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Abstract

Natural selection shapes the genetic architecture of many human traits. However, the preva-

lence of different modes of selection on genomic regions associated with variation in traits

remains poorly understood. To address this, we developed an efficient computational frame-

work to calculate positive and negative enrichment of different evolutionary measures

among regions associated with complex traits. We applied the framework to summary sta-

tistics from >900 genome-wide association studies (GWASs) and 11 evolutionary measures

of sequence constraint, population differentiation, and allele age while accounting for link-

age disequilibrium, allele frequency, and other potential confounders. We demonstrate that

this framework yields consistent results across GWASs with variable sample sizes, num-

bers of trait-associated SNPs, and analytical approaches. The resulting evolutionary atlas

maps diverse signatures of selection on genomic regions associated with complex human

traits on an unprecedented scale. We detected positive enrichment for sequence conserva-

tion among trait-associated regions for the majority of traits (>77% of 290 high power

GWASs), which included reproductive traits. Many traits also exhibited substantial positive

enrichment for population differentiation, especially among hair, skin, and pigmentation

traits. In contrast, we detected widespread negative enrichment for signatures of balancing

selection (51% of GWASs) and absence of enrichment for evolutionary signals in regions

associated with late-onset Alzheimer’s disease. These results support a pervasive role for

negative selection on regions of the human genome that contribute to variation in complex

traits, but also demonstrate that diverse modes of evolution are likely to have shaped trait-

associated loci. This atlas of evolutionary signatures across the diversity of available

GWASs will enable exploration of the relationship between the genetic architecture and evo-

lutionary processes in the human genome.

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010494 November 7, 2022 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Abraham A, LaBella AL, Capra JA, Rokas

A (2022) Mosaic patterns of selection in genomic

regions associated with diverse human traits. PLoS

Genet 18(11): e1010494. https://doi.org/10.1371/

journal.pgen.1010494

Editor: Justin C. Fay, University of Rochester,

UNITED STATES

Received: June 8, 2022

Accepted: October 21, 2022

Published: November 7, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pgen.1010494

Copyright: © 2022 Abraham et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data Availability We

have made both the formatted input files and the

final output files (both trait and region level results)

available for download on FigShare (the public link

will be provided upon publication; for the purpose

https://orcid.org/0000-0003-0068-6703
https://orcid.org/0000-0002-7248-6551
https://doi.org/10.1371/journal.pgen.1010494
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010494&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010494&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010494&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010494&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010494&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010494&domain=pdf&date_stamp=2022-11-17
https://doi.org/10.1371/journal.pgen.1010494
https://doi.org/10.1371/journal.pgen.1010494
https://doi.org/10.1371/journal.pgen.1010494
http://creativecommons.org/licenses/by/4.0/


Author summary

Understanding how evolutionary forces shape patterns of human genomic variation is

fundamental for evolutionary genomics and medicine. We developed a novel and very

robust computational framework that measures enrichment for evolutionary forces acting

on regions associated with variation in diverse complex traits. Application of this frame-

work to more than 900 genome-wide association studies and 11 evolutionary measures,

while accounting for potential confounders, generated a comprehensive evolutionary atlas

that maps diverse signatures of selection on genomic regions associated with hundreds of

complex human traits. Notably, genomic regions associated with human complex traits

have been shaped by diverse modes of selection. Combined with the availability of a

computational package that can perform these calculations for any set of genomic regions

associated with any trait in any organism, this work is a major step forward toward under-

standing the relationship between genetic architecture and selection.

Introduction

Understanding how natural selection has shaped the human genome is fundamental for evolu-

tionary genomics and medicine [1]. As humans expanded out of Africa, they encountered

diverse climates, underwent dietary changes, experienced demographic shifts, and mixed with

Neanderthals and other hominins. The selective pressures exerted by these events and non-

selective forces such as admixture, population demography, and genetic drift shaped the

genetic basis of modern human traits [2–5]. Two well-known examples include the strong pos-

itive selection on adult milk consumption that shaped frequencies of lactase persistence alleles

[6–8] and a Denisovan introgressed haplotype that contributed to high-altitude adaptation of

Tibetans [9,10]. Although the evolutionary histories of these and several other specific loci and

traits have been studied [11–14], the extent and types of evolutionary forces that have acted on

the genomic regions associated with variation in the human phenome remain poorly

understood.

Multiple measures have been developed to infer evolutionary forces from patterns of

genetic variation within and between species [15]. For example, comparing human genomes

to those of related species using measures like PhyloP and PhastCons enables testing hypothe-

ses about decreases and increases in the substitution rate over evolutionary time. Decreased

substitution rates are often indicative of the action of negative selection [16,17]. Identification

of clusters of variants at intermediate allele frequencies in human populations by measures

such as the Beta Score suggests balancing selection [18,19]. Similarly, measures such as FST and

XP-EHH rely on single nucleotide polymorphism (SNP) and haplotype structures to infer

potential local adaptation or recent positive selection between human populations [20]. It is

also possible to estimate the time to the most recent common ancestor of different haplotypes

and quantify the age/origin of variants using ancestral recombination graphs [21]. Driven by

increasing amounts of whole genome sequence data and computational power, more recent

methods, such as RELATE [22] and CLUES [23], use locally constructed genealogies and

ancestral recombination graphs to reconstruct allele histories and infer the action of recent

directional selection. Other methods rely on parametric models of neutral evolution [24] or

analyze patterns of singleton variants [25] that incorporate population level genomic data and

GWAS summary statistics to estimate the strength of selection and evidence for directional

selection [13,26]. Multiple different evolutionary forces can influence the values of the
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evolutionary measures we consider; however, together they enable exploration of evidence for

a diverse set of evolutionary forces from patterns of genetic variation.

Despite advances in these methods, which mainly focus on individual regions, mapping the

evolutionary pressures on complex traits remains challenging for several reasons. First, geno-

mic attributes that influence ascertainment and power in association studies, e.g., allele fre-

quency and linkage disequilibrium (LD), also influence the expected distribution of many

evolutionary metrics. Thus, a genomic background derived from averaging across all variants

in the human genome does not provide an appropriate null when interpreting overlaps

between trait associations and signatures of selection. Second, population stratification is com-

mon in genome-wide association studies (GWASs). As GWASs became more prevalent and

demonstrated that most common traits are polygenic, new trait-focused approaches to detect

evidence of recent polygenic selection emerged. Polygenic scores, which can be derived by

summing across trait-associated alleles from a GWAS after weighting by the effect size, enable

prediction of phenotype from genotype. Several studies computed polygenic scores across

populations and interpreted systematic differences and the alleles that drive them as evidence

of polygenic adaptation [27–29]. For example, human height increasing alleles identified from

GWAS were found to be at consistently higher frequencies in Northern European populations

compared to Southern Europeans [29]. However, subsequent analyses revealed that residual

population stratification in the GWASs and a resulting lack of consistent effects across popula-

tions drove the initial signatures of selection [30–34]. Detecting and correcting for residual

stratification is an ongoing challenge in the field. Nevertheless, certain evolutionary patterns

have consistently emerged across many studies with varied approaches. Regions of the genome

that have been associated with complex traits, such as hair color, body mass index, waist-to-

hip ratio etc., consistently show evidence of recent and directional selection [13,22,35,36].

In this study, we describe a unified approach to measure enrichment for evolutionary forces

acting on regions associated with variation in diverse complex traits. This approach is comple-

mentary to previous work on polygenic adaptation [24,35,37] because we characterize the evo-

lutionary attributes of the genomic regions that contribute to complex trait variation. To

protect against biases from stratification, our approach: 1) does not directly incorporate effect

sizes at trait-associated regions (e.g. as in polygenic scores), 2) builds a null distribution from

allele frequency and LD-matched SNPs, and 3) enables flexible enrichment testing at different

association thresholds. We generate an atlas of 11 evolutionary measures on regions identified

from GWASs of over 900 polygenic traits (totaling 210,109 genomic regions). We find wide-

spread positive enrichment for sequence constraint, a dearth (i.e., negative enrichment) of pat-

terns associated with balancing selection, and several groups of GWASs that show distinct

positive enrichments for population differentiation. By mapping the evolutionary landscape of

genomic regions that underlie specific complex traits, these results reveal that human trait-

associated regions have been shaped by a mosaic of different modes of selection.

Results

An efficient permutation-based approach to infer evolutionary forces on

GWAS loci

To explore genomic signatures of diverse evolutionary forces on genomic regions associated

with complex human traits, we developed an empirical framework that infers enrichment for

diverse evolutionary measures from GWAS summary statistics. For a given GWAS, we con-

sider independent trait-associated genomic regions accounting for LD (r2>0.9, GWAS p-

value < 5e-8, Fig 1A).
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To define an appropriate background distribution for each analysis, we randomly select

genomic regions matched on minor allele frequency, LD patterns, and gene proximity for each

trait-associated region. The matching is repeated until we have 5,000 sets that each contain the

same number of genomic regions as the trait-associated regions (Fig 1B). For each evolution-

ary measure, we build a background distribution from each matched set. We then compare the

observed trait-level evolutionary values to the background distribution and calculate an empir-

ical p-value (Fig 1C and 1D). To summarize each comparison, we define the standardized evo-

lutionary enrichment as the difference between the observed trait-level mean and the

matched-background mean divided by the genome-wide standard deviation for the evolution-

ary measure (Fig 1E). Thus, the evolutionary enrichment may be higher (positive enrichment)

or lower (negative enrichment) than the expected matched-background mean. However, we

note that other statistics could be used to compare the observed and expected values.

We apply this approach for 11 evolutionary measures that quantify different patterns of

genomic variation influenced by the action of different modes of selection, such as directional

selection, balancing selection, local adaptation, and negative selection. All evolutionary mea-

sures had high coverage (83–99%) across the set of SNPs used in our study (Methods and

Table 1).

Evolutionary signals are consistent across multiple GWASs for height

To evaluate the robustness of our computational framework against potential differences in

GWAS size, population, study design, and analysis strategy, we compared four GWASs

Fig 1. Computational framework for detecting positive and negative enrichment for evolutionary signatures on genome-wide association studies

(GWASs). (a) Given the GWAS of a complex trait, we define trait-associated regions by first identifying variants of genome-wide significance and then

clumping based on linkage disequilibrium (LD; e.g., r2>0.9). For each region, we identify the maximum value of an evolutionary measure of interest. (b) For

each trait-associated region, we identify 5,000 randomly selected genomic regions (“matched regions”) that have similar minor allele frequency, linkage

disequilibrium, and gene proximity patterns (Methods). (c) Across the trait-associated regions and their matched random genomic regions, we calculate a

summary statistic. To illustrate our approach, we take the mean of the evolutionary measure to generate an (d) empirical background distribution and (e)

calculate enrichment by comparing the mean observed evolutionary measure to the mean of the matched background distribution. We divide by the standard

deviation of the evolutionary measure across the genome to standardize the enrichment. However, any summary statistic of interest could be used.

https://doi.org/10.1371/journal.pgen.1010494.g001
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performed in UK Biobank individuals for standing height (Table 2): Berg-2019 [30], Neale-

2017 [38], GIANT-2018 [39], and Loh-2018 [40]. The four studies were selected to represent

different methodological approaches. They were conducted in either unrelated white British

individuals (Berg-2019, Neale-2017) or a more broadly defined population of European ances-

try (GIANT-2018, Loh-2018). The Berg-2019 dataset is not corrected for population stratifica-

tion, since they were evaluating its effects. The Neale-2017 and GIANT-2018 studies used ten

genetic principal components while the Loh-2018 study used a linear mixed model

(BOLT-LMM [41]) shown to be robust against population stratification. The GIANT-2018

meta-analysis had the largest sample size with 700K individuals whereas the other three had

sample sizes of 335-460K individuals. The number of independent regions based on our LD-

pruning approach increased with sample size except for the linear mixed model from Loh-

2018 (n = 6,903), which was the highest (Table 1). The Benjamini-Hochberg p-value correction

(p.adj) procedure was performed to control the false discovery rate (FDR) at 5% across 11 evo-

lutionary measures for each GWAS.

Regions associated with height were enriched for signatures of sequence constraint (e.g.

LINSIGHT, PhyloP, PhastCons) and differentiation between human populations (FST) in each

of the four GWASs (FDR < 0.05, Fig 2A). Overall, nine out of the 11 evolutionary measures

Table 1. Evolutionary measures used to quantify trait-associated regions. For each evolutionary measure (rows), the sequence pattern, type of evolutionary force sug-

gested, and the corresponding time scale is given. Multiple selective and non-selective forces can shape these patterns. “%SNPs covered” is the proportion of SNPs from

1000 Genomes Phase III after quality control (n = 9,535,059) that have an annotation for the given evolutionary measure. For FST and XP-EHH, we used the following

1000 genomes superpopulation comparisons: afr-eas, afr-eur, eas-eur. XP-EHH: cross-population extended haplotype homozygosity (EHH). TMRCA: time to most recent

common ancestor derived from ARGweaver.

Evolutionary

Measure

Type of Evolutionary Signature Suggested Evolutionary Force Time Scale

(in years)

%SNPs covered

ARGweaver Time to Most Recent Common Ancestor (TMRCA) N/A Human population

(~100 million years)

99%

Beta Score Clusters of alleles at similar intermediate frequency Balancing Selection Human Population

(>10,000 of years)

99%

PhyloP Non-neutral substitution rates Positive/Negative Selection Across species

(~100 million years)

98%

PhastCons Clustered low substitution rates Negative Selection Across species

(~100 million years)

98%

LINSIGHT Low substitution rate and variant frequency Negative Selection Across species & human populations

(~100 million years)

98%

FST afr-eas

FST afr-eur

FST eas-eur

Allele frequency differentiation between populations Recent Positive Selection Human populations

(~ 75,000–50,000 years)

99%

XP-EHH afr-eas

XP-EHH afr-eur

XP-EHH eas-eur

Cross-population extended haplotype homozygosity Recent Positive Selection Human populations

(>10,000 of years)

83–86%

https://doi.org/10.1371/journal.pgen.1010494.t001

Table 2. GWASs on standing height used to evaluate robustness of our approach. We used four published GWASs performed in the UK Biobank on standing height

to evaluate the robustness of our approach. The year in the name is when the GWAS was published. Any correction for population stratification (“Stratification Correc-

tion”) and the specific GWAS population (“Population”) is noted. Using the same criteria for LD-pruning (Methods), we identified independent trait-associated genomic

regions (“Independent Genomic Regions”). The Loh-2018 (40) GWAS used a linear mixed model (BOLT-LMM) shown to be robust against population stratification (41).

GWAS Name Stratification Correction Population Sample Size Independent Genomic Regions

Berg-2019 uncorrected Unrelated white British 337K 2,505

Neale-2017 10 PCs Unrelated white British 337K 3,598

GIANT-2018 10 PCs European ancestry 700K 5,230

Loh-2018 Mixed effects Model European ancestry 459K 6,903

https://doi.org/10.1371/journal.pgen.1010494.t002
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had statistically significant deviations from the expected values (Fig 2A). These patterns, rela-

tive to the background distributions, were consistent across all GWASs and evolutionary mea-

sures. However, some measures (e.g. ARGWeaver, Beta Score, FST) showed greater variability

for the mean observed trait value and background distributions than others (e.g. LINSIGHT,

PhyloP, PhastCons). The two evolutionary measures (XP-EHH afr-eas and XP-EHH eur-eas)

for which the statistical significance of the deviations from the background is not maintained

across all four GWASs both measure population differentiation, and the two GWASs that do

not show significant deviations (Neale-2017 and Berg-2019) both only include white British

individuals.

We also randomly sampled trait-associated regions from the Loh-2018 GWAS without

replacement to evaluate how evolutionary patterns varied based on the number of trait-associ-

ated regions. Across measures, we found that the background distribution and trait-associated

value converged rapidly with an increasing number of trait-associated regions (S1 Fig).

These results also demonstrate the importance of matching the background distribution to

the regions studied. For example, the observed Beta Scores for the Loh-2018 and GIANT-2018

regions are very different in magnitude (Fig 2A). Nonetheless, they are both similarly low com-

pared to their appropriate background distributions. However, if the Beta Score values for

GIANT-2018 had been compared to the Loh-2018 background distribution, we would have

come to the opposite and incorrect conclusion that they were significantly higher than

Fig 2. The enrichment for evolutionary signatures is consistent across multiple GWASs of the same trait. (a) For four separate GWASs of height (y-axis),

we compared the mean trait-associated values (stars) for multiple evolutionary measures (x-axis) with their corresponding matched genomic background mean

values (gray dot: mean value, gray bar: 5th, 95th percentile). We calculated an empirical p-value by comparing to the matched background (Methods) and

adjusted for multiple testing (FDR-adjusted p-values< 0.05 are denoted as red stars, Methods). (b) For the Loh-2018 GWAS, we partitioned the trait-

associated regions based on the association effect size (Beta Coefficient) of the lead SNP into five bins with equal numbers of trait-associated regions (x-axis).

Each plot represents the mean value (y-axis) for a specific evolutionary measure. Bars are colored by their evolutionary enrichment values, which were

calculated as described in Fig 1D. See Table 2 and Methods for details on the four GWASs analyzed.

https://doi.org/10.1371/journal.pgen.1010494.g002
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expected. Overall, these results suggest that our approach is robust across GWASs and not sub-

stantially affected by their methodological differences.

Some evolutionary signals vary across effect size

Based on evolutionary theory and recent observations [13], we expect stronger signatures of

selection at regions with higher effect sizes. Thus, we stratified the trait-associated regions

from the Loh-2018 GWAS into five bins with equal number of regions based on the GWAS

effect size at each lead SNP. We observed several trends. Some evolutionary measures used to

infer negative selection (LINSIGHT, PhastCons) had similar values and enrichment across

bins (Fig 2B). For PhyloP, we observed higher values (suggesting conservation) for the largest

effect size for trait-increasing variants (positive effect size) and for trait-decreasing (negative

effect size) variants (Fig 2B). This is in line with the expectation that large effect variation

occurs at conserved regions in the genome [42]. In contrast, measures often associated with

local adaptation (FST), recent positive selection between human populations (XP-EHH), and

balancing selection (Beta Score) had the highest values in bins with the smallest effect size (Fig

2B). Evolutionary enrichment was also strongest in bins with the smallest magnitude for FST

but generally similar across bins for XP-EHH (bar color, Fig 2B). When trait-associated

regions were stratified by GWAS p-value (absolute effect size) instead, we generally saw similar

trends with higher evolutionary measure values and enrichment for trait-associated regions

with the smallest p-values (S2 Fig).

A mosaic of diverse evolutionary forces on regions associated with complex

traits

To generate an atlas of evolutionary signatures on complex-trait-associated regions, we ana-

lyzed the GWAS summary statistics of 972 traits (Methods). Summary statistics were down-

loaded from diverse sources including the Neale lab UK Biobank PheWAS (n = 202 traits)

[38], the GWAS Catalog (n = 312) [43], GWAS Atlas (n = 297) [44], manual NCBI searches,

and large consortia (Psychiatric Genomics Consortium, DIAGRAM, GIANT etc.). We applied

our evolutionary enrichment computational framework to each GWAS. The resulting enrich-

ments and trait-level statistics for eleven evolutionary measures can be downloaded from Fig-

Share repository (https://doi.org/10.25452/figshare.plus.19733230) so researchers can explore

traits of interest.

The number of trait-associated regions varied widely (mean: 183, median: 9, maximum:

5,678 regions). In our evolutionary atlas, 888 out of 972 traits had at least one trait-associated

region meeting genome-wide significance (GWAS p-value< 5E-8). For traits with fewer than

50 associated regions, many (n = 432) lacked any statistically significant evolutionary enrich-

ments (p-value<0.05 after multiple testing correction for the number of GWAS analyzed,

Methods). Therefore, we focus here on describing evolutionary trends for traits (n = 290) with

well-powered GWASs with 50 or more trait-associated regions. Out of the 290 well-powered

GWASs, 231 were on quantitative traits (80%) and 59 were on discrete traits (20%).

For each evolutionary measure, we counted the number of GWASs with a significant devia-

tion from the background (p-value < 0.05 after multiple testing correction for the total num-

ber of GWAS; Methods, S1 Table). Genomic signatures associated with negative selection

were the most prevalent: 95% of GWASs had statistically significant enrichment for PhastCons

(281/290), PhyloP (222/290), and LINSIGHT (278/290). We also commonly detected signals

for the other modes of selection. More than half of the GWASs had significant enrichment for

Fst (n = 152 to 194 traits), negative enrichment for balancing selection (Beta Score, n = 147

traits), and younger than expected allele ages (ARGweaver, n = 166 traits). Significant genomic
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enrichment for signatures associated with cross-population positive selection (XP-EHH) were

most prevalent for the African-European comparison (n = 138 traits) and less prevalent

between Africans-East Asians (n = 37 traits), and Europeans-East Asians (n = 87 traits) com-

parisons. Though these differences may be driven in part by the bias towards European-ances-

try individuals in genomic studies.

To illustrate the evolutionary patterns we observed across diverse traits, we plot the results

for a subset of 47 GWASs carried out using the same BOLT-LMM mixed-effects model in the

UK Biobank (Fig 3A) [40]. We refer to this analysis as the “BOLT-LMM set” (Methods). The

BOLT-LMM set demonstrated the same general trends across evolutionary measures as we

observed in the larger evolutionary atlas (Fig 3A and S1 Table). As examples of distinct evolu-

tionary profiles, we highlight four traits: Age at Menarche, Sunburn Occasion (Sunburn),

Hypothyroidism, and High Cholesterol (Fig 3B). Out of the four, age at menarche had the

strongest enrichments for negative selection measures and negative enrichment for balancing

selection and younger than expected allele ages. Sunburn’s evolutionary profile was predomi-

nantly enriched for within human population genomic signals of differentiation (Fst,

XP-EHH). Hypothyroidism had signatures of both negative selection and within human-pop-

ulation differentiation (XP-EHH). Similar to age at menarche, high cholesterol had strong sig-

nals of negative selection in addition to positive selection (FST, XP-EHH). Altogether, each

trait is characterized by distinct evolutionary profiles.

Skin and hair traits show signatures of local adaptation

Our analyses revealed strong enrichment for evolutionary measures associated with local adap-

tation for GWASs of hair and skin traits (Fig 3A). In the BOLT-LMM set, the GWASs for hair

color traits were highly polygenic with over 1,000 trait-associated genomic regions. GWASs

for skin-related traits (sunburn, tanning, skin color) had variable degrees of polygenicity (34 to

854 trait-associated regions), while the GWASs for the two balding traits had around 700 trait-

associated regions. Except for the GWAS for the tanning trait, all others demonstrated strong

positive enrichment for signatures of negative selection (LINSIGHT, PhastCons, Fig 3A). They

also exhibited strong positive enrichment for FST across the three 1000 genomes superpopula-

tions. Hair/skin color and tanning trait-associated regions had enrichment of signatures of

recent positive selection in the European superpopulation (negative XP-EHH afr-eur) com-

pared to the African superpopulation. Meanwhile, the balding trait-associated regions had

enrichment for signatures of recent positive selection in the African superpopulation com-

pared to the European. Similarly, evidence of recent selection between African and East Asian

superpopulations was observed for GWASs of dark hair and skin color. Recent selection

between East Asian and European super populations was observed for GWASs of hair color,

skin color, tanning and sunburn.

Alzheimer’s disease associated genomic regions lack enrichment for

evolutionary signatures

The GWASs of nearly all traits in the BOLT-LMM set had enrichment for diverse genomic sig-

natures of selection. In contrast, we observed that genomic regions associated with late-onset

Alzheimer’s disease exhibited no significant enrichment for any evolutionary measure (Fig 4).

This result held across five published GWASs of late-onset Alzheimer’s disease. The GWASs

had between 19 to 132 trait-associated regions identified in European-ancestry populations:

Bellenguez [45], Marioni ([46], Kunkle [47], GRACE [48], IGAP [49]. Across the 11 evolution-

ary measures we tested, all GWASs had trait-associated evolutionary values that overlap the

expected range from their matched backgrounds (p>0.05, Fig 4). Consequently, we did not
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Fig 3. Mosaic evolutionary architecture across 47 well-powered GWASs of human complex traits. From our evolutionary atlas of

972 GWASs, we plot a subset of 47 GWASs (BOLT-LMM set) performed using the same approach and from the same cohort

(Methods). (a) For each evolutionary measure (columns) and a given trait (row), we calculated the trait-averaged value (x-axis, stars)

and compared it with the matched genomic background distribution (gray dots: mean values, gray bars: 5th, 95th percentiles). Traits

are manually grouped based on type and similarity. The number of trait-associated regions is provided in parentheses. Red stars
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detect any genomic signatures of enrichment across the evolutionary measures we tested.

Thus, we hypothesize that genomic regions associated with some late-onset traits may be less

likely to have strong signatures of selection. We mined our dataset for comparable late-onset

traits, especially those with a neurological component, but we did not find any that met our

quality threshold of 50 or more associated genomic regions. GWASs for other relatively late

onset diseases like coronary artery disease showed positive enrichment for many signatures as

observed for most traits (Supplementary Figshare Repository https://doi.org/10.25452/

figshare.plus.19733230). Analysis of additional high powered GWASs is needed to determine

the role of age-of-onset in the enrichment of the studied evolutionary metrics.

Discussion

Natural selection has influenced patterns of variation in genomic regions associated with

many human complex traits. However, the role of different modes of selection, neutral pro-

cesses, and the extent of their influence on genomic regions associated with complex human

traits remain challenging to study. Here, we couple the availability of summary statistics from

972 GWASs with 11 evolutionary statistics to identify enrichment for evidence of different

evolutionary forces on genomic regions that contribute to variation in the human phenome.

Our empirical approach quantifies enrichment compared to background genomic regions

matched to those identified for each trait. The analysis pipeline can flexibly incorporate any

evolutionary measure with genome-wide SNP level annotation and quantify a trait-level sum-

mary and enrichment. We make our evolutionary atlas and efficient open-source software

available for the research community (https://github.com/aa-publications/gsel_vec).

We observe several consistent trends across regions associated with diverse complex traits.

Evolution measures associated with negative selection, both within and between species, are

enriched among variants associated with nearly all complex traits. This indicates that, as

expected, trait-associated variation is enriched in functional regions with significant evolution-

ary constraint. We also consistently observe significantly younger ages for trait-associated

alleles, which suggests that recent variants make a substantial contribution to the common-

variant mediated variation in most complex traits. We also observe enrichment for signatures

of differentiation/positive selection between populations for a substantial fraction of traits,

most notably those involved in hair, skin, blood measurements, and the immune system. This

(FDR<0.05) represent statistically significant deviation after multiple testing correction (Methods). Results are shown for six

evolutionary measures; see S3 Fig for all 11 evolutionary measures. (b) We calculated enrichment as described in Fig 1D and highlight

four traits with distinct evolutionary profiles. Spokes represent different evolutionary measures (colored by type of associated force) and

concentric rings represent levels of evolutionary enrichment. Red dashed circles represent the expected values (i.e., no enrichment).

https://doi.org/10.1371/journal.pgen.1010494.g003

Fig 4. Loci for late-onset Alzheimer’s disease lack enrichment for evolutionary forces. Across five GWASs conducted on Alzheimer’s Disease (y-axis), we

plot the trait-averaged value (red or black stars) across evolutionary measures (x-axis) compared to their matched genomic background values (gray bars, 5th,

95th percentiles. We did not find significant enrichment for any evolutionary measures (FDR<0.05 with multiple testing correction, Methods). This pattern

held across all five GWASs considered. This suggests that genomic regions contributing to the development of Alzheimer’s Disease are not enriched for specific

evolutionary forces.

https://doi.org/10.1371/journal.pgen.1010494.g004
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is consistent with recent population-specific adaptation driven by these traits with particular

relevance to survival in new environments [11]. We note, however, that multiple evolutionary

forces can influence any one metric, making direct connections between a summary statistic

and the evolutionary process difficult. For example, FST is generally used as a metric to identify

variants with greater than expected population differentiation. This metric is also influenced

by background selection [50], mathematical constraints [51], and balancing selection [52].

Nonetheless, regions associated with most traits show strong enrichment for multiple evolu-

tionary patterns, suggesting that a mosaic of selective pressures commonly shaped variants

associated with complex traits.

Our approach generalizes the common strategy of analyzing evolutionary patterns on indi-

vidual loci of interest to comprehensively characterize all regions associated with a trait. This

region-focused approach has several advantages. Previous empirical work [14,35] has shown

the promise of quantification of region-level pressures to understand evolutionary forces on a

handful of traits and interpret associated loci. Calculating a standardized enrichment for each

trait and measure from an appropriate background enables us to compare across different evo-

lutionary measures and, consequently, generate evolutionary profiles across GWASs of differ-

ent traits. Our findings are consistent with several recent genome-wide analyses that use

different approaches and identify widespread global differentiation [35], negative selection

[13], and polygenic adaptation [53] on complex traits.

Differences in the average polygenic risk score between populations and the correlation

between polygenic risk scores and geographic clines [27–29] or time [53] have been used to

argue for polygenic adaptation on traits such as height. However, such approaches can yield

false signatures of adaptation due to inflated differences arising from population stratification

in the GWASs [30,31,54]. Our approach is distinct from and complementary to recent meth-

ods for detecting polygenic selection from GWAS in several key aspects. First, it separates the

identification of genomic signatures of different evolutionary forces from the trait(s) that

drove the selection. While both are challenging problems, identifying the specific traits driving

selection is not necessary to infer that selection occurred in genomic regions associated with

these traits. Rigorous detection of polygenic adaptation would require detailed phenotypic and

environmental measurements over time and/or across different populations. The difficulties

accounting for stratification in previous studies of height illustrate these challenges. Such an

approach is not currently possible at scale since both modern and ancient phenotype data are

very sparse for most traits and many of these pressures happened deep in our evolutionary his-

tory. Thus, our atlas provides a complementary high-level overview of the currently detectable

evolutionary signatures on genomic regions that underlie complex traits. We anticipate that

this can help generate hypotheses about which traits may have experienced different selective

pressures.

A second major difference is that we do not directly consider effect size or direction

inferred from GWAS therefore reducing the potential effect of inflated or unstable estimates

between populations. However, we acknowledge that trait-associated regions near the signifi-

cance threshold could still be enriched for false positives due to population stratification.

Nonetheless, our framework enables us to evaluate the relationship between effect size and

evolutionary signatures of selection (Fig 2). We observe for height that the most extreme scores

and strongest enrichment for evolutionary measures associated with differences between

human populations (FST, XP-EHH) occur at lower effect sizes.

Third, by summarizing the distribution of evolutionary measures at the local region and

then genome-wide level, we obtain a richer characterization rather than considering a single

tag SNP, which may be subject to substantial variation and not truly causal. Moreover, this

allows us to build an appropriate background distribution. This is especially important, since
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the strength of selection is not uniform but often varies based on functional annotations across

the genome [13,55]. We are also able to corroborate observations by incorporating multiple

evolutionary measures capturing similar evolutionary forces (e.g., PhyloP, PhastCons, LIN-

SIGHT). Finally, our framework flexibly considers signatures of many different evolutionary

forces, not just adaptation. We are also able to compare the enrichment for signatures of selec-

tion across traits and effect sizes.

Our approach also has some limitations. First, as noted above, if the goal is to find traits

under selection, then identification of selection acting on genomic regions associated with a

trait does not necessarily imply that selection acted on the trait itself. Linking genomic signa-

tures of selection to traits is complicated by pleiotropy, especially antagonistic pleiotropy, e.g.,

regions associated with heart disease and lifetime reproductive success exhibit antagonistic

effects [56]. Furthermore, the omnigenic model suggests that pleiotropy is extremely pervasive

across human traits [57]; thus, attributing the contributions of selection on different genomic

regions to individual traits is likely to be a considerable challenge. Second, rare variants con-

tribute to variation in many complex traits [58], and our use of GWAS data limits our analyses

to relatively common variants. Nonetheless, our approach can be used to analyze known rare

variants, and increasing GWAS sample sizes are enabling the detection of effects for increas-

ingly rare variants. Third, lower frequency alleles tend to have larger effects in GWAS [59],

even in the absence of any selection-driven relationship. These relationships between allele fre-

quency and LD with power to detect associations and evolutionary signatures was a major

motivation for our approach of developing empirical background distributions after matching

on these relevant attributes. However, it is difficult to verify that these effects have been fully

accounted for, especially with regard to variants that are challenging to detect in GWAS. These

considerations are particularly important in the context of the few analyses that consider allele

frequency (Fig 2B). Fourth, many of the traits we examined are polygenic. Whether the evolu-

tionary trends we observe can be generalized for oligogenic traits warrants further study.

Finally, the limited availability of GWAS data from non-European populations [60]

required us to focus on trait-associated regions identified in European populations. This lack

of diverse GWAS data limits our understanding of the extent of shared genetic architecture

across human populations for complex traits. It is likely that trait-associated regions identified

in European populations share similar biological function and trait-relevance in non-Euro-

pean populations. However, effect sizes are often not generalizable across populations [61].

Thus, we elected to not directly consider effect size in most of our analyses, but the results of

between population statistics in Fig 2B are sensitive to this assumption.

The flexibility of our approach enables several future directions. As new evolutionary mea-

sures are developed, they can easily be integrated into our framework. Our approach could

also be integrated with model-based evolutionary simulations to better understand the effects

of different evolutionary pressures and their combinations on the distributions of the statistics.

Evolutionary enrichment at the trait level can be used to better understand pleiotropy and

whether the enrichment varies across functional regions of the human genome for a given

trait. As more diverse GWASs conducted in non-Europeans become available, our framework

can be used to compare genomic signatures of selection across human populations. This will

enable additional tests for evidence of polygenic adaptation, such as heterogeneity among loci

and non-parallelism between replicated populations [62]. Additionally, our framework is not

limited to the human species; the same approach can be applied to GWAS conducted in any

species such as mice [63], non-human primates [64], or fungi [65]. In summary, our quantifi-

cation of genomic signatures of selection on trait-associated regions advances our understand-

ing of the genetic architecture of complex traits and illuminates the diverse forces that have

shaped functional regions of the human genome.
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Methods

Detecting genomic signatures of evolutionary forces from summary

statistics

Our empirical framework to detect evolutionary signatures relies on building a matched back-

ground to compare trait-associated regions. For a given trait, we identify independent trait-

associated regions by pruning using LD (r2�0.9), genomic distance� 500 kbases, and GWAS

p-value< 5E-8 (Fig 1A). This is obtained by running the—clump flag in PLINKv2 with the fol-

lowing parameters:—clump-kb 500,—clump -r2 0.9,—clump-p1 5E-8,—clump-p2 5E-8. We

refer to the independent regions identified by LD clumping as trait-associated regions and var-

iants with GWAS p-value< 5E-8 within the clumped regions as trait-associated variants. All

genomic coordinates are GRChg37.

For each trait-associated region, we match using an approach motivated by SNPSNAP [66]

and described previously [14]. Briefly, for each lead variant (variant with lowest p-value) in a

trait-associated region, we randomly select 5,000 control variants matched on the following

features: allele frequency (+/-5%), LD (r2>0.9, +/-10% LD buddies, gene density (+/− 50%)

and distance to nearest gene (+/−50%) (Fig 1B). We implemented the matching as a python

script. Matched variants were drawn from 1000 Genomes subset of the European

superpopulation.

To extend the LD matching for each trait-associated region, if more variants are present in

LD with a matched variant, we randomly select variants in LD. For example, in a given trait-

associated region, if there are four trait-associated variants in LD (r2>0.9) with the lead vari-

ant, then for each of the 5,000 matched control variants, we select 4 variants in LD (r2>0.9)

with each. This pairs each of the 5,000 matched control variants with the same number of LD

variants as the trait-associated regions. Matching is attempted five times starting with the

strictest threshold for each metric (e.g. MAF +/- 1%) and increasing incrementally to the most

liberal threshold (e.g. MAF +/- 5%). In the rare case that there are still no matched regions, the

lead GWAS variant is removed from subsequent analysis. Additional detail on the method can

be found in the original publication [14].

Next, for every evolutionary measure, we calculated a trait-level average using two steps.

First, we calculate for each region (matched or trait-associated) a ‘region-average’ defined as

the greatest absolute value across all trait-associated variants. For the second step, we calculate

the trait-level average across all the region-averages for the trait-associated regions and each of

the 5,000 matched sets, where each set includes a matched region for each trait-associated

region (Fig 1C). The 5,000 averaged evolutionary values make up the background distribution

that we use to compare the trait-average evolutionary measure value (Fig 1D). We derive

unadjusted p-values by quantifying the number of averaged matched evolutionary values as or

more extreme than the trait-average out of the 5,000. We adjust this p-value for multiple test-

ing in each analysis. Additionally, using this background distribution, we define evolutionary

enrichment as the difference between the trait-level mean and the mean of the background dis-

tribution divided by the genome-wide standard deviation of the evolutionary measure (Fig

1E). This standardization allows us to compare the relative enrichment across different evolu-

tionary measures. In summary, this approach starts with GWAS summary statistics and quan-

tifies a trait-level average and enrichment for a given evolutionary measure.

Source of evolutionary measures

In this study, we downloaded or calculated eleven evolutionary measures (Table 1) for all trait-

associated and matched control variants as described in our previous study [14]. Briefly,
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VCFTools (v0.1.14) [67] was used to calculate pairwise FST, the R package rehh (v2.0) was used

to calculate XP-EHH using phase 3 1KG data. BetaScan software [19] was used to calculate

Beta Score. PhyloP [68], PhastCons 100-way [69], LINSIGHT [70], and Allele Age [21,71]

were downloaded from their publications or the UCSC Table Browser [72].

Evaluating robustness of evolutionary signatures using height GWAS

summary statistics

GWAS summary statistics for standing height were downloaded from four different studies

(Table 2). The Berg-2019 analysis performed a linear regression with age, sex, and sequencing

array as covariates on unrelated British ancestry individuals in the UK Biobank [30]. We

downloaded the summary statistics labeled “UKBB_noPCs” from datadryad.org/stash/dataset/

doi:10.5061/dryad.mg1rr36. The Neale-2017 analysis also performed a linear regression with

the first genetic 10 principal components and sex as covariates on unrelated white British indi-

viduals [38] [cite: http://www.nealelab.is/uk-biobank/]. Summary statistics were obtained by

downloading the file 50_raw.gwas.imputed_v3.both_sexes.tsv from the “GWAS round 2”

repository hosted at nealelab.is/uk-biobank. The GIANT-2018 summary statistics were

obtained from a meta-analysis of previous height GWAS on European ancestry combined

with the UK Biobank cohort that included age, sex, recruitment center, genotyping batches

and 10 genetic principal components [39]. The summary statistics were downloaded

from: https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-analysis_

Wood_et_al%2BUKBiobank_2018.txt.gz/. The Loh-2018 analysis used a linear mixed

model on individuals of European ancestry from the UKBiobank [40]. The height summary

statistics were downloaded from https://alkesgroup.broadinstitute.org/UKBB/ (file name:

body_HEIGHTz.sumstats.gz).

On all four summary statistics, we applied our approach to detect genomic signatures of

evolutionary forces. We calculated a trait-associated region average and the distribution of the

background set and the evolutionary enrichment as described earlier (Fig 1). For each sum-

mary statistic, we corrected for multiple testing across the 11 evolutionary measures using the

Benjamini-Hochberg FDR control approach.

To test for effects of trait-associated p-value obtained from the summary statistics, we cre-

ated quintiles with an equal number of trait-associated regions based on the GWAS summary

statistics p-value at the lead SNP. We then applied our evolutionary analysis on each quintile.

We repeated the same steps to test for the effect size from the GWAS summary statistics but

instead created quintiles based on the beta coefficient. We also tested whether the enrichment

calculation was sensitive to matching parameters for gene density and distance to nearest

gene. To do this, we repeated our enrichment calculation on each quintile based on effect size

for either gene density +/- 25% and +/- 10% or gene distance +/- 25% and +/- 10% (S4 Fig).

When the matching thresholds are varied, the enrichments in evolutionary metrics do not

vary substantially from the original analysis. This suggests our enrichment calculation is not

sensitive to matching parameters.

To test how the number of trait-associated regions affected our evolutionary analyses, we

randomly sampled with replacement the number of trait-associated regions to create under-

sampled sets. Then for each set, we ran our evolutionary pipeline to calculate a trait-level aver-

age (S1 Fig).

GWAS datasets to generate evolutionary atlas

We used multiple sources to identify GWASs that were conducted in individuals of European

ancestry and had complete publicly available summary statistics for all analyzed regions
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reported in human genome version hg19. GWASs were curated from repositories such as the

Neale Lab analysis of the UK Biobank data [38], the GWAS catalog [43], the GWAS Atlas [73],

major GWAS consortia such as the Psychiatric Genomics Consortium and DIAGRAM, and

manual NCBI searches for specific traits. Our inclusion criteria were that the study was con-

ducted in a European population and the complete summary statistics were freely available for

download and reported in the hg19 assembly. We excluded GWASs that only reported the top

hits. Details for each of the GWAS summary statistics in our evolutionary atlas are provided in

S1 File, which includes the PMID of the study and the web link to download the raw summary

statistics.

For each summary statistic, we applied our approach to detect genomic signatures of evolu-

tionary forces as described earlier. GWASs without any significant independent regions (based

on p-value and LD as described above) were not further analyzed. For all GWAS with at least

one associated region we retained the summary statistics for every individual trait-associated

genomic region and the trait-level enrichment across the entire GWAS. To correct for multiple

testing, empirical p-values across all traits for a given evolutionary measure were adjusted

using the Benjamini-Hochberg FDR control approach.

This data is available on FigShare reports empirical p-value only and should be adjusted

accordingly for future analyses (https://doi.org/10.25452/figshare.plus.19733230).

BOLT-LMM GWASs subset analysis

We further analyzed a subset of 47 traits, which we refer to as the “BOLT-LMM set”, whose

summary statistics were generated using a mixed modeling approach [40]. All summary statis-

tics were downloaded from https://alkesgroup.broadinstitute.org/UKBB/. We ran our evolu-

tionary analyses to calculate trait-level averages and the background distribution (Fig 3A).

Empirical p-values were corrected for multiple testing across traits and evolutionary measures

using the Benjamini-Hochberg FDR control method. Next we calculated the evolutionary

enrichment for each trait and evolutionary measure.

Late-onset Alzheimer’s disease analyses

We performed our evolutionary analysis on five GWAS of the late onset Alzheimer’s trait. The

GWAS analyzed were collected from the following sources: Bellenguez et al.[45], Marioni et al.

[46], Kunkle et al. [47], GRACE [48], IGAP [49]. The most recent GWAS (Bellenguez et al.)

was reported in hg38 and converted to hg19 using the biomaRt (v4.2) package in R [74] using

the archived Ensembl 75: Feb 2014 (GRCh37.p13). Empirical p-values were corrected for mul-

tiple testing across all five GWAS and 11 evolutionary measures using the Benjamini-Hoch-

berg FDR control approach.

Supporting information

S1 Table. Count of traits with signals of evolutionary forces. Number of traits (“# Traits”) in

the full Evolutionary Atlas (top) and BOLT-LMM subset (bottom) with statistically significant

enrichment for evolutionary measures (rows). Note, only traits with 50 or more associated

regions are analyzed within the Evolutionary Atlas. The proportion out of all traits analyzed

(“Proportion of All Traits (%)”) are shown for the Evolutionary Atlas (n = 290 traits) and

BOLT-LMM set (n = 47 traits). Depletion refers to negative enrichment.

(DOCX)

S1 Fig. Evolutionary signatures converge rapidly with increasing number of trait-associ-

ated genomic regions. Using the Loh et. al. GWAS, we randomly undersampled the number
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of trait-associated regions without replacement (x-axis) and measured the mean evolutionary

measure at trait-associated regions (blue line) and the matched background (mean: black line,

gray shading between 5th and 95th percentiles). The observed evolutionary measures for trait-

associated regions and their relative values compared to the matched background regions are

consistent across different numbers of associated loci considered.

(TIF)

S2 Fig. Strongest genomic evolutionary signatures occur in most significant trait-associ-

ated regions. Using the Loh-2018 (Fig 2) GWAS, we partitioned trait-associated regions into

five bins with equal number of regions based on GWAS p-value of the lead SNP in each region.

Each plot represents the mean trait value (y-axis) for an evolutionary measure and each bar is

colored by the evolutionary enrichment which is calculated as described in Fig 1D.

(TIF)

S3 Fig. Mosaic evolutionary architecture across 47-well-powered GWASs across 11 evolu-

tionary measures. On a subset of 47 GWASs (y-axis, BOLT-LMM set), the trait-level average

(red star or gray ‘x’) for 11 evolutionary measures (x-axis) compared to its matched back-

ground distribution (gray dots: mean values, gray bars: 5th, 95th percentiles) are displayed.

The number of trait-associated regions is provided in parentheses. Red stars (p.adj<0.05) rep-

resent statistically significant deviation after multiple testing correction (Methods). This figure

extends Fig 3A by including all 11 evolutionary measures considered in this study.

(TIF)

S4 Fig. Enrichment for evolutionary measures is not sensitive to different matching

parameters for gene distance and density. For each evolutionary measure (one plot per mea-

sure), we repeated the analysis in Fig 2B and calculated the enrichment (y-axis) across trait-

associated regions partitioned by association effect size (x-axis, ordered from negative to posi-

tive effect size) for the original Fig 2B analysis (red X) and four other conditions. We repeated

the analysis by changing either the gene distance matching threshold to be either +/- 25%

(dark blue) or +/-10% (light blue) or the gene density matching threshold to be either +/- 25%

(dark green) or +/-10% (light green) while keeping the all other parameters the same. The pat-

terns are similar for nearly all settings.

(TIF)

S1 File. File_S1.xlsx This excel file contains PMID or web link and the source for each GWAS

summary statistics analyzed in this study.

(XLSX)
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