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Background: Radiomics can quantify tumor phenotypic characteristics non-invasively

by applying feature algorithms to medical imaging data. In this study, we investigated

the association between radiomics features and the tumor histological subtypes, and

we aimed to establish a nomogram for the classification of small cell lung cancer (SCLC)

and non-small-cell lung cancer (NSCLC).

Methods: This was a retrospective single center study. In total, 468 cases including

202 patients with SCLC and 266 patients with NSCLC were enrolled in our study, and

were randomly divided into a training set (n = 327) and a validation set (n = 141)

in a 7:3 ratio. The clinical data of the patients, including age, sex, smoking history,

tumor maximum diameter, clinical stage, and serum tumor markers, were collected. All

patients underwent enhanced computed tomography (CT) scans, and all lesions were

pathologically confirmed. A radiomics signature was generated from the training set using

the least absolute shrinkage and selection operator algorithm. Independent risk factors

were identified by multivariate logistic regression analysis, and a radiomics nomogram

based on the radiomics signature and clinical features was constructed. The capability

of the nomogram was evaluated in the training set and validated in the validation set.

Results: Fourteen of 396 radiomics parameters were screened as important factors

for establishing the radiomics model. The radiomics signature performed well in

differentiating SCLC and NSCLC, with an area under the curve (AUC) of 0.86 (95%

CI: 0.82–0.90) in the training set and 0.82 (95% CI: 0.75–0.89) in the validation set.

The radiomics nomogram had better predictive performance [AUC = 0.94 (95% CI:

0.90–0.98) in the validation set] than the clinical model [AUC= 0.86 (95% CI: 0.80–0.93)]

and the radiomics signature [AUC = 0.82 (95% CI: 0.75–0.89)], and the accuracy was

86.2% (95% CI: 0.79–0.92) in the validation set.

Conclusion: The enhanced CT radiomics signature performed well in the classification

of SCLC and NSCLC. The nomogram based on the radiomics signature and clinical

factors has better diagnostic performance for the classification of SCLC and NSCLC

than the simple application of the radiomics signature.
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INTRODUCTION

Lung cancer is the most common malignant tumor in the
world, ranking first in cancer-related deaths (1, 2). One study
showed that the annual survival rate of lung cancer patients
after early diagnosis and treatment can be increased from 14 to
49% (3). There are two main types of lung cancer: small cell
lung cancer (SCLC) and non-small-cell lung cancer (NSCLC)
(4). SCLC is highly malignant and sensitive to radiotherapy
and chemotherapy (5); NSCLC is relatively less malignant, and
the probability of early metastasis is relatively low. It is not
as sensitive to chemoradiotherapy as SCLC (6). Treatment for
SCLC is mainly based on chemotherapy and radiotherapy (5),
whereas treatment for NSCLC is mainly based on surgical
resection or surgery plus radiotherapy and chemotherapy (5,
7, 8). Histological classification can help doctors determine
the best treatment plan and strategy for lung cancer patients
(9, 10). Currently, the most widely used methods to obtain
pathological tissue are tracheoscopy and computed tomography
(CT)-guided percutaneous lung biopsy (11–14). However, both
of these technologies are invasive, with certain risks and high
costs (15, 16). In addition, for a certain proportion of lung
cancer cases adjacent to the mediastinum, aorta, and other large
blood vessels, CT-guided biopsy is highly risky and difficult (16),
while bronchoscopy has a low success rate in the extraction
of lesions below grade 5 of the bronchus (17). Therefore,
thoracic surgeons and pulmonary oncologists hope to find a
non-invasive and cost-effective alternative. In recent years, a
large number of basic studies have suggested that radiomics
provides promising opportunities in this regard. It assesses
the tumor tissue characteristics non-invasively. Furthermore,
radiomics is relatively cost-effective and has been used for
oncological diagnosis, staging, and treatment guidance with high
accuracy (18–22).

A limited number of studies have investigated the association
of radiomic features and NSCLC tumor histology (23–28). It
is believed that imaging features can independently predict
the histological subtypes of lesions and provide a basis for
the formulation and modification of clinical treatment plans.
However, because no clinical parameters were added, the
prediction efficiency of these models was still not as expected
(23–28). Therefore, this study aimed to establish a prediction
model based on enhanced CT images and clinical features
for the histological classification of SCLC and NSCLC and to
preliminarily explore the clinical application value of this model.

MATERIALS AND METHODS

Data Cohort
The protocol was approved by the Institutional Review Board
of the Affiliated Hospital of Qingdao University. The need for
informed consent was waived by the Institutional Review Board.
A cohort of consecutive 3,971 patients with lung cancer who were
confirmed by biopsy or surgery between January 2014 and June
2018 was identified for this retrospective study.

The inclusion criteria were as follows: (1) pathological
confirmation of lung cancers based on the histological

examination of surgical resection or biopsy specimens;
and (2) availability of dual-phase contrast-enhanced CT
before treatment.

The exclusion criteria were as follows: (1) no enhanced CT
examination in our hospital (n = 1,537); (2) no thin-layer
recombination images or poor image quality (n = 528); (3)
patients with incomplete clinical data (n= 864); (4) patients who
received previous treatment (e.g., radiotherapy, chemotherapy)
before surgery (n = 423); (5) difficulty in precisely drawing the
regions of interest (ROIs) due to small size (long diameter <

1 cm) (n = 166); and (6) patients with a history of other primary
malignancies (n= 85).

Finally, a total of 468 cases (202 patients with SCLC and 266
patients with NSCLC) were enrolled in our study (Figure 1).

The clinical data included age, sex, smoking history, clinical
stage, maximum tumor diameter, and serum tumor markers
[serum gastrin-releasing peptide precursor (ProGRP), squamous
cell carcinoma antigen (SCCA), carcinoembryonic antigen
(CEA), neuron specific enolase (NSE), and cytokeratin 19
fragment (cYFRA21-1)]. According to previous studies (29, 30),
the correlation between a small amount of smoking or occasional
smoking and lung cancer remains uncertain, therefore, the
smoking history in this study was defined as those who had a
history of smoking for more than 1 year and smoked more than
20 cigarettes per day on average based on the WHO definition of
heavy smokers.

CT Image Acquisition
The radiomics workflow is displayed in Figure 2. Contrast-
enhanced CT images were acquired at our hospital using
either a SOMATOM (Siemens Medical Systems, Germany)
scanner or a Brilliance iCT 256 (Philips Healthcare, Netherlands)
scanner. The CT scanning project in our hospital was based
on our country’s conventional technical specifications for chest-
enhanced CT scans. The scanning parameters used in this study
were as follows: tube voltage, 120 kVp; detector collimation, 64
× 0.6 and 128 × 0.625mm; pixel size, 512 × 512; slice interval,
0mm; slice thickness, 5mm; and reconstructed section thickness,
1mm. Contrast-enhanced CT images were acquired after the
injection of 1.0 mL/kg contrast material (iohexol injection, 300
mg/mL, Beilu Pharmaceutical Co., Ltd., Beijing, China) into the
antecubital vein at a rate of 3.0–3.5 mL/s using a power injector
(Ulrich CT Plus 150, Ulrich Medical), followed by a saline flush
(20mL). All patients in our cohort were scanned 25 and 70 s after
injection of the contrast agent to obtain the images in the arterial
phase and venous phase, respectively.

Pathological Evaluation
According to the World Health Organization (WHO)
classification of lung tumors (2015 version), all histopathological
sections were retrospectively analyzed by two pathologists
(WHW and JGW, with 13 and 11 years of experience,
respectively, in pathological diagnosis of lung cancer). In
cases of disagreement, the third pathologist (ZMW, with 19
years of experience in pathological diagnosis of lung cancer)
made the final decision. All pathologists were blinded to the
clinicopathological information.

Frontiers in Oncology | www.frontiersin.org 2 September 2020 | Volume 10 | Article 1268

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Classification of Lung Cancer Histology by Radiomics

FIGURE 1 | Flowchart of the study group inclusion process.

FIGURE 2 | Flow chart of radiomics implementation in this study.

CT Radiomics Feature Extraction
Lesion outlining on CT images was performed using ITK-
SNAP software (http://www.itksnap.org, version: 3.8.0, USA).
The arterial and venous images were analyzed following the same
procedure. One radiologist (YBH) with 8 years of experience
in lung imaging interpreted CT images and outlined the edge
of the target lesion. One week later, another radiologist (HLY)
with 11 years of experience in lung imaging performed ROI
segmentation and feature extraction independently. The two
radiologists were blinded to the clinicopathological information.
The lung cancer lesions were manually identified by a radiologist
and confirmed by another radiologist, who were both blinded
to the clinicopathological information of the patients. Each
ROI was manually outlined along the margin of the lesion on
the largest slice. The original images were normalized before
feature extraction. Commercial software (Analysis Kit 1.0.3;
GE Healthcare, China) was used to extract features. A total
of 396 quantified features were extracted automatically from
the delineated ROIs with four categories of radiomics features,

including 10 Haralick features, 42 histograms, 9 form factors, 11
gray-level size zone matrix (GLSZM) features, 60 gray-level run-
length matrix (GLRLM) features with an offset of 1/4/7, and 48
gray-level cooccurrence matrix (GLCM) features with an offset
of 1/4/7.

Development of the Radiomics Signature
and Radiomics Nomogram
To reduce overfitting and select the most informative clinical
and radiomics features to develop a predictive model, the least
absolute shrinkage and selection operator (lasso) regression
method was utilized to select the most valuable features from
the primary datasets. These radiomics features with non-zero
coefficients were thus selected, and radiomics scores (Rad-scores)
were calculated for each patient using a linear combination
of the selected features that were weighted by their respective
coefficients. The diagnostic performance of the radiomics
signature was quantified by the area under the receiver operating
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TABLE 1 | Comparison of clinical factors and clinical stages between SCLC and NSCLC patients (number).

Clinical features SCLC

(n = 202)

NSCLC

(n = 266)

p-value t-value or χ
2-value

Sex Male 152 (75.2%) 188 (70.7%) 0.272 1.207*

Female 50 (24.8%) 78 (29.3%)

Age (years) 61.6 ± 9.37 62.3 ± 9.62 0.401 0.840

Tumor maximum diameter (cm) 4.6 ± 2.5 4.9 ± 2.4 0.203 1.276

Smoking Yes 160 (79.2%) 162 (60.9%) <0.001 17.924*

No 42 (20.8%) 104 (39.1%)

Clinical stage Early (I, II) 68 (33.7%) 101 (40.0%) 0.337 0.923*

Late (III, IV) 134 (66.3%) 165 (60.0%)

*χ2-value (continuous variables were analyzed by the t-test and categorical variables were analyzed by the chi-square test).

characteristic (ROC) curve (AUC) in the primary cohort and then
validated in the validation cohort.

For validation, we evaluated the Rad-score difference between
the two classes and used the “compare the mean between two
groups” method to calculate the sample size of the validation
cohorts, which satisfied the statistical power of more than 0.8. In
our study, the difference in Rad-score between the two groups
was 1.5. The necessary sample size of the validation cohort was
44 and we used 141 cases to validate the model. We did not
retrain the model in the validation cohort. We used the cutoff
obtained from the training cohort to calculate the metrics in the
validation cohort.

Clinical risk factors for SCLC, including sex, age, tumor
maximum diameter, smoking, clinical stage and tumor marker
indicators, were first assessed in the primary cohort by using
correlation analysis and multiple logistic regression analysis.
Clinical features with P < 0.05 and the radiomics signature
were applied to develop a diagnostic model for distinguishing
SCLC and NSCLC by using multivariate logistic regression in the
primary cohort. Backward stepwise selection was applied using
a likelihood ratio test with Akaike’s information criterion as the
stopping rule.

To provide clinicians with a quantitative tool to predict the
pathological type of lung cancer, a radiomics nomogramwas built
on the basis of the multivariable logistic analysis in the primary
cohort. Rad-scores were also calculated in the validation set by
using the algorithm built with the training set.

Validation and Assessment of the
Radiomics Nomogram
The diagnostic value of the radiomics nomogram was
assessed in both the training and validation cohorts regarding
discrimination, calibration and clinical value. The discrimination
performance of the radiomics nomogram was quantified using
ROC curves and AUC values. Calibration curves were plotted to
evaluate the goodness-of-fit of the radiomics nomogram, and the
Hosmer-Lemeshow test was also performed (a non-significant
test statistic implies that the model calibrates well). To estimate
whether the nomogram is sufficiently robust for clinical use,
decision curve analysis (DCA) was applied to calculate the net
benefits for a range of threshold probabilities in both the training

and validation sets. The net benefit was assessed by calculating
the difference between the true-positive rate and weighted
false-positive rate across different threshold probabilities in the
validation set.

Statistical Analysis
The differences in continuous variables were analyzed by an
independent t-test. Fisher’s exact test or the chi-square test
was used for categorical variables. The diagnostic performance
of the multivariate models was evaluated using ROC analysis
and AUC values. The diagnostic sensitivity, specificity, accuracy,
positive likelihood ratio, and negative likelihood ratio were
also calculated.

The intraclass correlation coefficient (ICC) was calculated
to evaluate the interobserver variability of radiomics feature
extraction. Radiomics features with ICC values no lower than
0.75 were regarded as highly reproducible features.

All statistical analyses were performed using R statistical
software (http://www.Rproject.org, version 3.4.4). Lasso
regression was performed using the “glmnet” package.
Multivariate logistic regression, nomogram construction,
and calibration plot construction were performed using the
“rms” package. DCA was performed using the “dca.r” function.
ROC curves were drawn and analyzed using the “proc” package.
A two-tailed P < 0.05 was considered statistically significant.

RESULTS

Comparison of Clinical Factors Between
SCLC and NSCLC Patients
The results showed that there was a statistically significant
difference in the proportion of smoking between SCLC and
NSCLC patients (P < 0.001), and there was no statistically
significant difference in sex, age, tumor maximum diameter,
or preoperative clinical stage (P > 0.05), as shown in Table 1.
Comparing the clinical data and clinical stages of the training
and validation sets, the results showed that there was no
significant difference in age, sex, preoperative clinical stage,
tumor maximum diameter, or pathological stage between the
training set and the validation set (P> 0.05), as shown in Table 2.
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TABLE 2 | Composition ratio and clinical data of patients with different pathological types in the training and validation sets.

Set Number

of cases

Age

(years)

Sex Smoking Clinical staging Tumor

maximum

diameter

(cm)

Pathological type

M F I II III IV Small cell

lung cancer

Squamous

cell

carcinoma

Adenocarcinoma Large cell

lung

cancer

Training set 327 62.2 ± 9.60 232 95 223 12 112 95 108 4.77 ± 2.42 141 70 70 46

Validation set 141 61.5 ± 9.33 108 33 97 6 45 46 44 4.80 ± 2.53 61 30 30 20

t or χ
2 0.730 1.581* 0.016 0.766* 0.114 0.003*

p-value 0.466 0.209 0.898 0.858 0.909 1

*χ2-value (continuous variables were analyzed by the t-test and categorical variables were analyzed by the chi-square test).

The Predictive Efficacy of the Radiomics
Signature for the Classification of SCLC
and NSCLC
Through the reproducibility evaluation (inter- and intra datasets
with a consistency coefficient >0.75) and the removal of highly
correlated features (correlation coefficient >0.6), 14 features
were screened out using lasso logistic regression, as shown in
Figures 3A–C. Figure 4 shows the Rad-scores for each patient in
the training and validation sets.

Predictive Efficacy of the Radiomics
Signature and the Radiomics Nomogram
The radiomics signature established in this study has good ability
to distinguish and predict the pathological types of SCLC and
NSCLC. The AUC of the prediction model in the training set was
0.86 (95% CI: 0.82–0.90), and the AUC in the validation set was
0.82 (95% CI: 0.75–0.89), as shown in Figures 5A,B.

Clinical factors found to be significantly associated with the
classification of SCLC and NSCLC by univariate analysis are
presented in Table 3. They include smoking and serum NSE
and cYFRA21-1 values (P < 0.05 each). A clinical model was
built based on the results of the multivariate logistic regression
analysis of clinical variables. The results of multivariate logistic
regression analysis suggested that smoking, serum NSE and
cYFRA21-1 and Rad-score were independent predictors for the
classification of SCLC and NSCLC (Table 4), with AUCs of 0.86
and 0.82, respectively. A radiomics nomogram incorporating the
predictors, including smoking, NSE, cYFRA21-1 and Rad-score,
was constructed (Figure 6).

The calibration curve shows good agreement between the
predicted probability of the nomogram and the actual probability
(Figure 7). Compared with the results of the radiomics signature
and clinical model, the nomogram has better prediction efficiency
(Table 5 and Figure 8). In the training and validation sets,
the AUC values were 0.93 (95% CI: 0.90–0.96) and 0.94 (95%
CI: 0.90–0.98), and the accuracy was 0.85 (95% CI: 0.80–0.88)
and 0.86 (95% CI: 0.79–0.92), respectively. The DCA for the
radiomics nomogram is displayed in Figure 9, which shows
that the radiomics nomogram is superior to the clinical model
regarding the “treat all” vs. “treat none” strategies when the
threshold probability is within the 0.1–1.0 range.

DISCUSSION

In traditional single-energy CT imaging, tumors are assessed
based on attenuation, morphology, and invasiveness. The effect
of treatment is assessed based on changes in solid tumor
volume and density (31). However, it is usually not possible
to determine the pathological type of tumors based only on
tumor morphology. Radiomics focuses on extracting a large
number of quantitative imaging features, which can provide
a detailed and comprehensive characterization of the tumor
phenotype, and uses statistics and/or machine learning methods
to screen the most valuable radiomics characteristics to analyze
clinical information for the diagnosis and treatment of tumors
(32–34). In recent years, a large number of basic studies
have suggested that radiomics could evaluate tumor tissue
characteristics in a non-invasive manner with high predictive
accuracy (35, 36).

In this study, we observed 14 radiomics features with a
significant association with the histological subtypes of lung
cancer. The radiomics model established in this study has
good predictive performance for the pathological classification
of SCLC and NSCLC. The AUCs of the radiomics signature
predictive model in the training set and the validation set were
0.86 and 0.82, respectively.

Furthermore, we found that clinical features including
smoking status, NSE and cYFRA21 had potential ability to
differentiate between SCLC and NSCLC. We built a radiomics
nomogram including smoking status, NSE, cYFRA21, and Rad-
score for individualized SCLC and NSCLC prediction. The
AUC value of the radiomics nomogram in the validation set
was 0.94, indicating that it has better predictive performance
than the clinical model (AUC = 0.86) and the radiomics
signature (AUC = 0.82). The accuracy, specificity and sensitivity
were also improved, and the results of the validation set were
as follows: accuracy: 86.2%; sensitivity: 84.7%; and specificity:
87.3%. The nomogram visualized the radiomic signature and
clinical prediction factors into an easy-to-use tool for the
individualized prediction of SCLC and NSCLC. In addition,
calibration curves were constructed to indicate the performance
of the radiomics nomogram for the classification of SCLC and
NSCLC. The curves demonstrated good agreement between the
predicted and observed values in the training and validation
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FIGURE 3 | (A) The binomial deviation from the lasso regression

cross-validation model is plotted as a log (λ) function by using the 10-fold

cross-validation method. The y-axis represents binomial deviation, the lower

(Continued)

FIGURE 3 | x-axis represents log (λ), and the numbers above the x-axis

represent the average number of predictive variables. The red dot represents

the average deviation value of each model with a given λ, while the vertical bar

of the red dot represents the upper and lower limit values of the deviation. The

vertical dotted line represents the log (λ) value corresponding to the best λ

value; the selection standard is the minimum standard. By adjusting different

parameters (λ), the binomial deviation of the model is minimized, and the

feature datasets with the best performance are selected. (B) Plots the

coefficients of the log (λ) function. The λ value is the smallest at the dotted

line. Select the coefficient that is not 0 here as the coefficient of the last

reserved feature. (C) The y-axis shows the 14 feature names with non-zero

coefficients retained at the minimum value of λ, and the x-axis shows their

total coefficients in the lasso Cox analysis. The larger the coefficients are, the

greater the predictive significance.

sets. In this study, central small cell lung cancer accounted
for 67.3% of all small cell lung cancer cases, and in the non-
small cell lung cancer group, the proportion of central NSCLCs
was 60.5%. There was no significant difference between the
two groups (p = 0.13). The previous reports (37) showed that
central small-cell lung cancer accounted for ∼90–95% of all
small-cell lung cancer cases. In this study, central small-cell lung
cancer accounted for a relatively low proportion. The possible
reason is that some of the cases included in this study were
surgical cases, while most small-cell lung cancers cannot be
surgically removed, so the location results of lung cancer in
this study may not be representative of the general population.
Thus, this study did not introduce location as a feature
of the study.

In 2002, Kido et al. (38) analyzed 70 cases of bronchial
carcinoma (61 cases of adenocarcinoma and 9 cases of squamous
cell carcinoma) by the fractal method. The results showed
that the three-dimensional classification obtained from grayscale
images was helpful in distinguishing adenocarcinoma from
squamous cell carcinoma.Wu et al. (23) analyzed the relationship
between radiomics features and the subtypes (adenocarcinoma
and squamous cell carcinoma) of lung cancer. A total of 440
features were extracted in the study. After multivariate analysis
and feature selection, the fivemost relevant features were applied,
and the diagnostic efficiency (AUC) of the model was 0.72.
Junior et al. (25) found that the AUCs of the training group
and the validation group were 0.71 and 0.81, respectively, when
the radiomics features of lung cancer CT images were used
to distinguish adenocarcinoma, squamous cell carcinoma and
large cell carcinoma, which indicated that the radiomics method
had great potential in the diagnosis of the histopathological
subtypes of lung cancer. One study in 2018 (26) showed that the
radiomics signature established by lasso logistic regression model
can distinguish adenocarcinoma and squamous carcinoma well.
The AUCs of the training set and validation set were 0.905 and
0.893, respectively. Linning et al. (27, 28) found that the use of
a radiomics approach for classifying the histological subtypes of
lung cancer demonstrated potential for differentiating AD and
SCC, as well as AD and SCLC; however, the approach showed
relatively low performance in classifying SCC and SCLC. For
classifying AD and SCC, AD and SCLC, and SCC and SCLC,
the AUCs were 0.801, 0.857, and 0.657 (non-enhanced); 0.834,
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FIGURE 4 | The Rad-score of each patient in the training set (A) and validation set (B). The Rad-score is classified according to the threshold value. The Wilcoxon

test was used to assess the difference between the two sets.

FIGURE 5 | Radiomics signature ROC curves used to assess predictive performance. (A) The AUC of the training set is 0.86. (B) The AUC of the validation set is 0.82.
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0.855, and 0.619 (arterial phase); and 0.864, 0.864, and 0.664
(venous phase), respectively. According to their studies (27, 28),
the prediction efficiency of the model based on enhanced CT was
better than or equal to that based on non-contrast CT imaging,
and non-contrast CT was not available in many cases due to
the lack of thin-layer recombination images in our study. As a
result, non-contrast CT was not used to extract CT radiomics
features, and only dual-phase enhanced CT was independently
analyzed to establish predictive models in our study. The AUCs

TABLE 3 | Positive results of univariate analysis for the classification of SCLC and

NSCLC.

Variables OR (95% CI) P-value

Smoking 2.35 (1.42–3.97) <0.01

Serum 1.00 (1.00–1.00) <0.01

NSE 1.03 (1.02–1.04) <0.01

cYFRA21 0.93 (0.88–0.98) 0.01

TABLE 4 | Positive results of multivariate logistic regression analysis for the

classification of SCLC and NSCLC.

Variables OR (95% CI) P-value

(Intercept) 0.42 (0.21–0.82) 0.01

Smoking 1.14 (0.57–2.28) 0.71

Serum 1.00 (1.00–1.00) <0.01

NSE 1.01 (1.00–1.02) 0.07

cYFRA21 0.97 (0.91–1.02) 0.35

Rad-score 4.00 (2.55–6.70) <0.01

of our model in the training and validation sets were 0.93 and
0.94, respectively, which were higher than the previous results.
One of the possible reasons may be that our study included a
larger sample size, and the other may be that we added clinically
relevant prediction parameters, which may make our results
more comprehensive and accurate. In our study, we included
samples of all major lung cancer subtypes, including SCLC,
adenocarcinoma, squamous cell carcinoma, and large cell lung
cancer. Our findings suggest that some robust radiomics features
have great potential for the classification of SCLC and NSCLC.
The established radiomics nomogram has a better prediction
ability for the classification of SCLC and NSCLC, which require
different treatment options. We believe that our work may
serve as a promising diagnostic tool for the classification
of SCLC and NSCLC in a non-invasive manner, allowing
clinicians to select the appropriate treatment plan for lung
cancer patients.

This study has certain limitations. First, this study used
only contrast-enhanced CT image features and did not
compare the classification performance with models established
by positron emission tomography (PET) imaging or other
imaging modalities such as non-contrast CT. These all need
further study. Second, this study is a retrospective study,
and there may be bias in case selection. Extracting texture
features from artificially segmented data makes it difficult
to remove small blood vessels and bronchi in nodules or
masses, which may affect the accuracy of certain features.
Third, this study is a single-center retrospective study.
Although this study used a cross-validation method and
the amount of data was repeatedly calculated and verified,
the number of cases in this study was relatively small and
could not meet the requirements of a large number of
samples, which may lead to instability. In the future, we

FIGURE 6 | Radiomics nomogram for predicting SCLC and NSCLC.
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FIGURE 7 | Calibration curves of the radiomics nomogram in the training set (A) and validation set (B). The calibration curves show the calibration of the nomogram in

terms of agreement between the predicted probability of SCLC and pathological findings. The 45◦ blue line indicates perfect prediction, and the dotted lines indicate

the predictive performance of the nomogram. The closer the dotted line fit to the ideal line, the better the predictive accuracy of the nomogram.

TABLE 5 | Predictive ability of the radiomics nomogram, radiomics signature, and clinical model for the classification of SCLC and NSCLC.

Variables AUC (95% CI) Accuracy Sensitivity Specificity

Clinical model Train 0.88 (0.85–0.92) 0.84 0.84 0.84

Test 0.86 (0.80–0.93) 0.84 0.83 0.85

Radiomics signature Train 0.86 (0.82–0.90) 0.75 0.65 0.87

Test 0.82 (0.75–0.89) 0.76 0.67 0.88

Radiomics nomogram Train 0.93 (0.90–0.96) 0.85 0.80 0.88

Test 0.94 (0.90–0.98) 0.86 0.85 0.87

FIGURE 8 | The AUC was used to estimate the predictive power of different models (A: training set; B: validation set). The radiomics signature and clinical model can

be used for the classification of SCLC and NSCLC. In the validation set, the predictive ability of the nomogram (red, AUC = 0.94) was better than that of the clinical

model (green, AUC = 0.86). The addition of clinical features improves the prediction efficiency of the radiomics signature.
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FIGURE 9 | DCA for the radiomics nomogram. The y-axis shows the net benefit. The red line represents the radiomics nomogram. The blue line indicates the

hypothesis that all patients had small cell lung cancer. The black line represents the hypothesis that no patients had small cell lung cancer. The x-axis shows the

threshold probability, which is where the expected benefit of treatment is equal to the expected benefit of not undergoing treatment. The decision curves indicate that

when the threshold probability is between 0.1 and 1, using the radiomics nomogram to predict small cell lung cancer adds more benefit than treating either all or no

patients.

will try to increase the sample size and carry out multicenter
joint research.

In conclusion, the radiomics signature we established has
good performance for the classification of SCLC and NSCLC,
and we also developed and validated the first nomogram
with better diagnostic performance for the classification of
SCLC and NSCLC based on the radiomics signature and
clinical factors.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Institutional Review Board of the Affiliated
Hospital of Qingdao University.

AUTHOR CONTRIBUTIONS

QF, ShiL, and ShuL conceived the project, analyzed the data, and
wrote the paper. HY, YH, and XT participated in data collection
and processing. QF, CZ, WX, and XL provided expert guidance
and reviewed the manuscript. All authors edited the manuscript.
Thanks to Professor Wenhong Wang, Jigang Wang, and Zhimin
Wei for their guidance and help in pathology related work.

REFERENCES

1. McGuire S. Switzerland: World Health Organization, International agency
for research on cancer, WHO press, 2015. Adv Nutr. (2016) 7:418–9.
doi: 10.3945/an.116.012211

2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers CD, Rebelo M,
et al. Cancer incidence and mortality worldwide: sources, methods and
major patterns in GLOBOCAN 2012. Int J Cancer. (2015) 136:E359–86.
doi: 10.1002/ijc.29210

3. Kakinuma R. Low-dose helical CT screening for lung cancer.
Jpn J Lung Cancer. (2003) 43:1001–5. doi: 10.2482/haigan.
43.1001

4. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. Introduction
to the 2015 World Health Organization classification of tumors of the

lung, pleura, thymus, and heart. J Thorac Oncol. (2015) 10:1240–2.
doi: 10.1097/JTO.0000000000000663

5. Ardizzoni A. Topotecan in the treatment of recurrent small cell lung
cancer:an update. Oncologist. (2004) 9:4–13. doi: 10.1634/theoncologist.9-
90006-4

6. Dieter U. Chemotherapy in stage I+II non-small cell lung cancer. Lung
Cancer. (2011) 33:S25–8. doi: 10.1016/S0169-5002(01)00299-9

7. Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment
of stage I and II non-small cell lung cancer: diagnosis and management of
lung cancer: American college of chest physicians evidence-based clinical
practice guidelines. Chest. (2013) 143:e278S–e313S. doi: 10.1378/chest.1
2-2359

8. Waller DA. Surgery for non-small cell lung cancer—new trends. Lung Cancer.
(2011) 34:S133–6. doi: 10.1016/S0169-5002(01)00357-9

Frontiers in Oncology | www.frontiersin.org 10 September 2020 | Volume 10 | Article 1268

https://doi.org/10.3945/an.116.012211
https://doi.org/10.1002/ijc.29210
https://doi.org/10.2482/haigan.43.1001
https://doi.org/10.1097/JTO.0000000000000663
https://doi.org/10.1634/theoncologist.9-90006-4
https://doi.org/10.1016/S0169-5002(01)00299-9
https://doi.org/10.1378/chest.12-2359
https://doi.org/10.1016/S0169-5002(01)00357-9
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Classification of Lung Cancer Histology by Radiomics

9. Christian M. Treatment algorithm in 2014 for advanced non-small
cell lung cancer: therapy selection by tumour histology and molecular
biology. Adv Med Sci. (2014) 59:308–13. doi: 10.1016/j.advms.2014.
08.008

10. Cufer T, Ovcaricek T, O’Brien, Mary ER. Systemic therapy of advanced non-
small cell lung cancer: major-developments of the last 5-years. Eur J Cancer.
(2013) 49:1216–25. doi: 10.1016/j.ejca.2012.11.021

11. GuimaraesMD,Marchiori E, Hochhegger B, Chojniak R, Gross JL. CT-guided
biopsy of lung lesions: defining the best needle option for a specific diagnosis.
Clinics. (2014) 69:335–40. doi: 10.6061/clinics/2014(05)07
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