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Abstract

Background: Breast cancer metastasis suppressor 1 (BRMS1) reduces the number and the size of secondary tumours in a
mouse model without affecting the growth of the primary foci upon its re-expression. Knockdown of BRMS1 expression
associates with metastasis. The molecular details on BRMS1 mechanism of action include its ability to function as a
transcriptional co-repressor and consistently BRMS1 has been described as a predominantly nuclear protein. Since cellular
distribution could represent a potential mechanism of regulation, we wanted to characterize BRMS1 sequence motifs that
might regulate its cellular distribution. According to its amino acids sequence, BRMS1 contain two putative nuclear
localization signals, however none of them has been proved to work so far.

Methodology/Principal Findings: By using well known in vivo assays to detect both nuclear import and export signal, we
have characterized, in the present study, one functional nuclear localisation signal as necessary and sufficient to promote
nuclear transport. Additionally, the outcome of a directed yeast two-hybrid assay identify importin a6 as a specific partner of
BRMS1 thus speculating that BRMS1 nuclear import could be specifically mediated by the reported nuclear transporter.
Besides, the combination of a computational searching approach along the utilization of a nuclear export assay, identified a
functional motif within the BRMS1 sequence responsible for its nuclear export, that resulted not affected by the highly
specific CRM1 inhibitor Leptomycin-B. Interspecies heterokaryon assay demonstrate the capability of BRMS1 to shuttle
between the nuclear and cytosolic compartments

Conclusions/Significance: Our results show for the first time that BRMS1 contains both nuclear import and export signals
enabling its nucleo-cytoplasmic shuttling. These findings contributes new data for the understanding of the BRMS1
functions and allow us to speculate that this phenomenon could represent a novel mechanism for regulating the activity of
BRMS1 or its associated cytosolic partners
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Introduction
Breast cancer metastasis suppressor 1 (BRMS1), one of the

members of a recently described family of proteins known as

metastasis suppressors, specifically inhibit the development of

secondary foci without affecting the growth of the primary tumour.

These results were demonstrated by ectopic expression into highly

metastatic cells in an experimental in vivo assay (reviewed in [1]).

Underlying mechanisms of action proposed for BRMS1 include

facilitation of cell-cell communication [2], interaction with HDAC

complex components [3,4,5], shutting-down of PI3K signalling [6]

and gene expression inhibition by targeting NFkB [7]. Recently,

more data have provided insight into potential new mechanism by

which BRMS1 could inhibit metastasis progression [8].

Part of the wide range of molecular mechanisms involving BRMS1

might be caused by its role in transcriptional repression [5,7,8,9,10].

Nuclear localisation is therefore important to perform BRMS1

cellular functions and possibly inhibit metastasis progression.

Analysis of the BRMS1 amino acid sequence identified two

coiled-coil motives at residues 51–81 and 147–180, and two

putative canonical monopartite nuclear localization signals (NLSs)

located at amino-acid residues 198–205 (NLS1) and 239–245

(NLS2). However, their functionalities have not been experimen-

tally confirmed yet, nor have been the possibility of BRMS1

diffusion to the nucleus.

Even though its expression has been largely restricted to the

nucleus, previous work [8] and unpublished data in our laboratory

have led us to raise the hypothesis of a plausible presence of

BRMS1 in the cytosol. Evidence comes from protein-protein

interaction found using FRET analyses, as well as by the

identification of cytosolic partners by yeast two-hybrid assays

(submitted). The latter results have also been shown by other

authors [11] reinforcing our conjecture. The presence of a putative

nuclear export signal (NES) capable of complementing the alleged

nuclear localisation and therefore enabling BRMS1 to shuttle
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between both compartments has not been postulated. If this

hypothesis is correct it could imply that the activity of BRMS1

might be modulated by compartmentalisation. It would also shed

light into a new more complicated mechanism of action for its

anti-metastatic activity. Therefore, this issue represents an

important molecular question for the understanding of cancer

genetics and metastasis involving BRMS1.

The active transport of proteins through the nuclear pores is

commonly mediated by nuclear import and export receptors

belonging to the karyopherin family [12]. The transport receptors

bind to specific signals known as NLS and NES. Cargo proteins

exposing a NES are usually recognized and bound by CRM1,

mediating the export towards the cytoplasm of cellular and viral

proteins as well as ribonucleoproteins [12,13]. CRM1-mediated

export is inhibited by Leptomycine-B (LMB) [14]. Typical NES are

rich in large hydrophobic amino acids with characteristic spacing

among them [15]. So far, 67 high-confidence NES have been

reported, WX2WXW (where W= L, I, V, F, M and X is any amino-

acid) being the most conserved pattern [16] which deviates from the

previously accepted consensus WX2–3WX2–3WXW [15,17].

Protein transport towards the nucleus is determined by the

presence of a single (monopartite) or two short stretches of basic

amino acids spaced by 10–12 residues (bipartite). Monopartite

sequences are exemplified by the SV40-NLS one (PKKKRKV).

Import receptors recognize and bind cargoes in the cytosol

followed by its delivering inside the nucleus. One such import

receptor is importin a6, a nuclear transporter for NLS-containing

proteins. This protein features an N-terminal domain that is

responsible for importin b binding and necessary for nuclear

translocation through the nuclear pore, eight armadillo repeats

involved in the NLS recognition and binding, and a C-terminal

acidic region whose function remains unclear.

Here we report that the NLS1 motif of the BRMS1 protein, but

not NLS2, is necessary and sufficient for nuclear transport.

Furthermore, yeast two-hybrid results suggest that nuclear import

of BRMS1 might be mediated by importin a6. Besides, we

demonstrate that BRMS1 has the capability to migrate between

nucleus and cytoplasm and define precisely the motifs responsible

for this shuttling. A functional nuclear export sequence (NES) was

identified between residues 74–91 of BRMS1. The nuclear-

cytoplasm shuttling of BRMS1 represents a previously non-

reported, possible mechanism for regulating the activity of

BRMS1 or its associated cytosolic partners. The identified NES

is CRM1-independent, since the CRM1-inhibitor LMB did not

block the exit of exogenously expressed protein.

Results

The region of BRMS1 encompassing residues 198 to 246 is
able to transport a heterologous protein into the nucleus

We want to characterize the properties of putative nuclear

localization signals (NLSs) present within the BRMS1 protein

sequence. Although it seems possible that a protein without its own

NLS enters the nucleus via co-transport with a partner harbouring

one, many nuclear proteins encode their own NLSs.

Analysis and prediction of cellular localization signals based on

BRMS1 amino-acid sequence by the PSORT II server (http://

psort.nibb.ac.jp/form2.html) [18] reveals the presence of two

putative NLSs at residues 198–205 (PPSKRKKA) and 238–245

(PQKRKSD) fulfilling the loose consensus of the classical

monopartite NLS which requires a lysine in the P1 position

followed by basic residues in positions P2 and P4 to yield a

consensus sequence of K K/R X K/R [19].

To check whether NLS1 and NLS2 are required for BRMS1

nuclear import, we engineered truncated forms of BRMS1

(Figure 1A) and inserted them into the NLS mapping vector

pHM830 [20]. The resulting fusion protein is large enough to

prevent its passive diffusion to the nucleus, since its size is far above

the diffusion limit for the mammalian nuclear pore complex [21].

This system has extensively been used for the unambiguous

identification of the NLS activity of both conventional [20] and

non conventional import signals [22].

Constructs were transiently transfected into U2-OS cells and

GFP signal expression was analysed 24 h later. A plasmid

containing the entire BRMS1 sequence (pHM830/BRMS1 FL)

showed a diffuse staining both in the nucleus and the cytosol

(Figure 1B and Figure S1). Over-expression of a truncated version

encompassing amino-acid 2–197, thus lacking both nuclear signals

(pHM830/DNLSs), showed a diffuse distribution of fluorescence

restricted to the cytosol (Figure 1B and Figure S2). The latter

staining pattern was also observed after over-expression of

pHM830 empty vector, which is unable to import the GFP

towards the nucleus (Figure 1B and FigureS2). Interestingly, a

construct containing residues 197–246 (pHM830/NLSs) encom-

passing the two clusters of basic amino-acid was able to relocate

the fusion protein into the nucleus as efficiently as a positive

control (pHM840), containing the monopartite NLS of the SV40

(Figure 1B and Figure S2).

These data demonstrate that the C-terminal end of BRMS1

(residues 197–246) indeed contains a functional NLS, which is

necessary and sufficient to target a heterologous protein towards

the nucleus.

NLS1 is necessary and sufficient to mediate nuclear
import in an in vivo assay

To further characterize the NLSs and shed light into their

relative contributions to the nuclear import of the FL BRMS1

protein, we engineered two more constructs containing either

NLS1 (pHM830/DNLS2, encompassing residues 2–223) or NLS2

(pHM830/NLS2, harbouring residues 205 to the C-terminus) and

analyzed their cellular locations after over-expression. The fusion

protein expressed from the pHM830/NLS2 plasmid did not

migrate to the nuclear compartment, showing a sole cytosolic

location pattern. Conversely, the protein expressed from the

pHM830/DNLS2 construct displayed the characteristic pattern

revealed by the FL construct (Figure 1B and Figure S2). Taken

together these results suggest that NLS1, but not NLS2, is capable

of mediating the nuclear import of a heterologous protein,

underscoring its role as a nuclear import signal.

To precisely determine the amino acid responsible for nuclear

import, oligonucleotides encoding the KRKK sequence found within

the NLS1 region, were annealed and cloned into the pHM830 vector

(pHM830/KRKK). As shown in Figure 1B and Figure S2, upon

transient transfection of this plasmid into mammalian cells, the

expression pattern resembles that shown by the construct containing

the full NLS1 but also the one displayed by the vector encoding the

entire BRMS1. Interestingly, a construct with the fourth lysine

residue of the NLS consensus sequence replaced by an uncharged

serine (-KRKS-) as found in the putative NLS2, showed an

expression pattern indistinguishable from the one observed during

over-expression of the pHM830 empty vector, abolishing completely

the nuclear location. Altogether, these results demonstrate that NLS2

from BRMS1 does not play a role as a signal for targeting protein(s)

into the nucleus, whilst the NLS1 is necessary and sufficient for

functioning as a classical monopartite NLS.

All the over-expression experiments for NLS characterization

were also carried out in HeLa (Figure S3), and MDA-MB-231 cells

BRMS1 Nucleo-Cytosol Shuttling
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(data not shown), resulting in subcellular location patterns

indistinguishable for those observed in U2-OS transfected cells,

thus suggesting that the NLS signal present in BRMS1 operates via

a general mechanism that is cell-type independent. Furthermore,

the expression of all these fusion proteins was verified by western

blot confirming that they were correctly synthesized, present in a

stable form and their relative molecular mass were in agreement

with the expected molecular weights values (Figure 1D).

Importin a6 but not a1 nor a3 interacts with BRMS1 in an
in vivo yeast two-hybrid assay

Different importins, also named karyopherins (KPNAs), are

known to bind several cargoes in the cytoplasm and transport them

into the nucleus. To identify the mechanism of BRMS1 nuclear

transport, we analyzed by a yeast two-hybrid assay the interaction of

BRMS1 protein with several importins, belonging to different

subfamilies based on the similarity of their primary structure [23].

To achieve this goal, the AH109 S. cerevisiae strain was co-

transformed with a yeast vector containing the BRMS1 FL

sequence (pAS2.1/BRMS1) and one of the yeast expression

plasmids encoding the entire importin a6 (pACT2/KPNA5),

importin a1 (pACT2/KPNA2) or a3 (pACT2/KPNA4). Colonies

were grown on selective agar medium lacking tryptophan and

leucine (SD-T-L) to confirm the presence of both expression

plasmids (Figure 2A). Positive colonies were re-streaked onto high

selective plates lacking histidine as a first reporter gene (SD-T-L-

H). After 4–5 days of incubation co-transformed cells over-

expressing importin a6 (KPNA5) were capable to grow

(Figure 2B). However, yeast colonies over-expressing importin

a1 (KPNA2) or importin a3 (KPNA4) failed (data not shown). A

colony-lift filter b-galactosidase assay was performed to confirm

that only those yeast cells over-expressing importin a6 and

BRMS1 showed b-Gal expression (Figure 2C). These results

suggest that full-length BRMS1 specifically interacts with KPNA5,

while it does not with the other two tested importin a transporters.

To determine whether BRMS1 protein is capable of auto-

activation, yeast cells were co-transformed with the bait protein

along with an AD empty vector, grown on selective medium (SD-T-

L-H) and further assayed for b-Gal expression. As shown in

Figure 2C no b-Gal expression was detected verifying that Gal4 BD/

BRMS1 itself does not activate transcription of any of the reporter

genes in yeast. Furthermore, AH109 strain was co-transformed with

two previously characterized interacting proteins [24] and their

interaction was used as a positive control (Figure 2A-D).

Since the N-termini of importin a proteins have been shown to

constitute auto-inhibitory domain [25,26], we generated Gal4 AD

importin a fusion proteins lacking their respective auto-inhibitory

domains and co-transformed them into yeast cells together Gal4

BD BRMS1 construct.

As shown in Figure 2B, yeast over-expressing mutated versions of

importin a1 or a3 failed to grow in the absence of histidine in the

growth media and thus were unable to express b-galactosidase in a

colony lift filter assay (Figure 2C). Interestingly, co-transformed

yeast over-expressing an N-terminal mutant of importin a6 grew in

SD-T-L-H plates at a higher extent that the FL version (Figure 2B).

In order to quantitatively measure the b-galactosidase activity of

these two positive constructs we used ONPG as a substrate in a

liquid culture colorimetric assay that confirmed the stronger

interaction between BRMS1 and N-terminal-deleted importin a6

(Figure 2D). The stability and proper folding of all the tested

Figure 1. NLS1 is necessary and sufficient for nuclear targeting of BRMS1. (A) Schemes of full length (FL) BRMS1, deletion mutants and their
controls (pHM830 and pHM840). Plasmids express a triple GFP/insert/b-Gal fusion protein. (B) Confocal images of U-2 OS transfected cells expressing
GFP-b-Gal NLS constructs. (C) A construct encompassing the residues KRKK from NLS1, resemble the location pattern of the FL. KRKS, represents a
point mutant where the last positively charged residue shifted to uncharged. (D) Total cell lysates from U-2 OS untransfected (mock) or transfected
cells with the indicated constructs were analysed by Western Blotting using an anti-GFP antibody. Molecular markers are shown in kDa.
doi:10.1371/journal.pone.0006433.g001
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constructs expressed was confirmed by western blot, using a specific

monoclonal antibody against the HA tag (Figure 2E).

Altogether, these results support the hypothesis that KPNA5

(importin a6) and not KPNA2 (importin a1) nor KPNA4

(importin a3) specifically might mediate the nuclear transport of

BRMS1 towards the nucleus.

BRMS1 displays nucleo-cytoplasmic shuttling in
heterokaryons

Preliminary results in our lab [8] showed that even though the

majority of the over-expressed BRMS1 protein was present within the

nucleus we repeatedly detected a weak but unambiguous presence of

BRMS1 in the cytosol, suggesting that at least transiently it might play

a functional role in that compartment. Given the fact that we identified

a functional NLS within BRMS1, as shown in Figure 1, and that some

interaction with cytosolic proteins has been observed (Rivera et al.

submitted) and reported [11], we hypothesized that a fraction of the

protein could be exported from the nucleus to the cytosol.

To test this hypothesis we performed an interspecies hetero-

karyon assay, extensively used to assay nuclear protein export

[27,28]. Human HeLa cells transfected with an expression vector

encoding the full-length BRMS1 fused to GFP (pGFP-N1/

BRMS1 FL), were co-cultured with mouse C2C12 cells until

adequately spread. Since cycloheximide was added to the cell

Figure 2. BRMS1 specifically interacts with importin a6 in an in vivo assay. Yeast cells co-transformed with a vector encoding the entire
BRMS1 and a combination of plasmids encoding the complete sequence of importin a6 (KPNA5) or deletion mutants lacking the auto-inhibitory
domains (DKPNA5); importin a1 (DKPNA2); or importin a3 (DKPNA4), were grown on selective medium (SD-L-T) to assess co-transformation (A) or
plated on highly stringent media (B). Inset shows a clearer picture for growth capacity of different co-transformant yeast indicated in brackets.
Positive control (+) as previously reported [24]. Negative sign (2) indicates co-transformation with an empty vector. Colonies grown on SD-L-T-H,
were assayed for b-Gal activity by a colony lift filter (C) or quantitative liquid assay (D) where activity is represented as a fold induction compare to the
basal activity shown in yeast expressing KPNA5. Error bars represent S.E.M of three independent experiments. (E) Western blot analysis of the
different HA tagged karyopherins probed with anti-HA antibody. Molecular markers are in kDa.
doi:10.1371/journal.pone.0006433.g002
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culture media, the fluorescent signal was limited to GFP-fusion

proteins synthesized prior to cell fusion. Interspecies heterokaryons

were easily distinguishable by their nuclear staining pattern upon

cells analysis by confocal microscope, where human and mouse

nuclei appeared diffusely stained or spotted respectively (Figure 3).

Thirty minutes after heterokaryon formation, the BRMS1-GFP

fusion protein was detected not only in the human but also in the

murine nuclei of fused cells (Figure 3) indicating that BRMS1 can

be exported out of the human nuclei and imported into the mouse

one. In a parallel assay, shuttling of a competent export construct

containing the powerful NES from HIV-1 Rev protein (pRe-

v1.4NES3-eGFP) was observed (Figure 3). Conversely a non-

competent export construct expressing GFP fused to a Rev mutant

[29] remained in the human nuclei (Figure 3), thus confirming that

shuttling of BRMS1 is not due to a diffusion process.

This result suggests that BRMS1 is actively exported from the

nucleus and can translocates from nucleus to cytoplasm although so

far, the endogenous protein has been mainly observed in the nuclei.

We speculate that a prolonged cytosolic presence of BRMS1 protein

may not be necessary, though a transient cytosolic location is likely

necessary for accomplishing its physiological function.

Identification of a putative nuclear export sequence in
BRMS1

Once the capability to migrate from the nucleus to the cytosol

was assessed, we wondered whether BRMS1 would harbour a

nuclear export sequence (NES).

We inspected its entire amino-acid sequence looking for a leucine, or

any other large hydrophobic rich region similar to those previously

identified as the transport signals that can mediate nuclear export

[30,31]. We noticed a large cluster of hydrophobic residues closely

spaced in the amino terminal half of the protein that would fulfil the

loose consensus of a leucine-rich NES. This result was confirmed after

submission of BRMS1 sequence to the NetNES 1.1 database server

[16]. The server assigned NES score values over the threshold for

residues L83 to L88, which in addition to an over-representation of D, E

and S residues suggest that this region conforms to the established

criteria for a NES [30]. As shown in Figure 4 the alignment of all the

BRMS1 orthologs deposited in the databases, identified by blastp

search [32] demonstrates the high conservation of this candidate NES

sequence among the different species, including the regularly conserved

spacing between the critical residues for export function.

Analysis of the candidate NES sequence by an in vivo
assay

To test the export activity of the identified candidate NES in

BRMS1, we generated a construct encoding 18 residues

(74LKEKLFRERLSQLRLRLE91, hydrophobic residues are un-

derlined) inserted between the export deficient Rev1.4 sequence

and eGFP (Figure 5A), rendering the pRev1.4-BRMS1-eGFP

plasmid. That insert size has been found to be optimal for export

activity [29]. Constructs were transiently over-expressed into

different cell types. The use of Act-D has been reported to prevent

nucleolar accumulation and nuclear import of Rev protein thereby

provoking a cytosolic accumulation of NES-containing protein

[33]. Therefore, we treated transfected cells with Act-D to

facilitate the detection of weak NES signals [29].

Hence, the activity of NES-BRMS1 was evaluated by the ability

of the NES containing fusion protein to shift from the nucleus

towards the cytosol in U-2 OS (Figure 5B) or HeLa (Figure S3)

transfected cells. A cell-counting approach was applied by scoring

cells according to the distribution of the GFP fusion protein as

exclusively nuclear (N), cytosolic (C), or diffuse (N+C) before and

after Act-D treatment. At least 150 cells per sample (431 for

Figure 3. BRMS1 protein migrates between nuclei in interspecies heterokaryon. Human HeLa cells were transfected with a plasmid
encoding the entire BRMS1 sequence (pEGFP-N1/BRMS1), a non-shuttling (pRev1.4-eGFP) or a competent shuttling vector (pRev1.4NES3-eGFP). Then,
HeLa cells were co-cultured with mouse myoblast. After fusion, cells were fixed and stained with Hoescht. Cycloheximide was added to the cell
culture medium before fusion and maintained throughout culture of heterokaryons. Cellular distribution of GFP fusion proteins (top) and nuclear
staining (bottom) were analyzed. Mouse and human nuclei are marked by asterisk and arrowhead respectively. Heterokaryons are marked with a
dashed line. Bar represents 20 mm.
doi:10.1371/journal.pone.0006433.g003
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pRev1.4/NES-BRMS1) were analyzed in this way across three

independent experiments. As expected, the pRev1.4-eGFP negative

control was found exclusively in the nucleus (,97%), whereas the

positive control pRev-NES3-eGFP was detected almost exclusively

(97%) in the cytoplasm upon Act-D treatment (Figure 5B).

In basal conditions, without Act-D treatment, U-2 OS cells

over-expressing NES-BRMS1-eGFP protein displayed a diffuse

N+C staining slightly higher (5.6%) than that found in cells

transfected with pRev1.4-eGFP negative control vector (3.2%),

and clearly less cytoplasmic presence than observed for the positive

control construct (pRev-NES3-eGFP) (Figure 5B). However,

unbiased scoring of more than 400 cells revealed that the

percentage of cells with diffuse N+C staining increased up to

26% following Act-D treatment (Figure 5B), while the negative

control remained at 3% under these conditions.

To determine the relative strength of the BRMS1-NES an

arbitrary scale ranging from 1+ to 9+ (the strongest) was applied

[29]. Our results classify NES-BRMS1 as a very weak signal (+1)

according to this NES scoring system.

Same approach was used with different cell lines (U-2 OS,

HeLa and MDA-MB-231) but only shown in U-2 OS cells

(Figure 5B). Interestingly, the candidate NES from BRMS1

maintained a similar degree of activity in all cell lines tested (data

not shown) indicating that this effect is not cell type specific.

Export of BRMS1 is not CRM1-dependent
CRM1 is an export receptor involved in nucleo-cytoplasmic

exchange of several shuttling proteins [34] capable of binding

cargo molecules containing a canonical NES [15]. To investigate

whether CRM1 is involved in the nuclear export of NES-BRMS1,

human U-2 OS cells transiently expressing the pRev1.4NES

BRMS1-eGFP construct, were treated with the highly specific

CRM1 inhibitor Leptomycin B (LMB). Thirty min later, Act-D

was added to the culture medium to facilitate the detection of

recombinant protein in the cytosol.

A positive control is able to relocate the fusion protein from the

nucleus, even without Act-D treatment, towards the cytoplasm

upon Act-D treatment. Such translocation is abolished when LMB

is added to the culture media (Figure S4). Interestingly, we found

that LMB treatment of cells had no significant effect on nuclear to

cytoplasm shuttling of the reporter protein after transfection of

pRev1.4/NES BRMS1-GFP plasmid (Figure 5C) independently of

the cell type (data not shown) and of the presence or not of Act-D

(Figure 5B). This observation suggests that nuclear export of

BRMS1 is mediated through a CRM1-independent pathway.

Discussion

In this study, we determined the capability of BRMS1 to mediate

nucleo-cytoplasmic shuttling and identified the responsible signals.

Figure 4. BRMS1 comprise a putative NES motif that compare to leucine-rich NES. (A) Schematic representation of the BRMS1 structure
showing the putative NES sequence boundaries identified by NetNES 1.1 server. (B) Alignment of conserved hydrophobic residues (in boxes) from
different BRMS1 orthologs. Numbers refer to amino acid residues. Human putative NES-BRMS1 sequence is compared with known NES, ranging from
highest (MAPKK; PKI and Rev) to the weakest (p53) activity. A generally accepted loose consensus sequence, where X represents any amino acid and
W any large hydrophobic residue (L, I, V, F, M) is shown.
doi:10.1371/journal.pone.0006433.g004

BRMS1 Nucleo-Cytosol Shuttling
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Nuclear localization signals within BRMS1 have been charac-

terized by an in vivo assay. Simultaneous disruption of NLS1+NLS2

abolishes nuclear location of a heterologous protein. Besides, a

construct encompassing both NLS showed an exclusive nuclear

pattern concluding that residues 197–246 are essential for nuclear

location. In addition, this construct displays a stronger fluorescence

within the nucleus compared to BRMS1-FL, suggesting that

conformation of the properly folded (as shown in Figure 1D) FL

fusion protein might somehow impair its nuclear transport, or that

BRMS1 contains another signal(s) able to shuttle the protein back to

the cytosol. The former observation becomes especially true after

comparison of the pattern showed by a BRMS1 protein merely GFP

attached and the very large BRMS1 protein expressed in the

pHM830 system (Figure S1). An NLS1-deletion construct was

Figure 5. BRMS1 contains a functional nuclear export motif independent of CRM1. (A) Scheme of the plasmid system used for testing the
putative BRMS1 NES motif. Disrupted endogenous NES of Rev protein (Rev1.4) allows the in vivo analysis capability of a BamHI/AgeI inserted sequence
fused to eGFP. PCMV: CMV promoter. Representative confocal images of U-2 OS transfected cells with indicated plasmids untreated (2) or treated (+)
with ActD (B) or Act-D + LMB (C). Fixed cells were scored for nuclear (N), citosolic (C) or diffuse (N+C) GFP location. Graphics show mean values of
percentage of positive cells with S.E.M across three independent experiments.
doi:10.1371/journal.pone.0006433.g005

BRMS1 Nucleo-Cytosol Shuttling
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exclusively expressed in the cytoplasm. Moreover, a pHM830/

DNLS2 construct results in the same pattern shown by the FL-

construct, suggesting that NLS2 is dispensable for nuclear

allocation. Altogether we conclude that NLS1 constitute a

functional, necessary and sufficient nuclear signal. A construct

over-expression only four residues (201KRKK), within NLS1 motif

shifts the fusion protein towards the nucleus as efficiently as the

entire BRMS1 protein. Besides, a substitution of the fourth residue

for an uncharged serine rendered the construct not competent for

nuclear import. Precisely, the KRKS peptide is present within the

NLS2 motif, underscoring its inability for nuclear import.

Our results largely prove the functionality of BRMS1-NLS1 and

the inability of BRMS1-NLS2 as import signals by themselves.

However, it is worth to consider that upon protein folding both

motifs could be brought close enough to allow them to work

cooperatively as a stronger motif. This possibility is endorsed by

the observation of the strongest nuclear localization for a construct

including both motives. It should be noted that our results do not

exclude that BRMS1 could enter the nucleus as part of a complex

with other protein(s).

We also shed light on the mechanism of BRMS1 nuclear

translocation. Analysis of human importins responsible for such

transport concludes that only KPNA5 showed significant interac-

tion with BRMS1 upon a yeast two-hybrid assay. Since KPNA5

has been reported to interact with ANP32A, an acidic phospho-

protein involved in proliferation, differentiation and apoptosis [35]

and with p27Kip1, a cyclin-dependent kinase inhibitor involved in

G1-phase arrest [36] we hypothesized that the KPNA5/BRMS1

complex might also regulate other cellular functions apart from

nuclear import of BRMS1.

Previous reported observations on our lab [8] as well as

transiently BRMS1 over-expressing cells along the present work,

show a consistent and repetitive presence of certain amounts of

BRMS1 in the cytosol. Given that a mechanism for nuclear import

exists, we hypothesized the possibility of an export signal in the

BRMS1 sequence. Computer searching, identified a domain

(residues 74–91) that fulfilled the proposed consensus NES motif

[16]. Score values for important L-residue were above for L30 in

BRCA1 [37] and L149 from FGF-1 [38], crucial residues for

export activities. The BRMS1-NES motif is highly conserved,

conforming not only to NES consensus motif but also to well-

known NES sequences. Its functional role was assessed in vivo.

Transfection of human cells with a NES-BRMS1-GFP fusion

construct, showed a slight difference when compared with a non-

competent construct in protein distribution of non-treated cells.

Only 5.6% of transfected cells partially shift fluorescent protein

towards the cytosol while the negative construct show similar

values (3%). However, after inhibition of the nuclear re-import of

NLS-Rev fusion proteins with Act-D, more than 26% of BRMS1-

NES transfected cells showed a partial shift of GFP-protein

towards the cytosol, whereas the non-competent construct

maintained same levels as in non-treated cells. Similar effect was

reported for well-known NES-containing proteins [29]. Scoring of

transfected cells categorize BRMS1-NES as a functional, very low

activity signal, as efficient as p53 and HDM2, but less active than

proteins which completely shift the GFP-fusion protein in the

absence of Act-D.

CRM1 binds cargoes containing a leucine-rich motif, with low

affinity as compared with other exportin receptors [15] ensuring

an efficient release. In order to understand if BRMS1-NES fusion

protein is dependent on CRM1 export, transfected cells were

treated with CRM1 inhibitor, and GFP distribution scored. Cells

transfected with a NES-competent construct completely blocked

the exit of GFP-fusion protein after LMB treatment (Figure S4).

Unexpectedly, subcellular location was unaltered upon treatment

of pRev1.4-BRMS1-NES-eGFP transfected cells. This effect was

maintained when the protein re-import was also blocked by Act-D

in co-treated (LMB+Act-D) cells (Figure 5C). Thus, we conclude

that BRMS1 contains a functional CRM1-independent NES.

Eukaryotic cells separate transcription/replication from trans-

lation by compartmentalization into nucleus and cytosol respec-

tively. The majority of proteins with nuclear function are actively

transported based on its binding to specific karyopherin receptors

usually by the presence of NLS and NES signals. In the absence of

a specific retention mechanism based on the high affinity of a

protein for nuclear components, all nuclear proteins shuttle,

considering export as a default pathway [28]. In such a case the

distribution of a protein will not be directed, at least not

exclusively, by the import/export competence of the protein itself

but also by its capability to bind to nuclear partners. In this sense,

BRMS1 strongly interact with the Sin3-HDAC complex [3,5]

recruiting BRMS1 to specific DNA regions. This interaction

provides a plausible explanation along with the weakness of the

BRMS1-NES for the predominant nuclear location of BRMS1.

The fact that BRMS1 has access to the cytoplasm, even

transiently, might be important for integrating nuclear functions

with those occurring in the cytoplasm, constituting a major event

in the regulation of both activities.

It is worth to mention that apart from being significant for a

better characterization of BRMS1 protein itself, insights into the

mechanism and regulation of its nucleo-cytoplasmic shuttling

capability might be pivotal from the point of view of a potential

clinical/therapeutic approach. Many of reported shuttling proteins

are involved in signalling and cell growth [39,40] and their

incorrect subcellular location related to the development of

different types of cancers [41,42]. As transcription occurs in the

nucleus, the activity of different transcription factors can be

regulated by their subcellular distribution. Thus, identification of

molecules that could affect BRMS1 protein location might prove

effective in controlling cell growth.

In conclusion, our findings suggest that BRMS1 shuttles

between nucleus and cytoplasm mediated by a novel, weak but

functional NES region. Moreover, we provide strong evidence that

NLS1 is necessary and sufficient for BRMS1 nuclear transport.

Finally, the identification of KPNA5 as BRMS1 partner has also

been demonstrated. Since BRMS1 molecular functions are highly

dependent on nuclear localisation, our results possibly suggest

another level of regulation for BRMS1 biological mechanisms.

Future studies should evaluate to what extent the reported nucleo-

cytoplasmic shuttling might affect BRMS1 dependent anti

metastatic properties. We speculate that BRMS1 activity by

import/export transport could serve as a potential regulatory

mechanism playing a biological role which functional/clinical

implications are not yet understood.

Materials and Methods

Cell culture
U-2 OS, HeLa, MDA-MB-23 human and C2C12 mouse

myoblast were from American Type Culture Collection (ATCC).

Cells were grown in Dulbecco’s modified Eagle’s medium (Gibco)

supplemented with 10% foetal bovine serum (EuroClone) in the

presence of penicillin, streptomycin and 2 mM L-glutamine

(Gibco) as recommended. Transfections were performed using

Lipofectamine2000 (Invitrogen). After 24 h, cells were untreated

or treated with Leptomycin B (LMB) (10 ng mL21) or Actinomy-

cinD (Act-D) (5 mg mL21) for 3 h. Cycloheximide (15 mg mL21)

was added 30 min prior additional treatments to ensure that fusion
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protein is not due to de novo synthesis. Former products were from

Sigma.

Heterokaryon assay
HeLa cells grown on cover-slips were transfected with NES-

expression vectors. After 24 h C2C12 mouse cells were co-

cultured for 3 h, cycloheximide was added (100 mg mL21) for

30 min. Heterokaryons were formed with 50% (w/v) PEG

solution (Sigma-Aldrich; Inc) for 2 min at RT. Subsequently, the

cells were extensively washed, and further incubated at 37uC in

presence of cycloheximide. The cells were fixed 30 min later with

4% PFA, stained with Hoechst33258 (50 mg mL21, Sigma-

Aldrich; Inc) and mounted in Mowiol 4–88 (Calbiochem).

Nuclear localization assay
The assay was based on the pHM830 eGFP–b-Galactosidase

triple fusion plasmid [20]. Amplicons obtained by PCR using

specific primers were ligated into pHM830 vector. BRMS1 cDNA

full length clone (IRALp962L0425Q2) was obtained from the

I.M.A.G.E. Consortium [43]. Five different constructs were

engineered encompassing: the entire gene, residues 198–246

containing both putative NLSs (pHM830/NLSs), lacking the 48

(pHM830/DNLSs) or the last 23 C-terminal end residues

(pHM830/DNLS2), and residues from 205 to 246 (pHM830/

NLS2). Numbering is based on human sequence (BC_009834).

More than 200 transfected cells were observed across three

independent experiments.

Nuclear export assay
Nuclear to cytoplasm in vivo assays were carried out as described

[29]. Briefly, mammalian cells were transfected with an export-

defective pRev(1.4)-eGFP protein, a competent nuclear export

construct (pRev1.4-NES3-eGFP) or an engineered construct

encompassing residues 74–91 from BRMS1 (pRev1.4-NES

BRMS1). Relative export activity was measured 24 h later by

scoring nuclear (N), cytosolic (C) or diffuse (N+C) location of fusion

proteins (.200 cells) ranging from 1+ (weakest) to 9+ (strongest)

activity.[29]. Candidate NES insert (residues 74 to 91), was

prepared by annealing specific oligo-deoxy-nucleotides and cloned

as BamHI/AgeI (pRev1.4-NES BRMS1-GFP). Cells were fixed,

mounted and observed 24 h post-transfection.

Fluorescence microscopy
Cells were visualized with a Leica TCS-SP5 confocal laser

microscope equipped with HCX-PL-APO 636lbd.BL (1.4NA) oil-

immersion objectives and UV/argon lasers for DAPI/GFP

detection. Scoring of fusion proteins distribution was as mentioned

above. Independent assays were analyzed with Metamorph

software (Universal Imaging Corp).

Yeast two-hybrid assay
Human BRMS1 entire gene was PCR amplified, cleaved

(EcoRI/PstI), inserted into Gal4-DNA binding domain (BD) of

pAS2.1 (Clontech) vector (pAS2.1/BRMS1) and used as a bait to

test interaction with human a importins fused to the Gal4

activation domain (AD) (pACT2/importin a6; pACT2/importin

a1 and pACT2/importin a3). Deletion mutants for auto-

inhibitory domains (lacking 60 N-terminal residues) were also

generated. PCR-templates were from CNIO collection. Constructs

were co-transformed by lithium acetate into AH109 yeast strain

[44]. Transformant-colonies grown on high stringency selection

media lacking, tryptophan, leucine and histidine (SD-T-L-H) were

subjected to a colony-lift filter assay. Briefly, colonies transferred to

a filter, were disrupted and b-Gal activity detected with Z-buffer

containing 0.27% b-mercaptoethanol and 5-bromo-4-chloro-3-

indolyl-b-D-galactopyranoside. Quantitative activity determina-

tion was performed using o-nitrophenyl-b-D-galactopyranoside

(ONPG). None of the interactions tested were prone to self-

activation. Chemicals and protocols were from Sigma-Aldrich and

Yeast Handbook Clontech respectively.

Supporting Information

Figure S1 Confocal images of GFP distribution after over-

expression in U-2 OS cells of BRMS1 protein merely fused to the

N-terminus of GFP (A) or as fusion protein in the pHM830 triple

fusion plasmid (B).

Found at: doi:10.1371/journal.pone.0006433.s001 (4.25 MB TIF)

Figure S2 A) Fluorescence intensity profile along a line crossing

the cell body of U-2 OS transfected cells with the indicated GFP-

b-Gal NLS constructs. Profiles show intensity of eGFP expression

(green line) and nuclear staining (blue line). Values are normalized

to 1. B) Merged image of DNLSs over-expressing cells where the

intensity profile along a representative area of cell body (dashed

line) is shown as an example. Profiles were recorded using the LAS

AF 1.8.2v acquisition software of a Leica TCS-SP5 confocal

microscope

Found at: doi:10.1371/journal.pone.0006433.s002 (5.93 MB TIF)

Figure S3 Confocal images of transfected HeLa cells expressing

GFP-b-Gal NLS constructs and their controls. Distribution of

GFP fusion proteins is shown. KRKK, represents a construct

encompassing precise residues from NLS1 of BRMS1 protein

resembling the location pattern of the full length (FL). KRKS is a

point mutant where the last positively charged residue shifted to

uncharged, which was unable to relocate the heterologous protein

to the cell nucleus.

Found at: doi:10.1371/journal.pone.0006433.s003 (6.37 MB TIF)

Figure S4 The pRev1.4-eGFP and pRev1.4-NES3-eGFP fusion

proteins were transiently over-expressed in U-2 OS cells. Cell

samples were untreated (-) or treated (+) with LMB to assess

CRM1 transporter inhibition.

Found at: doi:10.1371/journal.pone.0006433.s004 (6.13 MB TIF)
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