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Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that is activated by the
neuron-specific activators p35/p39 and plays important roles in neuronal development,
synaptic plasticity, and cognitive behavior. However, the proteolytic cleavage of
p35 to p25 leads to prolonged and aberrant Cdk5 activation and results in synaptic
depression, highly mimicking the early pathology of Alzheimer’s disease (AD). Therefore,
Cdk5 inhibition is a potential promising strategy for AD drug development. Here
in the present study, we showed that metformin, the most widely used drug for
type 2 diabetes, suppressed Cdk5 hyper-activation and Cdk5-dependent tau hyper-
phosphorylation in the APP/PS1 mouse hippocampus. We also identified the underlying
molecular and cellular mechanism that metformin prevented Cdk5 hyper-activation by
inhibiting the calpain-dependent cleavage of p35 into p25. Moreover, chronic metformin
treatment rescued the core phenotypes in APP/PS1 mice as evidenced by restored
spine density, surface GluA1 trafficking, Long-term potentiation (LTP) expression, and
spatial memory. Altogether our study discovered an unidentified role of metformin in
suppressing Cdk5 hyper-activation and thus preventing AD pathogenesis and suggested
that metformin is a potential promising AD therapeutic drug.

Keywords: AD, Cdk5, p35, p25, metformin, synapse

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by synaptic
depression, synapse loss, and cognitive impairment. It has become the sixth leading cause of
death and is a global threat to public health. This disease afflicts ∼44 million people worldwide
and accounts for ∼605 billion in medical expenses in 2019. However, the patient number
and the medical costs are still going up and are expected to double by 2050 (data from the
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Alzheimer’s association) due to the lack of an effective cure
for AD, highlighting the importance and urgency of developing
new drugs and therapies. Unfortunately, many drugs that target
amyloid beta (Aβ) deposits failed in preclinical or clinical
trials. All these facts drove us to look carefully into the
pathophysiological mechanisms underlying the synaptic failures
in AD and hope to find out some promising targets for
drug development.

Among different signaling molecules, cyclin-dependent
kinase 5 (Cdk5) is a potential therapeutic target. Cdk5 is a
proline-directed serine/threonine kinase and is activated by its
neuron-specific activators, p35 or p39. Cdk5 plays indispensable
roles in the early stage of neural development including neuronal
migration, neurite development, hippocampus neurogenesis, and
synaptic formation and elimination (Dhavan and Tsai, 2001; Su
and Tsai, 2011). However, the aberrant activation of Cdk5 is
responsible for the pathogenesis of several neurodegenerative
diseases and psychiatric disorders including AD, Parkinson’s
disease (PD), and depression (Cheung and Ip, 2012; Cortés
et al., 2019). Indeed it is reported that the proteolytic cleavage
of p35 produces p25, causing a prolonged and aberrant
Cdk5 activation when the neurons are exposed to cellular stresses
such as neurotoxicity and Aβ deposits (Shukla et al., 2012).
For example, p25 is found to be accumulated in the brains of
AD patients (Patrick et al., 1999). In addition, another recent
study showed that chronic p25 production induced initially
concurrent synapse density reduction and synaptic size increase
and later persistent synapse elimination in intact brains, highly
recapitulating the early Alzheimer’s synaptic pathology (Sheng
et al., 2016). Thus, it has been proposed that Cdk5 activity
inhibition can be a potential promising therapeutic strategy
for AD treatment. Indeed many studies have shown that the
pharmacological or the genetic inhibition of Cdk5 activity
can prevent synaptic loss and neuronal death and exert some
protective effect in mouse models of AD and PD (Lau and
Ahlijanian, 2003; Piedrahita et al., 2010; Liu et al., 2016; Seo
et al., 2017; He et al., 2018). However, preclinical or clinical
trials with some Cdk5 inhibitors were not promising due to
severe side effects or off-target effects (Cicenas et al., 2015).
This prompted us to re-search the library of US Food and
Drug Administration (FDA)-approved drug to find out some
potential Cdk5 inhibitors and examine if they could be promptly
repurposed as AD therapeutic.

Accumulating evidence has suggested that type 2 diabetes
mellitus (T2DM) and AD share a similar pathophysiology. It has
even been hypothesized that AD might be ‘‘type 3 diabetes’’ (de
la Monte, 2014). For example, several clinical studies showed that
diabetes patients had increased AD risk by two- to threefold.
Meanwhile, more than 80% of AD patients showed abnormal
blood glucose level and developed diabetes, indicating a high
correlation between the onset of T2DM and AD (Janson et al.,
2004). In several recent studies, scientists reported that one
family of anti-diabetic drugs, the thiazolidinediones (TZD)
drugs troglitazone and pioglitazone, could inhibit Cdk5 kinase
activity and ameliorate some synaptic deficits in mouse models
of AD (Cho et al., 2013; Chen et al., 2015). However, the
application of TZDs is often associated with edema, weight

gain, macular edema, and heart failure (Rizos et al., 2009),
which prevent their wide use in AD patients. In contrast,
metformin, the most widely used FDA-approved drug for type
2 diabetes and whose long-term safety and tolerability have
been well studied and documented, is one promising compound
for several reasons: (1) metformin treatment exerts some
protective and beneficial effect in neurotoxicity by decreasing
intracellular calcium influx (Jang and Park, 2018); (2) metformin
administration corrects synaptic failures and cognitive deficits
in a Drosophila melanogaster fragile X model and a mouse
model of fragile X syndrome by normalizing ERK signaling
(Gantois et al., 2017; Monyak et al., 2017), whose hyper-
activation also contributes to AD pathology (Sun andNan, 2017);
and (3) metformin treatment reduces endometrial cancer size
by reducing the Cdk5-dependent phosphorylation of STAT3 at
serine 727 (Leidgens et al., 2017). Based on these reports
and our preliminary data, we proposed to examine whether
metformin treatment can rescue synaptic dysfunctions and
improve cognitive functions in AD mouse models by inhibiting
Cdk5 kinase activity.

MATERIALS AND METHODS

Animals
The APP/PS1 (APPswe + PSEN1dE9) transgenic mice were
purchased from Jackson Laboratory. The Sprague–Dawley
rats were purchased from Beijing Weitonglihua Laboratory
Animal, Company Limited. The animals were maintained
in the animal facility at the Xinxiang Medical University
and family- or pair-housed in a temperature-controlled
animal room with 12/12-h light/dark cycle. Food and water
were available ad libitum. All animal experiments were
performed in accordance with the protocols approved by
the Institutional Animal Care and Use Committee of Xinxiang
Medical University.

Reagents
All chemicals were purchased from Sigma company unless
otherwise stated. The antibodies to Cdk5 (C8 and DC17) and
p35 (C19) were purchased from Santa Cruz Biotechnology, Santa
Cruz, CA, USA. Phospho-histone H1 (32078) was purchased
from Upstate. The phospho-tau (Ser202; 11834), phospho-tau
(Ser404; 11837), total tau (4019), β-actin (4970), and horseradish
peroxidase-conjugated goat anti-mouse (7076) and anti-rabbit
(7074) IgG antibodies were from Cell Signaling Technology,
Danvers, MA, USA. The lentiviral particles encoding enhanced
green fluorescent protein (GFP) were from Santa Cruz
Biotechnology, Santa Cruz, CA, USA.

Primary Neuron Culture
Cultured hippocampal neurons were prepared from rat
embryos at day E18, seeded on 60-mm plates coated with
poly-D-lysine (Sigma–Aldrich, St. Louis, MO, USA, P1149,
5 µg/ml), recovered in the plating media (Dulbecco’s
modified eagle medium with 10% fetal bovine serum,
2 mM L-glutamine, and 0.5% glucose) for 4 h, and then
maintained in neurobasal medium supplemented with 2%
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B27 and 0.5 mM L-glutamine before use. To examine Aβ-
induced p25/p35 changes, the hippocampal neurons were
treated with 500 nM Aβ for 2 h at DIV10 with or without
metformin pretreatment and then the cells were harvested,
lysed, and subjected to western blot analysis using the
indicated antibodies.

Cdk5 in vitro Kinase Assay and
Western Blotting
The Cdk5 kinase activity was measured using a previously
established Cdk5 kinase activity assay (Zhang et al., 2010, 2015;
Qu et al., 2011; Sheng et al., 2016). Briefly, mouse hippocampi
were homogenized and lysed, and then Cdk5/p35/p25 protein
complex was co-immunoprecipitated using Cdk5 antibody (C8,
1 ug/500 g protein lysate) overnight and pulled down by protein-
A/G agarose beads at 4◦C for 60 min. The beads were then
washed three times with lysis buffer and once with kinase
reaction buffer. The kinase assay was then performed with
10 µg histone H1 and magnesium/ATP mixture at 30◦C for
30 min, followed by western blotting using the phospho-histone
H1 antibody. Cdk5, p35, phosphor-tau (p-S202), phosphor-tau
(p-S404), tau, and β-actin were blotted using anti-Cdk5 (1:1,000;
Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-p35
(1:2,000; Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-
phospho-tau (1:2,000; Cell Signaling Technology, Danvers, MA,
USA), anti-tau (1:2,000; Cell Signaling Technology, Danvers,
MA, USA), and anti-actin (1:5,000; Cell Signaling Technology,
Danvers, MA, USA). The band intensity was quantified by
chemiluminescence and densitometric scanning of the films
under linear exposure conditions using ImageJ software (NIH).

Virus Infection, Dendritic Spine
Quantification, Hippocampal Slice
Preparation, and Electrophysiology
For in vivo lentivirus expression, ∼5-month-old animals
were initially anesthetized by an intraperitoneal injection
of chloral hydrate and then placed in a stereotaxic frame.
Lentiviral particles with pLenti-hSynapsin-GFP were delivered
into the mouse hippocampal CA1 region (AP: −2.00 mm,
ML: ±1.70 mm, DV: −1.4 mm, relative to the Bregma) for
4 weeks with an injection volume of 50 nl viral solution
using a glass pipette. After surgery, the animals were placed
under a heating lamp until reawakening. At 4 weeks later, the
animals were sacrificed, and coronal slices with 50-µm thickness
were prepared using Leica Vibratome VT1000S. For imaging
acquisition of dendritic spines in GFP-labeled CA1 hippocampal
pyramidal neurons, the images were obtained with an Olympus
Fluoview FV1000 confocal microscope with a 60× oil-immersion
objective using z-stack scanning mode, and then image analysis
was performed with Metamorph software. For dendritic spine
density quantification, three dendrite segments of secondary
apical dendrites from each neuron were analyzed. The acute
mouse hippocampal slices were from 6-month-old male and
female mice. The animals were deeply anesthetized by chloral
hydrate and decapitated. The brain containing the hippocampus
was quickly removed and placed into a cold (0◦C), oxygenated
physiological solution containing 125 mM NaCl, 2.5 mM KCl,

1.25 mM NaH2PO4, 25 mM NaHCO3, 1 mM MgCl2, 25 mM
dextrose, and 2mMCaCl2 (pH 7.4). Then, parasagittal slices with
350–400-µm thickness were cut from the brain blocks. These
slices were kept at 37.0 ± 0.5◦C in an oxygenated physiological
solution for ∼0.5 h before experiments. Then, the brain slices
were kept at room temperature for Aβ treatment experiments
and electrophysiology recording. Field excitatory postsynaptic
potentials (fEPSP) were recorded in the CA1 stratum radiatum
region. Long-term potentiation (LTP) was induced with a
conditioning stimulus consisting of three theta burst trains with
60-s intervals. Each theta burst train itself consisted of 10 5-Hz
series of four 100-Hz pulses. fEPSP slopes were measured to
reflect the synaptic activity and the slopes acquired during the last
10 min were analyzed by MED64 Mobius. A statistical analysis
was performed with GraphPad Prism8.0.

Surface Biotinylation Assay
Acute mouse hippocampal slices were prepared from 6-month-
old mice and recovered for 0.5 h at 37.0 ± 0.5◦C in oxygenated
physiological solution. Then, the slices were washed twice with
ice-cold phosphate buffer and subsequently incubated with
0.5mgml−1 EZ-link-sulfo-SS-Biotin (Pierce) in phosphate buffer
for 30 min. The biotin solution was then removed, and the
remaining biotin was quenched by 50 mM Tris solution (pH 7.4)
for 2 min. The slices were then washed three times with ice-cold
phosphate buffer and lysed with the radioimmunoprecipitation
assay buffer supplemented with protease inhibitor cocktail. The
biotinylated proteins were immunoprecipitated with streptavidin
agarose A/G for 1–2 h at 4◦C. The protein A/G beads were
washed three times with lysis buffer, after which 2× SDS sample
buffer was added to elute the biotinylated proteins for western
blot analysis.

Behavioral Test: Morris Water Maze
TheMorrisWaterMaze (MWM) test was performed as described
before. Briefly, chronic metformin (met, 200 mg per kilogram
of body weight) or saline (sal) was administrated into the mice
5 days before training, and this administration lasted throughout
the whole testing period of 10 days. The circular water maze
pool was 120 cm and the platform was 10 cm in diameter. The
water was maintained at room temperature (22–23◦C) and made
opaque by the addition of white tempera to enhance contrast.
Male mice (aged ∼6 months old, ∼10–12 mice per group) were
handled daily for 5 days before the start of the experiment.
During the experiment, the mice were trained three times per
day with 30-min interval over five consecutive days (days 1–5).
In each trial, the training lasted 90 s or until the mouse found
the platform. If the mouse did not find the platform in 90 s,
it was guided to the platform and made to stay there for 10 s
before being returned to the home cage. Probe test was then
performed on day 6. The mouse was put into the tank to swim
for 60 s without the platform, and its performance was assessed
by quantifying the time spent in the target quadrant in which the
hidden platform was originally placed. The animal behavior was
recorded with a video camera and analyzed by Ethovision XT
7.0 (Noldus).
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Statistical Analysis
Statistical results were reported as mean ± SEM from at least
six independent experiments. The statistical significance of the
means (p< 0.05; two sides) was determined by two-way ANOVA
with Tukey’s post hoc test.

RESULTS

Metformin Administration Inhibits
Cdk5 Kinase Activity
To examine whether and how metformin had beneficial
therapeutic effects in APP/PS1mice, adult (∼6 month) wild-type
(WT) and APP/PS1 mice were injected intraperitoneally (i.p.)
with metformin (met; 200 mg/kg/day) or saline (sal) for 10 days.
Mouse hippocampal lysate was then subjected to in vitro
Cdk5 kinase assay and western blot analysis 24 h after the last
metformin administration (Figure 1A). Consistent with previous
studies which showed that Cdk5 signaling pathway is hyper-
activated in APP/PS1 mice (Qu et al., 2011; Fu et al., 2014; Chen
et al., 2015), Cdk5 activity was elevated in the adult APP/PS1
mouse hippocampus. More interestingly, metformin treatment
for 10 days prevented Cdk5 hyper-activation as revealed
by the reduced phosphorylation level of histone H1 in the
APP/PS1 mouse hippocampus (Figures 1B,C), with no changes
in the Cdk5 protein level. Moreover, the Cdk5-dependent
phosphorylation levels of tau at serine 202 (S202) and serine 404
(S404) were also elevated in APP/PS1 mice, whereas metformin
treatment for 10 days reduced the levels of phosphorylated
tau at S202 and S404 in the hippocampus of APP/PS1 mice
to WT level without any changes in the total tau protein
level (Figures 1D–G). These data consistently implicated that
Cdk5 signaling pathway was hyper-activated in APP/PS1 mice
and chronic metformin administration suppressed Cdk5 hyper-
activation and restored its dependent phosphorylation of tau to a
normal level.

Metformin Treatment Inhibits Cleavage
of p35 Into p25
The underlying mechanism by which metformin administration
could block Cdk5 hyper-activation in APP/PS1mice is not clear.
Several previous studies reported that Cdk5 activator p35 was
cleaved into p25 in a calpain-dependent manner, resulting
in elevated Cdk5 activation and tau hyper-phosphorylation
in AD patient brains and mouse models of AD when
the intracellular calcium concentration was abnormally high
(Kusakawa et al., 2000; Lee et al., 2000). Meanwhile, a recent
study reported that metformin treatment protected the neurons
from quinolinic acid-induced neurotoxicity by inhibiting the
intracellular calcium increase (Jang and Park, 2018). A plausible
explanation is that the effect of metformin treatment on the
change of Cdk5 signaling is due to the reduced conversion
of p35 to p25. To test this hypothesis, cultured hippocampal
neurons were treated with Aβ oligomers (500 nM for 2 h)
to mimic neurotoxicity. In agreement with previous findings
(Lee et al., 2000), the application of Aβ oligomers in cultured
hippocampal neurons induced p35 cleavage to p25 as evidenced

FIGURE 1 | Chronic metformin treatment prevents Cdk5 hyper-activation in
APP/PS1 mutant mice. (A) Schematic diagram showing the experimental
design. Metformin (met) or saline (sal) was intraperitoneally (i.p.) injected over
10 days, followed by in vitro kinase assay and western blot analysis. (B)
Representative western blots of hippocampal lysates from sal- and
met-treated WT and APP/PS1 mice to measure the Cdk5 activity. (C)
Quantification of the phosphorylation level of histone H1 (p-H1; mean ± SEM,
n = 8 hippocampi from eight mice; ***p < 0.001, two-way ANOVA with
Tukey’s post hoc test). (D) Representative western blots of hippocampal
lysates from sal- and met-treated WT and APP/PS1 mice. (E) Quantification
of the phosphorylation level of tau at serine 202 (S202; mean ± SEM,
n = 8 hippocampi from eight mice; ***p < 0.001, two-way ANOVA with
Tukey’s post hoc test). (F) Quantification of the phosphorylation level of tau at
serine 404 (S404; mean ± SEM, n = 8 hippocampi from eight mice;
***p < 0.001, two-way ANOVA with Tukey’s post hoc test). (G) Quantification
of the protein level of total tau (mean ± SEM, n = 8 hippocampi from eight
mice; two-way ANOVA with Tukey’s post hoc test). n.s., not significant.

by the increased p25/p35 ratio, whereas pretreatment with
metformin (100 µM) effectively inhibited the Aβ-induced
cleavage of p35 (Figures 2A,B). To independently confirm
these data, acute hippocampal slices from adult (∼6 months
old) WT mice were also treated with Aβ oligomers in the
presence or absence of metformin pretreatment. Consistent with
the data obtained in cultured hippocampal neurons, metformin
effectively blocked the Aβ oligomer-induced cleavage of p35 into
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FIGURE 2 | Metformin treatment inhibits p35 cleavage into p25.
(A) Representative immunoblots of cultured hippocampal neuron lysates from
vehicle- and Aβ (500 nM)-treated neurons with or without metformin (100 µM)
pretreatment. (B) Quantification of p25 to p35 ratio (mean ± SEM, n = 8 from
four independent experiments; ***p < 0.001, two-way ANOVA with Tukey’s
post hoc test). (C) Representative immunoblots of lysates from vehicle- and
Aβ (500 nM)-treated hippocampal slices with or without metformin (100 µM)
pretreatment. (D) Quantification of p25 to p35 ratio (mean ± SEM, n = 8 from
four independent experiments; ***p < 0.001, two-way ANOVA with Tukey’s
post hoc test). (E) Representative immunoblots of lysates from Aβ

(500 nM)-treated hippocampal slices with different dosages of metformin
(0–200 µM) pretreatment. (F) Quantification of p25 to p35 ratio
(mean ± SEM, n = 8 from four independent experiments; **p < 0.01,
***p < 0.001, two-way ANOVA with Tukey’s post hoc test).
(G) Representative western blots of hippocampal lysates from sal- and
met-treated WT and APP/PS1 mice. (H) Quantification of p25 to p35 ratio
(mean ± SEM, n = 8 from four independent experiments; *p < 0.05, two-way
ANOVA with Tukey’s post hoc test).

p25 (Figures 2C,D). To further investigate how metformin
treatment affects p35 cleavage, acute hippocampal slices were
treated with Aβ oligomers in the presence of metformin at
different concentrations. Interestingly, metformin treatment
prevented p35 cleavage into p25 in a dose-dependent manner
(Figures 2E,F), suggesting that metformin directly impinged

on p35/p25 cleavage. Furthermore, an increased proteolytic
cleavage of p35 to p25 was also detected in the APP/PS1
mouse hippocampus, and chronic metformin administration for
10 days restored the p25/p35 ratio to WT level (Figures 2G,H).
Collectively, these data suggested an interesting molecular
mechanism by which metformin treatment prevented the
hyper-activation of Cdk5 signaling in the APP/PS1 mouse
hippocampus by blocking p25 overproduction.

Chronic Metformin Treatment Rescues
Dendritic Spine Loss and Surface AMPA
Reduction in APP/PS1 Mice
Neurons from individuals with AD and mouse models of
AD exhibit reduced dendritic spine density and comprised
excitatory glutamatergic neurotransmission (Qu et al., 2011;
Sheng et al., 2016; Bai et al., 2017). To further examine
whether metformin had some beneficial effects on synaptic
dysfunctions in APP/PS1 mice, adult (∼6 months old) WT
and APP/PS1 mice were injected intraperitoneally (i.p.) with
met (200 mg/kg per day) or sal for 10 days (Gantois et al.,
2017). The mice were then subjected to spine morphogenesis
analysis and surface AMPA labeling experiments 24 h after
the last metformin administration (Figure 3A). The APP/PS1
mice displayed spine loss as evidenced by decreased spine
density fromCA1 pyramidal neurons.Metformin administration
for 10 days corrected the dendritic spine density to WT
level, implicating a protective effect of metformin on spine
abnormalities (Figures 3B,C). In addition, compromised surface
AMPA trafficking was also observed in APP/PS1 mouse
hippocampus as revealed by the reduced surface expression of
AMPA subunit GluA1. More importantly, metformin treatment
rescued the surface GluA1 expression to a normal level
(Figures 3D,E). Furthermore, adult APP/PS1 mice treated with
saline displayed a significantly reduced CA3–CA1 synaptic
transmission strength as indicated by an obvious decrease
in the fEPSP input–output (I/O) relationship. The chronic
administration of metformin reversed this neurotransmission
defect (Figure 3F). Altogether the chronic application of
metformin for 10 days rescued the various synaptic abnormalities
including spine loss, surface GluA1 expression reduction, and
decrease in basal synaptic transmission in the hippocampus of
APP/PS1mice.

Chronic Administration of Metformin
Rescues LTP Defects and Spatial Memory
Deficits in APP/PS1 Mice
The LTP of synaptic transmission is critical for hippocampus-
dependent learning and memory. It is widely accepted that
a hallmark of individuals with AD or AD mouse models is
impaired LTP and its associated spatial memory (Fu et al.,
2014). Given these data that metformin treatment reversed
the hyper-activation of Cdk5 signaling and rescued synaptic
dysfunctions, it was of great interest to examine whether
metformin treatment improved the LTP expression and the
spatial memory in APP/PS1 mice (Figure 4A). Thus, LTP at
the hippocampal CA3–CA1 synapses was examined. Theta burst
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FIGURE 3 | Chronic metformin treatment corrects dendritic spine loss and surface GluA1 reduction in APP/PS1 mutant mice. (A) Schematic diagram showing the
experimental design. Metformin (met) or saline (sal) was i.p. injected over 10 days, followed by dendritic spine density analysis and surface GluA1 labeling. For the
dendritic spine analysis, lentivirus encoding enhanced green fluorescent protein (EGFP) was injected into the hippocampal CA1 region on D 1. (B) EGFP-labeled
CA1 dendritic spines from sal- and met-treated WT and APP/PS1 mice. Scale bar, 10 µm. (C) Quantification of spine density in CA1 pyramidal neurons, measured
as the spine number per 10 µm of dendrite length (mean ± SEM, n = 36 dendrites from 12 CA1 pyramidal neurons, four independent experiments; ***p < 0.001,
two-way ANOVA with Tukey’s post hoc test). (D) Representative immunoblots of surface GluA1 and total GluA1 from sal- and met-treated WT and APP/PS1 mice.
(E) Quantification of surface GluA1 to total GluA1 ratio (mean ± SEM, n = 8 mice from four independent experiments; **p < 0.01, two-way ANOVA with Tukey’s post
hoc test). (F) The input–output (I/O) curves in response to stimulus in the mouse hippocampus CA1 region in WT and APP/PS1 mice administrated with saline or
metformin. The I/O curve was measured by averaging the field excitatory postsynaptic potential slopes against different stimulus intensities from 5 to 100 µA
(n = 10–12 slices from six to eight mice).

stimulation-induced CA3–CA1 LTP was impaired in acutely
prepared hippocampal slices from APP/PS1 mice, whereas
chronic treatment with metformin for 10 days rescued the LTP
impairment (Figures 4B,C). Moreover, the effect of chronic
metformin administration on spatial learning and memory was

examined in APP/PS1 mice. Adult (∼6 months old) APP/PS1
mice and their littermate controls were administrated daily with
metformin for 10 consecutive days, and then the spatial memory
was examined using the MWM behavioral test (Figure 4A).
These mice were trained for 5 days, and the escape latency to get
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FIGURE 4 | Chronic metformin treatment reverses long-term potentiation (LTP) defect and corrects spatial memory deficit in APP/PS1 mutant mice. (A) Schematic
diagram shows the experimental design. Metformin (met) or saline (sal) was i.p. injected over 10 days, followed by an analysis of spatial memory and LTP. (B) LTP at
the CA3–CA1 synapses was measured in acute slices prepared from saline- and metformin-treated WT and APP/PS1 mice. (C) Quantification of field excitatory
postsynaptic potential slope during the last 10 min of recording (WT sal: 2.12 ± 0.04, APP/PS1 sal: 1.71 ± 0.02, WT met: 2.04 ± 0.05, APP/PS1 met: 2.08 ± 0.07,
mean ± SEM, n = 12–16 slices from 6 to 8 mice; ***p < 0.001, two-way ANOVA with Tukey’s post hoc test). (D) The escape latency was measured from saline- and
metformin-treated WT and APP/PS1 mice along 5 days of testing. Note that the administration of APP/PS1 mice with metformin reduced the escape latency at D
4 and D 5. (E) Quantification of the time spent in the target quadrant from sal- and met-treated WT and APP/PS1 mice in the probe trial test. Note that the
administration of APP/PS1 mutant mice with metformin increased the time spent in the target quadrant (mean ± SEM, n = 12 mice; **p < 0.01, two-way ANOVA
with Tukey’s post hoc test).

to the hidden platform was recorded. No significant difference
in the escape latency was found from D 1 to D 3 in both
saline- andmetformin-treatedWT andAPP/PS1mice, indicating
that these mice showed no defects in motor coordination and
swimming abilities. At D 4 and D 5, the APP/PS1 mice treated
with saline showed a much higher escape latency, whereas the
APP/PS1 mice treated with metformin significantly improved
their performance, while the WT mice treated with metformin
did not change their performance obviously compared to the
WT mice treated with saline (Figure 4D). At 24 h after the
last training day, the hidden platform was removed and a
probe trial was performed, and the time mice spent in the
target quadrant was measured as a spatial memory index. In
the probe test, the WT mice treated with saline showed much
more time in the target quadrant (∼44%, Figure 4E), while

the APP/PS1 mice treated with saline showed no quadrant
preference (∼22%, Figure 4E), indicating an impaired spatial
memory in APP/PS1 mice. However, the APP/PS1 mice with
chronic metformin application significantly increased their
time spent in the target quadrant to a level comparable to
that of the WT mice (∼44%, Figure 4E), suggesting that
metformin treatment significantly improved the spatial memory
in APP/PS1mice.

DISCUSSION

In the current study, we combined pharmacological, molecular
and cellular, electrophysiological, and behavioral techniques to
study the roles of Cdk5 signaling in AD pathogenesis and
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how chronic metformin treatment had beneficial effects on the
synaptic malfunctions and the cognitive defects in the APP/PS1
mice through the regulation of the Cdk5 signaling pathway.
We firstly confirmed that Cdk5 was hyper-activated in the
APP/PS1mouse hippocampus. Then, we showed that the widely
used anti-diabetes drug, metformin, could inhibit Cdk5 activity
by preventing p35 cleavage into p25. Furthermore, the
blockade of Cdk5 activity by chronic metformin administration
could restore spine loss, reduced surface GluA1 trafficking,
impaired synaptic plasticity, and defective spatial memory
to those of WT level in the APP/PS1 mice, unveiling an
unanticipated role of metformin in alleviating AD progression.
Our results indicated that the widely used type 2 diabetes drug,
metformin, could be promptly proposed as a promising drug for
patients with AD.

At present, there is no cure for AD, and several recent
completed clinical trials targeting Aβ deposits either failed or
were not promising (Hung and Fu, 2017). Thus, re-examining
the molecular and the cellular mechanisms underlying AD
pathogenesis may provide us with new insights and present
some new potential therapeutic targets to cure AD. Indeed
numerous pioneering studies have demonstrated that Cdk5 plays
an indispensable role in synaptic plasticity and its deregulation
is capable of initiating the early Alzheimer’s synaptic pathology,
further resulting in neuronal network dysfunction and cognitive
impairment and decline in AD (Qu et al., 2011; Sheng
et al., 2016). Therefore, there is a good reason to propose
that Cdk5 inhibition is a promising strategy to intervene
on the early pathogenesis of this disorder. For example,
Cdk5 inhibitor roscovitine and small peptides that can disrupt
Cdk5/p35/p25 interaction have been used for AD intervention
(Sundaram et al., 2013; Tell and Hilgeroth, 2013; Shukla et al.,
2017). Meanwhile, accumulating studies showed that neurons
and pancreatic cells share many very important signaling
pathways. For instance, Cdk5 signaling is reported to be
dysregulated in both diabetes and AD patients and Cdk5 hyper-
activation is also sufficient to lead to the pathogenesis of
diabetes (Lalioti et al., 2009; Mora and Aguanno, 2018). In
addition, clinical studies revealed a highly positive correlation
between diabetes onset and AD progression (Akter et al., 2011;
Sluggett et al., 2020). Altogether, we are eager to examine if
the anti-diabetes drug, metformin, could be a potential AD
treatment drug. Intriguingly, here we found that the anti-diabetes
drug, metformin, could inhibit Cdk5 activity, and we identified
a novel mechanism that metformin inhibited Cdk5 activity by
preventing the calpain-dependent cleavage of p35 to p25. More
importantly, chronic metformin administration in APP/PS1
mice rescued synaptic failures and improved learning and
memory. It is noteworthy that, consistent with our current
study, Chen et al. (2015) reported that another anti-diabetes
drug, pioglitazone, could also alleviate AD pathogenesis by
promoting p35 degradation in AD mouse models. Although the
underlying mechanism is different, both studies showed that
anti-diabetes drugs could be a new potential solution to treat
AD patients. However, it remains unclear how metformin and
pioglitazone treatment inhibited Cdk5 activity with two different
mechanisms. In this regard, it will be interesting to figure

out the underlying mechanism by which metformin decreases
p35 cleavage and pioglitazone promotes p35 degradation.
Moreover, several other studies also reported that metformin
showed promising effects for alleviating the symptoms of AD
and could be a potential therapeutic drug for neurodegenerative
diseases (Ou et al., 2018; Rotermund et al., 2018; Farr et al., 2019).
For example, Ou et al. (2018) reported that metformin treatment
prevented amyloid plaque deposition and memory impairment
inAPP/PS1mice by enhancing the AMPK activation.Meanwhile,
another study reported that metformin ameliorated the core
deficits of fragile X syndrome by AMPK activation (Gantois et al.,
2017). Thus, it will be interesting to check if there is any crosstalk
between Cdk5 and AMPK pathway in alleviating AD symptoms
after metformin treatment.

Another interesting question is how metformin could
exert protective effects on dendritic spine density, surface
GluA1 expression, LTP, and its associated learning and
memory in AD mouse models by suppressing the Cdk5 hyper-
activation. Under normal conditions, Cdk5 activity is precisely
regulated and highly suppressed in adult brains to maintain
synaptic integrity. However, under pathological conditions,
Cdk5 is hyper-activated when the neurons are exposed to
cellular stresses such as Aβ oligomers and calcium influx. The
Cdk5 hyper-activation will impair synaptic strength structurally
and functionally via the inhibitory phosphorylation of its
synaptic substrates. For example, the Cdk5 substrate WAVE1 is
important for dendritic spine growth and maturation and
the Cdk5-dependent phosphorylation inhibits its activity and
decreases spine density and maturation (Kim et al., 2006; Sung
et al., 2008). In parallel, Cdk5 negatively regulates N-methyl-
D-aspartate receptor-mediated synaptic transmission through
direct suppression of the surface expression of NR2B (Zhang
et al., 2008; Plattner et al., 2014). Moreover, the PKA-dependent
phosphorylation of GluA1 and GluN1 drives their surface
expression, while the Cdk5-dependent phosphorylation of
DARPP-32 inhibits PKA activity, which in turn reduces the
phosphorylation levels and the surface expressions of GluA1 and
GluN1 (Bibb et al., 1999; Zhang et al., 2015). Therefore,
when p35 cleavage into p25 is inhibited in response to
chronic metformin administration, the Cdk5 hyper-activation is
suppressed and the ‘‘brake’’ that restrains the synaptic strength
is released. As a result, metformin restores dendritic spine
density and maturation as well as surface GluA1 expression
to a normal level, further leading to improved LTP expression
and spatial memory in APP/PS1 mice. Thus, we proposed that
metformin exerted its protective effects in APP/PS1 mice by
preventing the Cdk5 hyper-activation and its phosphorylation of
synaptic substrates.

Furthermore, it is well established that neurodegenerative
diseases, psychiatric disorders, and diabetes seem to share
many physiological characteristics. Given that there are many
widely used FDA-approved drugs to treat diabetes, it is of
great interest to examine if these drugs can be used to cure
some neurodegenerative diseases or psychiatric disorders. Indeed
Zemdegs et al. (2019) reported that metformin treatment could
reduce the anxiety symptoms in mice. In addition, studies have
shown that the incretin hormone, glucagon-like peptide-1, which

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 170

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Wang et al. Metformin Ameliorates Synaptic Defects

has antidiabetic properties, can play a neuroprotective role in
the brain and has demonstrated promising effects in animal
models of AD and PD (Hölscher, 2014; Batista et al., 2019).
Collectively, all these data raise a very interesting possibility that
the anti-diabetes drugs can be potential promising drugs to cure
neurodegenerative diseases and psychiatric disorders.
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