http://genomebiology.com/2000/1/5/research/0010. |

Research

Accessing and distributing EMBL data using CORBA (common
object request broker architecture)

Lichun Wang, Patricia Rodriguez-Tomé, Nicole Redaschi, Phil McNeil,
Alan Robinson and Philip Lijnzaad

Address: EMBL Outstation - Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.

Correspondence: Lichun Wang. E-mail: lewang@ebi.ac.uk

Published: 6 November 2000 Received: 26 July 2000

. . Revised: 6 September 2000
Genome Biology 2000, 1(5):research0010.1-0010.10 Accepted: 21 September 2000
The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2000/|/5/research/0010

© GenomeBiology.com (Print ISSN 1465-6906; Online ISSN 1465-6914)

Abstract

Background: The EMBL Nucleotide Sequence Database is a comprehensive database of DNA
and RNA sequences and related information traditionally made available in flat-file format. Queries
through tools such as SRS (Sequence Retrieval System) also return data in flat-file format. Flat files
have a number of shortcomings, however, and the resources therefore currently lack a flexible
environment to meet individual researchers’ needs. The Object Management Group’s common
object request broker architecture (CORBA) is an industry standard that provides platform-
independent programming interfaces and models for portable distributed object-oriented
computing applications. Its independence from programming languages, computing platforms and
network protocols makes it attractive for developing new applications for querying and
distributing biological data.

Results: A CORBA infrastructure developed by EMBL-EBI provides an efficient means of
accessing and distributing EMBL data. The EMBL object model is defined such that it provides a
basis for specifying interfaces in interface definition language (IDL) and thus for developing the
CORBA servers. The mapping from the object model to the relational schema in the underlying
Oracle database uses the facilities provided by Persistence™, an object/relational tool. The
techniques of developing loaders and ‘live object caching’ with persistent objects achieve a smart
live object cache where objects are created on demand. The objects are managed by an evictor
pattern mechanism.

-
e
o
s
o
©
Q.
-
©
(7]
[]
0
2
fal
>

Conclusions: The CORBA interfaces to the EMBL database address some of the problems of
traditional flat-file formats and provide an efficient means for accessing and distributing EMBL data.
CORBA also provides a flexible environment for users to develop their applications by building clients
to our CORBA servers, which can be integrated into existing systems.

Background and RNA sequences that are directly submitted from
The EMBL (European Molecular Biology Laboratory) researchers and genome sequencing groups, and collected
Nucleotide Sequence Database (often referred to as the from the scientific literature and patent applications. It is
EMBL database) [1] is hosted at the European Bioinformat- produced in an international collaboration with GenBank
ics Institute (EBI). It is a comprehensive database of DNA (NCBI, Bethesda, USA) and DDBJ (the DNA Data Bank of

2 Genome Biology Vol | No5 Wang et al.

Japan, CIB, Mishima, Japan). Each of the three collaborat-
ing groups collects a portion of the total sequence data
reported worldwide, and all new and updated database
entries are exchanged daily. The amount of sequence data is
growing exponentially.

As our scientific understanding deepens, the complexity of
the related information increases as well. As a result, the
structure of the data also keeps changing. The EMBL data-
base is managed and maintained using the relational data-
base management system (DBMS) Oracle. It contains over
130 tables and 140 relationships, having around 8o Giga-
bytes (Gb) of data comprising nearly 10 million objects of
primary data and millions of sub-objects called ‘features’.
Traditionally, the sequences and related information, which
have been collected over a long period of time, are made
available in flat-file format via ftp, CD-ROM, www tools, and
so on. The queries through tools such as SRS (Sequence
Retrieval System, a network browser for databanks in molec-
ular biology) [2] also return data in flat-file format.
However, flat files have a number of shortcomings: the
format may not be described formally; it is difficult to repre-
sent complex data and relationships, the meaningful units of
information (‘objects’) are not represented or handled well;
it is hard to retrieve objects separately; assembly of objects
into bigger aggregates is difficult; elaborate parsing is often
required; and so on. In general, the current availability of the
resources is not matched by a flexible environment to meet
individual researchers’ needs.

An industry standard, the Object Management Group’s
(OMG) common object request broker architecture
(CORBA), provides platform-independent programming
interfaces and models for portable distributed object-ori-
ented computing applications [3-6]. Its independence from
programming languages, computing platforms and network
protocols provides a solution for developing new applica-
tions for querying and distributing biological data [7-13],
which can also be integrated into existing systems. Here we
present a CORBA infrastructure developed at EMBL-EBI
and show that the CORBA interfaces to the EMBL database
address some of the limitations of the flat-file format and
provide an efficient means for accessing and distributing
EMBL data. CORBA also provides a flexible environment for
users to develop application programs (for example, for
sequence analysis or data mining).

Results and discussion

EMBL object data model

The diversity and structure of biological data complicate their
use. To develop a CORBA server that provides access to our
biological data, we need a well-defined object model to model
the real-world biological entities, that is, to describe the
structure and constraints present in the data, as well as how
the data can be accessed and queried. It is a specification of

the data in the problem domain, independent of how the
actual database is implemented. This model can then be
expressed in IDL (interface definition language) interfaces to
the CORBA server at one end, and mapped to a database
schema for the underlying data management and storage at
the other end.

We use the unified modeling language (UML) notation
[14,15] for this model. According to the UML, a model is
organized into packages. A package groups classes that are
semantically related and a dependency indicates that a
package uses classes from another package. Each class
belongs to exactly one package. A class is a descriptor for a
set of objects that have similar properties, behavior and
relationships to other objects. An attribute is a named prop-
erty of a class. An attribute can be derived, that is, its value
is computed from the values of other attributes. An opera-
tion is a procedure attached to a class, describing the behav-
ior of the class. A class can be created by inheriting all
attributes and operations from one or more of its super-
classes. An association is a description of links or a set of
links that specify connections among objects. An associa-
tion can be reflexive, connecting a class with itself. Multi-
plicity defines how many times one object may link to
another through an association. An association class has
both association and class properties. It can be seen as an
association that also has class properties, or as a class that
also has association properties. It holds data that are rele-
vant for the association, but for neither of the associated
classes alone. A structured (composite) data type is repre-
sented as a class (as usual in object-oriented (OO) model-
ing). A class is used as an attribute type mainly if its role is
solely to bundle simple data into a composite type (for
example, Date). Multi-valued attributes are represented by
instances of a parameterized class Coll{Type} (for example,
Coll{string}).

Our object model of the EMBL database is organised into
five main packages, as shown in Figure 1, where each
package holds a set of closely related classes with a common
purpose. The packages are: Sequence Info, classes represent-
ing biological sequences, general information about these
sequences and administrative data associated with database
entries; Feature Info, classes representing detailed sequence
annotation (known as sequence features); Reference Info,
classes representing bibliographic references that hold infor-
mation about the sequences; Taxonomy Info, classes repre-
senting the taxonomy of the organisms from which the
sequences were obtained; Location Info, classes represent-
ing locations on sequences.

There is one additional package, Types, which holds classes
representing all the special data types used in various parts
of the model. Each package contains a relatively isolated part
of the entire object model, and is a clear candidate for re-use
in models for other databases.

N
I Q

Ref Reference info \DB/
server S,
S —
S'equence info
server|| Location info | DB
A ~
| Feature info |
—1 * Me__
Taxo .
Taxonomy info DB

server U
—_

—— Package

-» Dependency
(] Database

Figure |

The database partitioning. The database is divided into five
main packages: Sequence Info, all general information about
sequences; Feature Info, detailed sequence annotation;
Reference Info, bibliographic references; Taxonomy Info, the
taxonomy of the organisms from which the sequences were
obtained; Location Info, representing locations on sequences.

Figure 2 gives the definition of Sequence Info only. A full
definition of the EMBL Nucleotide Sequence Database
object model [16] can be found in Additional data file 1 with
the online version of this article. The package Sequence Info
defines class BioSeq, which represents biological sequences,
and class SeqInfo, which describes general information
about these sequences. The administrative data associated
with database entries are defined in EntryInfo. The biologi-
cal classes of sequence NSDBSeq, for nucleotide sequences,
and PIDSeq, for protein sequences, are subclasses of BioSeq.
VirtualSeq and PhysicalSeq are storage classes of sequence,
that is, virtual or literal.

The definition of some biological entities is prone to change
because of the rapid developments in molecular biology. Any
change made to the structure of the model needs to be prop-
agated to both the IDL specification that defines the CORBA
server interfaces and underlying relational schema. To
handle this problem, a strategy of using both explicit model
and meta model is employed in defining Feature Info. The
structure of the model is therefore not affected by changes to
the feature definition, which makes it suitable for defining
stable IDL interfaces.

The EMBL CORBA server mainly covers Sequence Info,
Location Info and Feature Info, which are grouped into a big
package that also includes Reference Info and Taxonomy
Info. The reference and taxonomy servers are independent

http://genomebiology.com/2000/1/5/research/0010.3

servers for Reference Info and Taxonomy Info. This paper is
focused on the EMBL server.

System architecture and CORBA development

The system architecture is shown in Figure 3. On the server
side, CORBA implementation objects access and query the
relational database via PersistenceTM (Persistence Soft-
ware) [17], which acts as a middleware between our CORBA
implementation and the Oracle database. To allow invoking
operations on the objects, the server provides its clients
interfaces in OMG IDL, which is independent of the server
implementation. An object’s interface is composed of the
operations and types of data that can be passed to and from
those operations. Clients access the CORBA objects via oper-
ation calls through an object request broker (ORB), where
the distribution details are handled by the ORB.

The CORBA development overview is shown in Figure 4.
CORBA object interfaces together with their operations and
type of data are defined in IDL. For the ORB, we have chosen
IONA Inc’s C++ ORB, Orbix™ [18]. Its IDL compiler gener-
ates skeleton code and stub code in C++. We provide the
server object implementation code and the Persistence appli-
cation code. These codes are subsequently compiled and
linked together to become executable. Clients can be written
in any language for which an ORB and IDL compiler are
available, including Ada, C, C++, COBOL, CommonlLisp,
Eiffel, Java, Python, Perl, SmallTalk, Tcl, and so on. Note that
we do not use the new features in CORBA 2.3, as ORBs that
implement CORBA 2.3 have only become available recently.

IDL definition

The OMG IDL is CORBA’s fundamental abstraction mecha-
nism for separating object interfaces from their implementa-
tions [3,4]. It allows object interfaces to be defined in a
manner that is independent of any particular programming
language. It establishes a contract between client and server
that describes the types and object interfaces used by an
application. IDL definitions focus on object interfaces, the
operations supported by those interfaces, and exceptions
that might be raised by the operations. As data can only be
exchanged between client and server if their types are
defined in IDL, typically a large part of an IDL is concerned
with the definition of data types. An interface can inherit
from one or more other interfaces.

Following the EMBL data model, the IDL definition for the
EMBL server comprises three IDL files: nsdb.idl, seqdb.idl
and types.idl. The nsdb.idl defines the EMBL-specific
sequences and related information and includes seven inter-
faces in the module nsdb: EntryInfo, Embl, EmblSeq,
NucSeq, NucFeature, Location and FeatureLocation. The
seqdb.idl defines the module seqdb that includes three inter-
faces: BioSeq, SeqInfo and Feature, which contain more
general biological sequence information. The nsdb.idl and
seqdb.idl use basic types defined in types.idl.

-
e
o
s
o
©
Q.
-
©
(7]
[]
0
2
fal
>

4 Genome Biology Vol | No5 Wangetal

SID is the current, version (in
combination with id) the future
sequence identifier. For a

Entrylnfo

id : string

entrylnfo [yersion : long

status : EntryStatusCV
revisions : Coll{Revision}
secondarylds : Coll{string}

0.1

/ sequence : string

- PhysicalSeq: . /length : long
BioSeq.sequence = PhysicalSeq.sequence isVirtual : boolean
- VirtualSeq:

transition period they will be bioSeq | 1
i llel. SeqlInfo
used in parallel BioSeq . q
— . iption : string .
id : strin bioSegs seqinfo | 4SCrIP!) In SwissProt, t
The derivation rule for BioSeq.sequence depends on whether version ;g|ong - & - 0 keywords : Coll{string} f——j C';n :Iasvse trg igsmmen S
BioSeq is a PhysicalSeq or VirtualSeq: SID : string 1. info - | comments : Coll{string} pics.

dbXrefs : Coll{DbXref}

BioSeq.sequence is computed from VirtualSeq.location

SwissProt entries can inherit information from a

- BioSeq.length is derived from BioSeq.sequence.

BioSeq.|sVirtual

virtual family entry. Constructed sequences may

inherit information from their components.

All derived values are computed j

Class

/ cCount : |

topology : TopologyCV
/ aCount : long
/ gCount : long

/tCount : long

Generalization

/ otherCount : long
/ checksum : string

from BioSeq.sequence.
{complete} I I
VirtualSeq PhysicalSeq NSDBSeq PIDSeq
location : Location sequence : string molecule : MoleculeCV / molWeight : long

/ checksum : string

ong |

CDS translations (PIDSeq) are handled like a separate
sequence database. PIDSeq is also a subclass of BioSeq,

Ispecialization

but has no associations to Entrylnfo and SeqInfo, since at

[1]
A
—

Note

Figure 2

the moment these sequences only live as sub-entries on
EMBL entries (NSDBSeq). This may change when EMBL
and TREMBL are integrated.

They are currently implemented as PhysicalSeq, but could
equally well be handled as VirtualSeq.

Sequence Info. This package defines class BioSeq, which represents biological sequences, and class Seqinfo, which describes
general information about these sequences. The administrative data associated with database entries are defined in EntryInfo.
The biological classes of sequence NSDBSeq, which is for nucleotide sequences, and PIDSeq, which is for protein sequences,
are subclasses of BioSeq. VirtualSeq and PhysicalSeq are storage classes of sequence, that is, virtual or literal.

To reflect the accessing and querying of data, operations are
defined in such a way that the return values of the operations
represent attributes in the EMBL object data model. This sup-
ports ‘creating objects on demand’. These objects are instances
of ‘data classes’, which are the results of queries. Figure 5 gives
the IDL specification of interfaces BioSeq and SeqInfo in
module seqdb, and EntryInfo, NucSeq and EmblSeq in
module nsdb (the full IDL definition can be found in the Addi-
tional data file with the oonline version of this article) [19]).
NucSeq inherits from seqdb::BioSeq and EmblSeq inherits
from NucSeq, seqdb::SeqInfo, and EntryInfo.

Class relationships

Each IDL interface is mapped into a class in C++ by the
ORB’s IDL compiler (in our case, the ORB is IONA’s Orbix),
and operations are mapped to member functions of the

class. For the above interfaces BioSeq and SeqInfo, we have
two mapped classes as shown in Figure 6.

The module itself is also mapped into a class here. Although
it can normally be mapped to a namespace, our C++ com-
piler (Sun’s SparcWorks 4.2) does not support namespaces.
The relationship between classes is shown in Figure 7 in
UML notation. The seqdb consists of three classes: SeqInfo,
BioSeq, and Feature. The nsdb class comprises four classes:
EmblSeq, NucFeature, FeatureLocation and Embl. EmblSeq
inherits from the classes of EntryInfo, SeqInfo and NucSeq
that in turn inherits from BioSeq. FeatureLocation inherits
from Location, and NucFeature inherits from Feature.

Object-relational mapping
The EMBL CORBA server provides its clients with an object-
oriented interface to the EMBL database. To achieve this, the

Client host Server host

Client -—» Persistence—»or,aCIe
Driver
C IDL IDL D l

Stub Skeleton C
ORB DB
| (_
Figure 3

System architecture. On the server side, CORBA
implementation objects access and query the relational
database via Persistence™, which is a middleware between
our CORBA implementation and the Oracle database. To
allow invoking operations on the objects, the server
provides its clients interfaces in OMG IDL, which is
independent of the server implementation. An object’s
interface is composed of the operations and types of data
that can be passed to and from those operations. Clients
access the CORBA objects via operation calls through an
Object Request Broker (ORB) where the distribution details
are handled by the ORB.

object model needs to be mapped to the schema of the
underlying Oracle relational database.

Persistence™, an object/relational tool from Persistence
Software [17], is a mediator for transforming object opera-
tions to relational database calls and vice versa. It maps
objects to relational rows and manages the objects in a
shared cache, called the live object cache. It uses a propri-
etary object model description that maps classes to tables,
objects to rows, attributes to columns and associations to
foreign keys.

For inheritance relationships (single inheritance only), Per-
sistence insists on a so-called horizontal mapping for perfor-
mance reasons; that is, in the class hierarchy, only leaf nodes
are represented by real database tables (or views). Non-leaf
class objects are obtained as projections of the leaf class
tables. However, for maximum flexibility, our existing data-
base schema, which is independent and developed prior to
the CORBA development, uses the so-called vertical
mapping. In this case, each node in the class hierarchy has
its own table, with subclass tables having no superclass
attributes; their primary keys are also foreign keys to the
superclass table. As our objects provide read-only access, it
is possible to set up relational views that transform our
tables into the horizontal object-to-relational mapping that
is required by Persistence. This allows developers to create
hierarchies of related objects from ‘flat’ tables. For example,
for the class NsdbSeq that is inherited from BioSeq, its so-
called Persistence horizontal object-to-relational mapping

http://genomebiology.com/2000/1/5/research/0010.5

fe
| IDL Compiler |
¥ ™\

Stub Skeleton .Obj Persis-
code code impl tence
code

/
/]

IC++ —ICompiIer, Linker

Skel
ORB |

~

<

Figure 4

CORBA development overview. CORBA object interfaces
together with their operations and type of data are defined
in IDL. For the ORB, we have chosen IONA Inc’s C++
ORB, Orbix™. Its IDL compiler generates skeleton code
and stub code in C++. We provide the server object
implementation code and the Persistence application code.
These codes are subsequently compiled and linked together
to become executable. Clients can be written in any
language for which an ORB and IDL compiler are available,
including Ada, C, C++, COBOL, CommonlLisp, Eiffel, Java,
Python, Perl, SmallTalk, Tcl, and so on.

(view) is shown in Figure 8. This view is built from a number
of tables (or views) as shown in Figure 9. The CORBA class
EmblSeq is mapped to the view of NsdbSeq.

Using the data model and schema description, Persistence
can also offer an automatic generation of an IDL specifica-
tion as well as a complete CORBA server. We have not used
this facility, however, as we want full control over the IDL
specification. This approach has an advantage in using views
even when a one-to-one mapping from IDL to EMBL tables
remains. When the structure of data changes at the database
side as a result of the increasing complexity of biological
data or the availability of new modeling capability in the
database, we need only a change on the underlying views.
We much less frequently require a change on the Persistence
mapping and code as these can still map the changed tables
or data to the same objects at the CORBA side.

Object management

A ‘live object cache’ is a notion used in Persistence [17,20].
The basic model for managing live objects is to cache data
instances read from the database, to register their primary
key values, and to respond to queries based on the cached

~
e
o
5
(0]
o
Q.
]
o
»
o
)
5
fo)
=

6 Genome Biology Vol | No5 Wang et al.

module seqdb {

interface BioSeq {

string getBioSeqld();

unsigned long getLength();

any getAnySeq();

unsigned long getBioSeqVersion();
},.

interface Seqinfo {

string getDescription() raises (type::NoResult);
type::stringList getKeywords() raises (type::NoResult);
type::stringList getComments() raises (type::NoResult);
type::DbXrefList getDbXrefs() raises (type::NoResult);
type::DbXrefList getReferences() raises (type::NoResult);

}7
};
module nsdb {

interface Entryinfo {

string getEntryName();

unsigned long getEntryVersion();
string getEntryStatus();
type::RevisionList getRevisions();
type::stringList getSecondarylds();
unsigned long getCountA();
unsigned long getCountC();
unsigned long getCountG();
unsigned long getCountT();
unsigned long getOtherCount();

}

interface NucSeq : seqdb::BioSeq {

string getSeq();

unsigned long getCheckSum();

string getTopology();

string getMolecule Type();

NucFeatureList getNucFeatures() raises (type::NoResult);

Location getlLocallLocation(in NucFeature nuc_feature) raises (type::InvalidRelation);
type::DbXrefList getOrganisms() raises (type::NoResult);

NucFeatureList getNucFeaturesByKey(in string key) raises (type::NoResult, type::InvalidArgumentValue);
string getSubSeq(in unsigned long start, in unsigned long end) raises (type::IndexOutOfRange);
string getSubSeqByFeature(in NucFeature feature) raises (type::InvalidRelation, InexactLocation);

}

interface EmbISeq : NucSeq, seqdb::Seqlinfo , Entryinfo {
Y

}...

Figure 5

Part of module seqdb and nsdb, extracted from the EMBL IDL specification. The interfaces BioSeq and Seqinfo are defined in
module seqdb; The interfaces Entrylnfo, NucSeq and EmbISeq are defined in module nsdb. NucSeq inherits from seqdb::BioSeq
and EmblSeq inherits from NucSeq, seqdb::Seqinfo, and Entrylnfo.

BioSeq Seqinfo

string getBioSeqld(); string getDescription();
Unsignded long getLength(); type::stringList getKeywords();
any getA nySeq(); type::stringList getComments();
Unsignded long getBioSeqVersion(); | |type::DbXref-List getDbXrefs();

type::DbXreflList getReferences();

Figure 6

Classes of BioSeq and Seqlinfo. The class BioSeq has four
methods: getBioSeqld, getLength, getAnySeq and
getBioSeqVersion. The returned values of methods
represent attributes of class BioSeq defined in the object
model, providing information on biological sequences. The
class SeqInfo has methods: getDescription, getKeywords,
getComments, getDbXrefs and getReferences, representing
general information on the sequences.

data. As tuples are retrieved from the database, they are con-
verted to objects and ‘knitted’ together according to the
object-model mapping to form a network of in-memory
objects. A live object cache maps information from relational
tables into objects. Accessing and manipulating these objects

seqdb

|
Entrylnfo| |Seq|nfo| |BioSeq| |Feature|
F N F N F N

EmblSeq Loc?tion
A
w0 O fuckeatwe]

[
—| FeatureLocation|

|:] Class

Generalization
/specialization

O Aggregation

Figure 7

Class relationship in UML notation. The class seqdb consists
of 3 classes: Seqinfo, BioSeq, and Feature. The class nsdb
comprises 4 classes: EmblSeq, NucFeature, FeatureLocation and
Embl. EmbISeq inherits from the classes of Entrylnfo, Seqlnfo
and NucSeq that in turn inherits from BioSeq. FeaturelLocation
inherits from Location, and NucFeature inherits from Feature.

http://genomebiology.com/2000/ | /5/research/0010.7

in the live object cache is faster than querying the relational
database, speeding up application performance considerably.
Persistence can also ensure data integrity with appropriate
locking and transaction management.

There are roughly three types of objects involved here: per-
sistent objects, live objects, and CORBA objects. Here a per-
sistent object is referred as a ‘data object’ in the database. A
live object is an in-memory object in the live object cache. A
CORBA object is a CORBA implementation object defined in
IDL. Creation of a CORBA object is called instantiation.
When a persistent object is loaded into memory, it becomes
a live object. A CORBA object owns one or more live objects.
Note that the ORB’s object adapter, no matter whether a
basic object adapter (BOA) or portable object adapter (POA),
only serves as the glue between CORBA objects and the
ORB. It is an object that adapts the interface of one object to
a different interface expected by a caller and allows the caller
to invoke requests on an object without knowing the object’s
true interface. Although the future CORBA may include
garbage collection, the management of objects is currently at
the application developer’s discretion. This section discusses
the management of objects.

NsdbSeq

long seqid

long entryid

char id[15]

long sequence Version
long sid

text seqText

long length

long checkSum
char molecule[20]
int is Virtual

char type[20]
char topology[50]
char strand[20]
long aCount

long gCount

long cCount

long tCount

long otherCount

Figure 8

The NsdbSeq view in Persistence. As the class NsdnSeq
inherits from the class BioSeq, the view of NsdbSeq in
Persistence therefore has attributes defined in both
NsdbSeq and BioSeq, representing information on
nucleotide sequences.

-
e
o
s
o
©
Q.
-
©
(7]
[]
0
2
fal
>

8 Genome Biology Vol | No5 Wang et al.

CV_STRAND_TYPE
(from DATALIB)

CV_BIOSEQTYPE |,.-~
(from DATALIB)

<<RelationalView>>
NSDBSEQ

ID
SEQUENCEVERSION
SID

SEQUENCE : LONG
LENGTH
CHECKSUM
ISVIRTUAL
MOLECULE
TOPOLOGY
STRAND
A_COUNT
G_COUNT
C_COUNT
T_COUNT
OTHER_COUNT
SEQID

ENTRYID

TYPE

A4

NUCSEQ
(from DATALIB)

~.. |CV_MOLECULETYPE
(from DATALIB)

PHYSICALSEQ
(from DATALIB)

BIOSEQ
(from DATALIB)

CV_TOPOLOGY_TYPE
(from DATALIB)

SEQTEXT : CLOB

Figure 9

Tables for the NsdbSeq view in the actual database. The view is built from a number of tables (or views) of the database.

Creation of live objects

Data kept in the database are only loaded into the cache on
an as-needed basis. We employ Orbix’s loader techniques
[18,21] together with Persistence’s live object caching [17,20]
to build our loaders to support the creation of objects in the
live object cache. When an operation invocation arrives at
the process, Orbix ORB searches for the target object in the
process’s object table. Loaders are called when an object ref-
erence enters an address space via a function findMe, and
Persistence live objects are then loaded. If no live objects
available in the live object cache respond to the call, Persis-
tence will create a new live object via querying and accessing
the relational database.

Eviction of CORBA objects
Objects are created at the clients’ request. When the
server has been running for some period of time, possibly

weeks or months, it will have created a number of CORBA
objects, which in turn contain a number of Persistence live
objects, and will consume the memory space. Some of
them will not be needed any more. The evictor pattern [3]
describes a general strategy for limiting memory con-
sumption. The basic idea is that we use an object manager
to instantiate objects on demand. However, instead of
blindly instantiating a new object every time, the object
manager checks instantiated objects in the pool that it
manages. If the called object is already in the pool, it can
be used directly. If not, it will check if the number of
objects has reached a specified limit. If so, the object
manager will evict an older instantiated object and then
instantiate a new one for the current request. Conse-
quently, the older related Persistence live objects will also
be deleted from the cache and new live objects will be
loaded in if requested.

http://genomebiology.com/2000/|/5/research/0010.9

Client Embl EmblISeq

NucFeature FeatureLocation

| ge;EmbISeq(in bio-seg-id) | | findMe|

" [EmbiSeq] ! :
getBioSeqld : :
getLength : :

getBioSeqVersion
getDescription
getKeywords
getComments : >
getEntryName
getEntryVersion
getEntryStatus
getRevisions
getSecondarylds
getCountA -
getTopology
getMoleculeType
getOrganisms

fmm e A m— -

e

getNucFeatures -

=
(=
S,
D
Q
9
g
| DL
(%]
o)
Q
9
g
D
(%]
B
.
:
.
:
.
:
.
:
L
.
.
:
.

getQualifiers '

getNUCSEQS |agedocoocoo oo

getlLocationString(loc)
getNodes(loc)

getNucFeature(loc)
getSeq(loc)

| getLocalLocation(feature) |

; getLocatlon|<-- ---------------

{ getLocation | — R

Location loc -

emmedecocceocccoooooooooo2 [getFeatureld reld | !

= [location | o
getNucFeature <. JoC i .

:

getLocationString(loc)

getSeq(loc)

getNodes(loc) R e Fooee-

Figure 10

Access to the EMBL database via the CORBA server. The client submits its query with bio-seq-id to the Embl object, which is a
factory object representing the whole database. It invokes the operation findMe provided by EmbISeq object, which in turn
invokes the loader object. The EmbISeq reference is returned to the client. Once the client has the EmbISeq object reference,
it can then invoke the methods provided by EmbISeq to get the sequence information defined in Seginfo. The object attributes
are obtained through invoking the methods. Further queries can be made through the invocation to other methods.

One more interesting issue of the evictor pattern is how to
choose which object to evict. There are a number of possible
strategies, such as least recently used (LRU), least frequently
used (LFU), evicting the object with the highest memory
consumption (HMC), or using a weighted function that
chooses an object for evictor based on a combination of
factors (WF). We use a simple LRU algorithm to implement
the evictor and prove it is effective.

Accessibility of the EMBL database

When the CORBA server is up and running, a client, which
can be developed using any CORBA-compliant ORB on the
user’s preferred environment and language (for which the
ORB is available) at any local or remote machine, can access
EMBL data through these objects using an IOR (Interopera-
ble Object Reference) or via a Naming Service. We have pub-
lished our EMBL server IOR [22] and its naming as

-
e
o
s
o
©
Q.
-
©
(7]
[]
0
2
fal
>

10 Genome Biology Vol | No5 Wang et al.

‘databases/EMBL/nsdb/Embl’, which is registered with the
Naming Service [23]. We have also provided a number of
demonstration clients for the EMBL server [24].

The client submits its query with bio-seq-id to the Embl
object, which is a factory object representing the whole data-
base. It invokes the operation findMe provided by EmblSeq
object, which in turn invokes the loader object. The EmblSeq
reference is returned to the client. Once the client has the
EmblSeq object reference, it can then invoke the methods
provided by EmblSeq to get the sequence information
defined in SeqInfo. The object attributes are obtained
through invoking the methods. Further queries can be made
through the invocation to other methods. The access is
shown in Figure 10.

From Figure 10, it can be seen that CORBA interfaces to the
EMBL database provide: meaningful units of information:
objects; encapsulated methods, for example getLength();
interoperation between objects; easy access and distribution
of data; and easy to comply with the standard. It provides a
basis for developing further biological research tools.

Accessibility to the EMBL database via the EMBL CORBA
server can be as fine as any small attribute defined in the
EMBL data model. The EMBL CORBA server can also
provide a blob object that contains a number of objects. Cur-
rently the EMBL server is undergoing a trial with internal
and external users. There are increasing numbers of users
developing their applications using our CORBA server.

Conclusions

This paper presents a CORBA infrastructure developed at
EMBL-EBI. The EMBL object model provides a basis to
develop the CORBA server. Employing Persistence™ maps
the object model to the relational schema in the underlying
Oracle database. To present Persistence with the right rela-
tions, views have been used to transform the vertically
mapped tables to horizontal ones. Properly built loaders
make use of the technique of ‘live object caching’ and
enhance the performance. The evictor pattern is used for
memory management. It has been demonstrated that the
CORBA server addresses some problems of the flat-file
format and provides a solution to accessing and distributing
EMBL sequence data. It also provides a flexible and scalable
environment for users to develop their applications by build-
ing clients.

The future work will include migrating the implementation
of the EMBL server to comply with the emerging standard -
OMG standard for biosequences. By OMG rules, the EBI,
as a co-submitter on the Biomolecular Sequence Analysis
(BSA) standard, is obliged to implement the standard. As
the BSA standard proposal is not fully compatible with the
EMBL IDL specification currently used, care will have to be

taken to make this transition as easy as possible for exist-
ing clients.

Additional data

The following additional data are included with the online
version of this article: The EMBL Nucleotide Sequence Data-
base object model and The EMBL IDL specification.

References

I. The EMBL Nucleotide Sequence Database
[http://www.ebi.ac.uk/embl.html]

2. Sequence Retrieval System [http://srs.ebi.ac.uk/]

3. Henning M, Vinoski S: Advanced CORBA Programming with C++.
Reading, MA: Addison Wesley; 1999.

4. OMG, CORBA/IOP 2.3.1 Specification,
[http://www.omg.org/corba/cichpter.html].

5. Siegel): CORBA Fundamentals and Programming. New York: John
Wiley & Sons; 1996.

6. Siegel J: Corba 3 Fundamentals and Programming (OMG) 2nd edn. New
York: John Wiley and Sons; 2000.

7. Barillot E, Vaysseix G, Achard F, Viara E, Flores T, Rodriguez-Tomé
P: Solutions to the interoperation of biological databases. Proceedings of
the Human Genome Mapping Conference, Heidelberg; 1996.

8. Emmanuel B, Leser U, Lijnzaad P, Cussat-Blanc C, Jungfer K, Guyon
F, Vaysseix G, Helgesen C, Rodriguez-Tomé P: A proposal for a
standard CORBA interface for genome maps. Bioinformatics
1999, 15:157-169.

9. Jungfer K, Rodriguez-Tomé P: Mapplet: a CORBA-based
genome map viewer. Bioinformatics 1998, 14:734-738.

10. Lijnzaad P, Coppieter |, Flores T, Helgesen C, Slidel T: CORBA and
Molecular Biology. Addendum to Proceedings of the |12t Conference
on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA97), Atlanta; 1997.

I'l. Parson D, Rodriguez-Tomé P: JESAM: CORBA software com-
ponents to create and publish EST alignments and clusters.
Bioinformatics 2000, 16:313-325.

12. Robinson AJ: Future directions for providing public access to
molecular biology databases and services. Eur BioPharm Rev
1998, 68-76.

I3. Rodriguez-Tomé P, Lijnzaad P: The Radiation Hybrid Database.
Nucleic Acids Res 1999, 27:115-118.

14. Fowler M, Scott K, Booch G: UML Distilled, Second Edition: A Brief
Guide to the Standard Object Modeling Language. New York: Addison
Wesley; 1999

I15. OMG, Unified Modelling Language Specification, UML V1.3,
ad/99-06-09 [http://www.omg.org/uml/].

16. The EMBL Nucleotide Sequence Database Object Model
[http://corba.ebi.ac.uk/models/emblom_doc.html].

17. Persistence Software Inc [http://www.persistence.com].

18. IONA Technologies PLC [http://www.iona.com/].

19. The EMBL IDL specification
[http://corba.ebi.ac.uk/EMBL_servers.html].

20. Agarwal S, Keller AM: Architecting Object Applications for High Perfor-
mance with Relational Databases: Persistence Software Inc., San
Mateo, CA; 1998.

21. Orbix C++ Programmer’s Guide. IONA Technologies plc, Dublin,
Ireland; 1999.

22. The EMBL CORBA server IOR
[http://corba.ebi.ac.uk/IOR/Embl.IOR]

23. The CORBA Naming Service IOR
[http://corba.ebi.ac.uk/IOR/naming.ior]

24. The EMBL CORBA Clients [http://corba.ebi.ac.uk/clients.html]

99-10-07

