confusion matrices for MoA prediction when trained on seven cell lines and tested on an unseen cell line. Titles indicate 
the unseen cell line. (a) Ensemble-based tree classifier. (b) ResNet18 CNN classifier trained on balanced class sizes by undersampling 
overrepresented MoA classes.
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application of deep learning approaches incorporating neural 
network classification on raw image datasets. Artificial neu-
ral networks (ANNs) are becoming increasingly common in 
a wide range of machine learning classification tasks, and the 
convolution aspect of CNNs plays an important role when 
working with image data. CNNs have recently been applied 
to the classification of cell phenotypes from high-content 
imaging data, where they have been shown to perform well 
when using highly optimized publicly available high-content 
benchmarking datasets.11 Many groups have reported 
increased accuracy of CNN classifiers on high-content imag-
ing data over approaches using extracted morphological fea-
tures, which is in contrast to our own findings (Fig. 2).9,10,12 
As this study was concerned with the generalizability of the 
classifiers across cell lines, we did not focus our efforts on 
absolute predictive performance, and we expect that further 
optimizations like those implemented by Ando et al.9 would 
increase prediction accuracy. It should be noted that when 
training and predicting on the same cell line (as in Fig. 2 and 
Suppl. Fig. S4), a single dataset is split into training and test 
partitions. The method used in this study randomly sampled 
proportions, which may lead to overfitting and overoptimis-
tic prediction accuracies due to the test data containing repli-
cates from the same wells as found in the training set, as well 
as the same compound at different concentrations. Alternative 
approaches, which can be used in such instances, include a 
“hold one compound out” cross-validation strategy4,9 (see 
supplemental material describing the application of “leave 
one compound out” [LOCO] and “leave one compound and 
cell line out” [LOCACLO] out cross-validation methods 

applied to a subset of our data). As would be expected, using 
the LOCO and LOCACLO cross-validation strategies 
decreases prediction accuracies when compared with training 
and testing on random partitions of image data for both CNN 
and gradient-boosted tree classifiers. However, the cross-
validation strategies mirror the results of the random partition 
of training and test method in that there was a significant loss 
of prediction accuracy when the CNN model was transferred 
to an unseen cell line (Suppl. Figs. S5 and S6).

Specific experimental questions addressed by this  current 
study include direct comparison of the predictive perfor-
mance between classical machine learning ( ensemble-based 
tree classifier) and deep learning (CNN) models, when 
applied to predicting compound MoA across a disease-rele-
vant panel of morphologically distinct human breast cancer 
cell lines. We further address how well the performance of 
each machine learning model can generalize to new cell line 
data. We trained our machine learning models on seven 
breast cancer cell lines and tested prediction accuracy on a 
withheld eighth cell line. Both types of classifier suffered a 
reduction in classification accuracy when applied to unseen 
cell lines, although the CNN performed noticeably worse on 
certain cell lines. This difference between classifier perfor-
mance is likely explained by the data preprocessing steps in 
which the data for the ensemble tree-based classifier are sub-
jected to plate-by-plate normalization to the negative control 
values, which will remove many of the cell line-specific 
morphologies, while this normalization step is not replicated 
in the CNN data preprocessing. As this is essentially an 
overfitting problem, there may be additional measures, such 

Figure 4. The effect of training with additional cell lines when predicting MoAs on a withheld 30% dataset of the MDA-MB-231 cell 
line. Box plots show testing accuracy when trained with different combinations of the additional cell lines.
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as further image augmentation, that may improve the gener-
alizability of CNN models to distinct cell lines.18 The ability 
to predict compound MoA with a high degree of accuracy, 
despite the machine learning model never having seen this 
cell line before, will be very useful, for example, in cases 
where an investigator has trained a model on a large anno-
tated compound set and would like to predict MoAs from 
further compound screens in new cell lines, without having 
to rescreen and retrain.

We also assessed if the addition of more data from 
morphologically distinct cell lines during model training 
increases prediction accuracy when applied to the classi-
fication of a single cell line. It was found that the CNN 
classifier did not benefit from the additional data, and that 
the possible benefit of more training examples did not 
overcome the increased heterogeneity and morphological 
differences between the cell lines. The ensemble-based 
tree classifier did generally benefit from additional train-
ing examples, although model performance was highly 
variable and sensitive to the combination of additional 
cell lines used during training. This leads us to the con-
clusion that more data are not necessarily better when 
training classifiers for MoA prediction, and those cell 
line-specific morphologies can dramatically impact model 
performance.

There are a number of reasons why transferring an MoA 
classifier from one cell line to another may fail. One possible 
explanation is that the intrinsic morphological differences 
between different cell lines are greater than the morphologi-
cal changes induced by a compound, and that classifiers 
with no knowledge of cell line labels may confuse com-
pound-induced morphologies with cell line morphologies. 
For example, if a cell line inherently has a large cell area 
morphology, it may often cause classification errors for 
compounds, which cause more spindle-like cell lines to 
spread. Alternatively, there may be a biological explanation, 
such as differential expression, mutation, or alternative 
splicing of pharmacological targets between the cell lines or 
altered downstream pathways, which may alter the pheno-
typic response of a cell line to a particular small molecule.

Our results indicate that while a CNN classifier may rep-
resent an efficient approach to study compound MoAs 
across larger cell line panels, the trained models are difficult 
to generalize between morphologically distinct cell lines. 
The more classical machine learning models trained on 
extracted morphological features offer opportunities to nor-
malize the data in order to remove cell line-specific effects 
and improve model generalizability and transferability 
between cell lines. Broad cell panel screening studies that 
include cell line models presenting with more complex het-
erogeneous cell morphologies, including “clumpy” cell cul-
tures, present significant challenges to efficient cell 
segmentation. The use of CNNs and the omission of custom 
image analysis algorithms for each cell line remove 

considerable resource burden and experimental or human 
bias when performing high-content imaging studies across 
morphologically distinct cell panels. Therefore, investiga-
tors need to weigh the pros and cons of each approach and 
its suitability to the dataset under investigation. Furthermore, 
the implementation of CNNs is likely to support the appli-
cation of high-content phenotypic profiling and MoA clas-
sification across a broader variety of mechanistic classes 
and more complex assays, including iPSC differentiation, 
co-culture, and 3D models, which are often unsuitable for 
image-based segmentation. Alternatively, classical machine 
learning techniques, like ensemble-based tree classifiers, 
are much easier to interpret than CNNs, and inform which 
morphological features are important for distinguishing 
between mechanistic compound classes.

We anticipate that the methods and results presented in 
this article will support an increased prediction accuracy of 
compound MoAs across a broader variety of cell-based 
assay systems, including genetically distinct cell panels. 
Such approaches are well placed to advance in vitro phar-
macogenomic studies beyond simple univariate assay end-
points toward more complex assays and phenotypes. 
Finally, we provide all source code and MoA datasets used 
in this study through a dedicated open-access link (www.
github.com/CarragherLab/2018-08_transfer_ML_
between_cell_lines). We anticipate that these data will sup-
port the high-content image analysis and machine learning 
communities, to further evolve new approaches to high-
content phenotypic profiling and MoA prediction across 
morphologically distinct cell panels and more complex cell-
based assay formats.
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