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Abstract

Many studies on cascading failures adopt the degree or the betweenness of a node to define

its load. From a novel perspective, we propose an approach to obtain initial loads consider-

ing the harmonic closeness and the impact of neighboring nodes. Based on simulation

results for different adjustable parameter θ, local parameter δ and proportion of attacked

nodes f, it is found that in scale-free networks (SF networks), small-world networks (SW net-

works) and Erdos-Renyi networks (ER networks), there exists a negative correlation

between optimal θ and δ. By the removal of the low load node, cascading failures are more

likely to occur in some cases. In addition, we find a valuable result that our method yields

better performance compared with other methods in SF networks with an arbitrary f, SW

and ER networks with large f. Moreover, the method concerning the harmonic closeness

makes these three model networks more robust for different average degrees. Finally, we

perform the simulations on twenty real networks, whose results verify that our method is

also effective to distribute the initial load in different real networks.

Introduction

Enhancing the ability of real-world networks to resist cascading failures is a hot topic and

many scholars have paid a lot of attention to it. In reality, the resilience of infrastructure net-

works is often affected by random failures or intentional attacks, for example, the large-scale

blackout in America, the paralysis of the railway network and the power grid in China due to

natural disasters, and so on. To this end, there are many works focusing on infrastructure sys-

tems [1–8], communication networks [9–11], and supply networks [12, 13]. Because the load

on a node over the capacity causes the failure propagation, how to allocate initial loads is

closely related to the robustness of networks.

As a basic measure, the node degree is crucial to cascading models. Initial loads of nodes

were dependent on their degrees [14, 15], and the corresponding results showed that the net-

work robustness was improved greatly in the case of a specific value of a parameter. In the

same way, initial loads on edges were computed by the node degree [16–19]. Taking into

account the degree and the local information, Wang et al. [20] put forward a definition con-

cerning the initial load for the investigation of the network robustness. Furthermore, there is a
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key finding that the betweenness of a node has a close relationship with the degrees of its adja-

cent nodes [21, 22]. Consequently, the approach combining the node degree and the degrees

of adjacent nodes was presented to obtain loads of nodes [12, 23–25].

Motter et al. [26, 27] found a heterogeneous distribution of loads that depended on the total

number of shortest paths in real networks, and explored the failure propagation. Similarly, Mirza-

soleiman et al. [28] developed an approach to calculate the weights of edges whose initial loads

were calculated by multiplying the betweenness of nodes, and demonstrated that the method with

respect to the betweenness makes networks more robust compared with the one with respect to

the degree. Since Kim et al. [29] found that a linear relationship between loads and capacities of

nodes is relatively rare, the betweenness was used to measure the property of complex systems

[30]. Besides, to consider the comprehensive information on a node, Liu et al. [31] studied the

computation of initial loads by integrating the node degree and the betweenness.

On the basis of the percolation theory, Buldyrev et al. [32] introduced the framework of the

failure propagation in the coupled network. In addition, in the case that initial loads of nodes

were determined by the degree [33, 34] and the betweenness [35–39], the robustness of inter-

dependent networks against the cascading failure was discussed. Hong et al. [40] studied the

restoration strategy of interdependent networks in which the load on each node was assigned a

random value.

Over the past decade, there have been a great number of works concerning the model of

cascading failures, but they exist the obvious limitation to calculate initial loads regardless of

single networks and interdependent networks. Although we can calculate the node degree eas-

ily, the impact of the failure may propagate the other nodes except for neighboring nodes, indi-

cating that calculating loads by the node degree could not be reasonable. In terms of other

measures for a node, the importance of a node in the whole network is reflected by its

betweenness, but networks with the betweenness are more vulnerable in some cases, which is

verified by the detail on the simulations of SW and ER networks in later sections. Besides, for

the node with the low degree, its betweenness is likely to equal zero, implying that obtaining

the load of this node by its betweenness makes no sense. In order to overcome the defects of

previous works, a new definition of the initial loads of nodes is put forward by means of the

harmonic closeness and the knowledge of adjacent nodes. Compared with the work [41], by

taking into account different measures for a node (including the harmonic closeness, the

degree, the betweenness, the random-walk betweenness, the PageRank, and the closeness), we

give six methods of calculating the initial load, and make a systematic comparison among

them. Scale-free, small-world and random networks with different average degrees are utilized

to analyze the advantage of our method. Additionally, in order to discuss the application of

this method, we choose twenty real-world networks from different categories to perform case

studies. According to the simulation results, it is found that our method can significantly

strengthen the robustness of model networks with different average degrees and real-world

networks.

Model

Recently, works [42, 43] investigate the cascading models where the loads on nodes and edges

are decided by the harmonic closeness which is defined as follows,

hci ¼
1

N � 1

X

i6¼j

1

dij
ð1Þ

where hci represents the harmonic closeness of node i. N is the number of nodes and dij repre-

sents the shortest distance between node i and node j.
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To measure the interaction between a node and its neighboring node, an approach consid-

ering the harmonic closeness of adjacent nodes (HA) is present here. Thus, initial load Li(0)

on node i is given as follows,

Lið0Þ ¼ dhc
y

i þ ð1 � dÞ

X

j2Gi

hcyj

ki
ð2Þ

where θ(θ>0) represents an adjustable parameter to govern the distribution of loads by the

measure of the node while δ(0�δ�1) represents a local parameter that controls the mean

interaction of adjacent nodes on a node. ki stands for the degree of node i. Γi stands for the set

of nodes that connect with node i.

1. Based on the existing model, the capacity Ci of node i is given as follows,

Ci ¼ TLið0Þ ð3Þ

where T(T>1) represents a tolerance parameter. In general, it is difficult to increase T to a

large value in consideration of the cost. Consequently, the impact of cascading failures can be

assessed by the critical threshold Tc. Namely, when we remove any node from the set of

attacked nodes, the other node keeps its function in the range of T�Tc. If T<Tc, cascading fail-

ures will happen.

To reduce the damage of the failure propagation, the node with the high initial load should

undertake the more additional load for retaining the normal function. Accordingly, the addi-

tional load ΔLij(t) which adjacent node j receives from the failed node i at step t is proportional

to its initial load Lj,

DLijðtÞ ¼ LiðtÞ
Ljð0ÞX

k2Gi

Lkð0Þ
ð4Þ

In the light of the additional load, the load on the adjacent node j is updated as follows,

Ljðt þ 1Þ ¼ LjðtÞ þ DLijðtÞ ð5Þ

When a load on a node exceeds its capacity, this node malfunctions and causes the cascad-

ing failure. Until the load of every node is not larger than its capacity, the cascading failure

stops.

Simulations

In this research, we choose three kinds of model networks, i.e., scale-free networks (SF net-

works) [44], small-world networks (SW networks) [45], and Erdos-Renyi random networks

(ER networks) [46]. SF, SW and ER model networks with N = 10000 are respectively con-

structed for a given proportion f of nodes to be removed, and data points are the average

results in 20 independent networks. In addition, two attack modes are adopted, i.e., attacks on

the node in the descending order of their loads (DL) and attacks on the node in the ascending

order of their loads (AL), and then the set of attacked nodes is obtained by the first N×f nodes.

When the loads among nodes are equal to each other, they are randomly attacked.

To discuss the relationship between parameters and the robustness in networks under DL,

we carry out the simulations with different parameters when <k> = 4. In Fig 1, we can see the

distribution of the robustness in SF, SW and ER networks. These simulations report a striking

PLOS ONE Modelling cascading failures in networks with the harmonic closeness

PLOS ONE | https://doi.org/10.1371/journal.pone.0243801 January 25, 2021 3 / 14

https://doi.org/10.1371/journal.pone.0243801


finding that the optimal range of δ is between 0.7 and 1. It implies that in three networks, the

local information regarding the adjacent nodes has a marked effect on the optimal distribution

of loads. Besides, the range of optimal δ remains almost unchanged in SF, SW and ER net-

works when f increases from 20% to 100%. As a result, in terms of the assign of the initial load

by HA, the boundary of optimal δ has no correlation with the change of f. On the contrary, in

Fig 1, we can observe that the value of optimal θ in these three networks increases with the

increase of f.
It should be noted that in SF, SW and ER networks no matter what f is, optimal θ has a

strong negative correlation with optimal δ. The major reason is that the increased value of θ or

δ is prone to bring about an obvious difference among the initial loads. However, as one of

them increases, the failure of the high load node is likely to trigger cascading failures. Thus, for

remaining the reasonable difference of the initial loads, the larger optimal θ, the smaller opti-

mal δ, and vice versa.

In this part, we discuss the impact of DL and AL on cascading failures for different θ and δ
when <k> = 4. Fig 2 illustrates that for different θ, the observation of DL and AL could be

divided into three categories, and it is more complex than existing works [4, 18, 24]. In the

first case, in SF, SW and ER networks with small θ, it can be seen a crossing point between the

curves of DL and AL. That is to say, the value of TC under AL is larger than the one under DL

when the value of δ is large. This counterintuitive phenomenon shows that attacks on the low

load node are prone to induce the failure propagation in the case of small θ and large δ, and

Fig 1. The simulation results of the robustness of SF, SW and ER networks at different θ, δ and f under DL when<k> =

4.

https://doi.org/10.1371/journal.pone.0243801.g001
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this is in agreement with the previous works [4, 24]. In the second case, it can be found an

interesting result that when δ increases, there are two crossing points between curves of DL

and AL in SF, SW, and ER networks at θ = 15. This indicates that in the range of too small or

too large δ, DL can more seriously impair the network robustness compared with AL. In terms

of SF, SW and ER networks at θ = 20, i.e., the last case, the value of TC under DL is larger than

the one under AL no matter what the value of δ is. In this case, the cascading failure may be

triggered by the failure of the high load node instead of the one of the low load node.

Additionally, in Fig 2, we can observe that almost all of the curves of AL show a downward

trend as δ increases in SF, SW and ER networks at different θ. This is because the low load

node tends to cause failures of its adjacent nodes when the difference of loads is not significant.

Moreover, the larger the value of δ, the greater the difference among the initial loads. There-

fore, attacks on the low load node have less impact on the network by increasing the value of δ.

In order to analyze the relationship between attack modes and the number of attacked

nodes, we perform the comparison of DL and AL in the above model networks at different f
and δ when <k> = 4. In Fig 3, it is evident that at f = 10% or f = 50%, the value of TC under AL

is larger than the one under DL in these model networks when δ is approximately equal to 0.8.

It means that it is easy to induce the failure propagation owing to the removal of the low load

node in networks with δ = 0.8 when the number of attacked nodes is not too high. Further-

more, nodes that lead to cascading failures under DL are basically the same as those under AL

when f is large, therefore increasing the value of f makes curves of DL and AL more similar.

In the field of complex networks, many characteristics of the node have been studied

widely, such as the node degree, the node betweenness, the random-walk betweenness, the

PageRank, the closeness and so on. It is well-known that the degree can reflect the local infor-

mation on a node while the harmonic closeness, the betweenness, the PageRank, and the

Fig 2. The simulation results of the robustness of SF, SW and ER networks at different θ and δ under DL and AL

when f = 10% and<k> = 4.

https://doi.org/10.1371/journal.pone.0243801.g002
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closeness can reflect the global information. In order to carry out the systematic comparison

of methods of calculating loads by different measures for the node, the approaches of comput-

ing the initial load based on the degree of the adjacent node (DA), the betweenness of the

adjacent node (BA), the random-walk betweenness of the adjacent node (RBA), the

PageRank of the adjacent node (PA), and the closeness of the adjacent node (CA) are respec-

tively given

Wi ¼ dk
y

i þ ð1 � dÞ

X

j2Gi

kyj

ki
ð6Þ

Wi ¼ db
y

i þ ð1 � dÞ

X

j2Gi

byj

ki
ð7Þ

Wi ¼ drb
y

i þ ð1 � dÞ

X

j2Gi

rbyj

ki
ð8Þ

Wi ¼ dp
y

i þ ð1 � dÞ

X

j2Gi

pyj

ki
ð9Þ

Fig 3. The simulation results of the robustness of SF, SW and ER networks at different f and δ under DL and AL

when θ = 10 and<k> = 4.

https://doi.org/10.1371/journal.pone.0243801.g003
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Wi ¼ dc
y

i þ ð1 � dÞ

X

j2Gi

cyj

ki
ð10Þ

where bi, rbi, pi and ci represent the values of the betweenness, the random-walk betweenness,

the PageRank, and the closeness of node i, respectively.

When θ and δ are equal to specific values respectively, TC is minimized for a given f, called

optimal TC. In this section, we investigate whether optimal TC obtained by AH is lower than

the ones obtained by the above methods of calculating loads.

Fig 4(A) shows that in SF networks, there exists little change in every curve except for HA

and CA. Due to the similarity of the definition between HA and CA, their curves hardly differ

from each other. As f increases, the curves of HA and CA steadily rise, but at different f, the val-

ues of optimal TC calculated by HA and CA are significantly lower than others. Furthermore,

the smaller f is, the more obvious the advantage of HA and CA in SF networks is. The above

results mean that scale-free networks with HA and CA can more effectively resist cascading

failures regardless of f compared with the ones with other methods, which is more evident

especially for the case of less attacked nodes. In contrast, the SF network with RBA is the most

fragile to cascading failures.

In Fig 4(B) and 4(C), it can be found that in SW and ER networks, the curves of HA and

CA are slightly higher than other curves in the range of small f. However, the values of optimal

TC obtained by HA and CA almost keep constant, while the ones obtained by other methods

greatly increase with the increase of f. In particular, when f increases to 50%, the curves of HA

and CA are lower than those of other approaches in SW and ER networks. The simulation

demonstrates that HA and CA are the more efficient methods to distribute loads when many

nodes are attacked in homogeneous networks. In addition, the curves of BA and PA for SW

and ER networks are higher, on the whole, indicating that although the measures concerning

the betweenness and the PageRank can represent the importance of a node on the entire net-

work, the methods with those two measures tend to result in the high vulnerability compared

with other methods.

Besides, we also focus on the special case, i.e., f = 100%, which means that attacking any

node cannot induce cascading failures. As f changes from 0% to 100%, the curves of different

methods of calculating loads can be divided into two categories: gradual curves (e.g., the case

of HA in ER networks) and steep curves (e.g., the case of HA in SF networks). We adopt DL to

attack the high load nodes, hence if the curve is virtually unchanged when f increases, the node

with the high load will decide whether cascading failures are caused in the case of f = 100%. On

the contrary, the steep curve means that optimal TC at f = 100% depends on the node with the

low load instead of the ones with the high load. Thus, in this case, if the low load node does not

Fig 4. The simulation results of the robustness of SF (a), SW (b) and ER (c) networks at different f under DL when

<k> = 8 based on HA, DA, BA, RBA, PA and CA with optimal θ and δ.

https://doi.org/10.1371/journal.pone.0243801.g004
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cause the failure propagation, no cascading failures will occur. In Fig 4, it is clear that for most

of curves, the value of optimal TC is not sensitive to the change of f in SF networks, which is

contrary to the cases of SW and ER networks. As a consequence, it could be concluded that the

low (high) load node plays a key role in the occurrence of cascading failures in SF (SW and

ER) networks for most methods of calculating loads in consideration of the attack on any

node.

Generally speaking, the average degree <k> is strongly related to the network robustness,

therefore considering SF, SW and ER networks at different <k>, we conduct the simulation

experiments based on these six methods. In Fig 5, there is an important finding that the values

of optimal TC calculated by HA and CA are lower than others for different <k> no matter

what the kind of the network is. In particular, for small<k>, the advantage of HA and CA is

more significant in model networks. These results show that it is effective to adopt the har-

monic closeness and the closeness for the computation of initial loads regardless of the number

of edges in networks. Furthermore, with the increase of<k>, the difference of curves becomes

slighter. Additionally, in three networks mentioned above, we find a common ground that the

curve of PA is high for the small value of<k>.

Model networks are helpful for understanding the behavior of real systems, but they hardly

reflect the feature of real networks because of the ideal conditions. To fully discuss the dynam-

ics of cascading failures in real systems, we apply methods mentioned above to different kinds

of real networks. Note that our aim is to analyze the failure propagation in the giant compo-

nent of undirected networks without self-loops and parallel edges, therefore, in these real net-

works, nodes out of the giant component, self-loops and parallel edges are deleted. The data of

real networks is listed in Table 1 and the distribution of the node degree is shown in Fig 6.

Fig 5. The simulation results of the robustness of SF (a), SW (b) and ER (c) networks at different<k> under DL

when f = 100% based on HA, DA, BA, RBA, PA and CA with optimal θ and δ.

https://doi.org/10.1371/journal.pone.0243801.g005

Table 1. Basic data about real networks.

Category Network Network ID Nodes Edges

Technological Network Email [47] Net1 1133 5451

Router network [48] Net2 2113 6632

Autonomous system of Internet [49] Net3 6474 12572

WHOIS network [50] Net4 7476 56943

Network of users of the Pretty-Good-Privacy algorithm for secure information interchange [51] Net5 10680 24316

Social Network Network of American football games [52] Net6 115 613

Coauthorship in network science [53] Net7 379 914

Interactions between science in society actors on the Web [54] Net8 1272 6454

Facebook page networks [55] Net9 14113 52126

(Continued)
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In Fig 6, it is apparent that there are a few nodes with the high degree while most of nodes

have the low degree, and there exists a fat-tailed distribution in Nets 1–5, 8–10, 16, 19 and 20.

Consequently, the above real networks possess the scale-free property and belong to the

Table 1. (Continued)

Category Network Network ID Nodes Edges

Infrastructure network US airlines [56] Net10 332 2126

Power grid with 494 nodes [57] Net11 494 586

Power grid with 662 nodes [58] Net12 662 906

European road network [59] Net13 1039 1305

Power grid with 1138 nodes [60] Net14 1138 1458

Power grid with 1723 nodes [61] Net15 1723 2394

Network of flights [62] Net16 2905 15645

US power grid [63] Net17 4941 6594

Biological Network Elegans neural network [64] Net18 297 2148

Network of disorders and disease genes [65] Net19 1419 2738

Protein-protein interaction network in yeast [66] Net20 2224 6609

https://doi.org/10.1371/journal.pone.0243801.t001

Fig 6. Distribution of the node degree in real-world networks.

https://doi.org/10.1371/journal.pone.0243801.g006
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heterogeneous network. On the contrary, other real networks belong to the homogeneous

network.

Here we carry out the simulation experiment on real networks with different methods to

calculate loads. From Fig 7, it can be found that Nets 1–5, 8–10, 16, 19 and 20 with HA have

small Tc in most cases, hence our method outperforms other methods in real networks with

the scale-free property. Especially for Nets 2, 4, 5, and 9 with HA, the values of optimal Tc are

significantly smaller than others for an arbitrary value of f. As a result of the scale-free property

in these real-world networks, the observation of HA in the networks is similar to that in SF

networks. In terms of Nets 7, 11–15, and 17–18, the curves of HA are insensitive to the number

of attacked nodes. When f increases to a large value, the values of optimal Tc obtained by HA

are the smallest in corresponding networks, indicating that HA can make these real networks

more resilient to the failure propagation when a large number of nodes are attacked. In addi-

tion, according to the simulation results, there is no significant difference between the change

Fig 7. Comparison of HA, DA, BA, RBA, PA, and CA with optimal θ and δ in real-world networks at different f.

https://doi.org/10.1371/journal.pone.0243801.g007
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of curves in SW, ER networks and that in the above real networks, which also proves that these

real networks belong to the homogeneous network. Note that in model networks, the result of

HA is similar to the one of CA, while we can see that Nets 3, 7, 8, 11–15, 17 and 19 possess the

stronger robustness by using HA. This means that HA has wide applicability for distributing

the load in real-world networks. To sum up, HA is able to greatly enhance the robustness of

real networks with different topology structures.

Discussion and conclusions

For most of the studies on cascading failures, initial loads on nodes are determined by their

degree or betweenness. In this paper, we propose an approach to obtain initial loads by means

of the harmonic closeness and the knowledge of adjacent nodes. In order to control the

strength of the initial load on a node, θ reflecting the property of the node and δ reflecting the

impact of adjacent nodes are adopted. According to the simulations on model networks (SF,

SW and ER networks) and real networks, we investigate the impact of the parameters on TC

under different f, finding that there is a negative relationship between optimal θ and δ for a cer-

tain value of f. Through the analysis of different attack modes, it is revealed that the failure of

the low load node is more likely to trigger the cascading failure in some cases. Furthermore,

we obtain a key result that the method with the harmonic closeness to calculate loads reduces

the probability of triggering the failure propagation in SF networks and real networks with the

scale-free property compared with other methods regardless of f. For SW, ER, and real net-

works with the homogeneous degree distribution, our method strengthens their robustness in

the case of large f. In addition, this method is also effective to calculate the initial load in SF,

SW and ER networks at different <k> when f = 1. The above findings indicate that it is rea-

sonable to allocate initial loads based on the harmonic closeness for preventing cascading fail-

ures. We believe that this work should be in favor of the design of real-world systems and the

theoretical analysis of cascading failures.
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