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Abstract: Smartphone camera or inertial measurement unit (IMU) sensor-based systems can be
independently used to provide accurate indoor positioning results. However, the accuracy of an
IMU-based localization system depends on the magnitude of sensor errors that are caused by external
electromagnetic noise or sensor drifts. Smartphone camera based positioning systems depend on
the experimental floor map and the camera poses. The challenge in smartphone camera-based
localization is that accuracy depends on the rapidness of changes in the user’s direction. In order to
minimize the positioning errors in both the smartphone camera and IMU-based localization systems,
we propose hybrid systems that combine both the camera-based and IMU sensor-based approaches
for indoor localization. In this paper, an indoor experiment scenario is designed to analyse the
performance of the IMU-based localization system, smartphone camera-based localization system and
the proposed hybrid indoor localization system. The experiment results demonstrate the effectiveness
of the proposed hybrid system and the results show that the proposed hybrid system exhibits
significant position accuracy when compared to the IMU and smartphone camera-based localization
systems. The performance of the proposed hybrid system is analysed in terms of average localization
error and probability distributions of localization errors. The experiment results show that the
proposed oriented fast rotated binary robust independent elementary features (BRIEF)-simultaneous
localization and mapping (ORB-SLAM) with the IMU sensor hybrid system shows a mean localization
error of 0.1398 m and the proposed simultaneous localization and mapping by fusion of keypoints
and squared planar markers (UcoSLAM) with IMU sensor-based hybrid system has a 0.0690 m mean
localization error and are compared with the individual localization systems in terms of mean error,
maximum error, minimum error and standard deviation of error.

Keywords: indoor positioning system (IPS); pedestrian dead reckoning (PDR); heading estimation;
indoor navigation; IMU sensors; smartphone camera; Kalman filter; sensor fusion; simultaneous
localization and mapping (SLAM); ArUco markers

1. Introduction

Indoor localization systems are classified as either building dependent or building independent
based on the sensors used for localization [1]. The most common building independent indoor
positioning technologies are pedestrian dead reckoning (PDR) systems using inertial measurement
unit (IMU) sensors [2–4] and image based technologies using cameras [5–7]. The IMU sensor used in
PDR systems includes the accelerometer, magnetometer and gyroscope sensors and these sensors give
user position based on user heading and step length information. In image based indoor positioning,
a camera is used for localization and any of monocular, stereo or RGB-D cameras can be used for
localization. The camera captures the experiment area and the captured data is fed to image-based
localization algorithms. The most popular image-based localization system, which consists of family
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of algorithms is the simultaneous localization and mapping (SLAM) [8,9]. In SLAM based localization,
the system estimates the position or orientation of the camera with respect to its surrounding and maps
the environment based on the camera location. Localization using either IMU sensors or a camera
system offers some level of accuracy although not the best. The limited level of accuracy in IMU
sensors is due to the accumulated errors from accelerometer, drift errors from gyroscope and external
magnetic fields that affect the magnetometer. These sensor errors degrade indoor position accuracy,
hence the need for compensation.

In this paper, a camera-based system is introduced to the IMU localization system. However,
it should be noted that in the camera based localization system, rapid user direction changes affect
the effectiveness of the camera pose estimation. In the proposed hybrid systems, the results from
the IMU-based system are used to compensate the heading error from the camera-based system.
Similarly, the IMU sensor errors are compensated for by utilizing results from the camera-based system.
Summarily, in this paper, we propose hybrid indoor localization systems that combine the results from
IMU and camera based systems to improve positioning accuracy. Experimental results demonstrate
the effect of the proposed hybrid fusion method and the proposed hybrid method reduces the sensor
errors for IMU localization and heading error for the camera based localization system. The main
contributions of this paper are as follows:

• We implemented an IMU-based indoor localization system. The proposed IMU system uses the
accelerometer, gyroscope and magnetometer for position estimation. A pitch based estimator is
used for step detection and step length estimation. A sensor fusion algorithm is used for heading
estimation. The user position is estimated by using step length and heading information.

• We followed an oriented fast rotated binary robust independent elementary features (ORB)-SLAM
algorithm proposed by Mur-Artal et al. [10] for the camera based localization system.
The ORB-SLAM uses the same features for tracking, mapping, relocalization and loop closing.
This makes the ORB-SLAM system more efficient, simple and reliable as compared to other
SLAM techniques.

• We developed a SLAM by fusion of keypoints and squared planar markers (UcoSLAM) algorithm
proposed by Munoz-Salinas et al. [11] for the camera based localization system by adding markers
to the experiment area. We used Augmented Reality Uco Codes (ArUco) markers for localization
and the markers improved the localization accuracy.

• We proposed hybrid indoor localization systems using an IMU sensor and a smartphone camera.
The sensor fusion is achieved by a Kalman filter and the proposed systems reduced the IMU
sensor errors and heading errors from camera-based localization systems.

The rest of the paper is organized as follows: in Section 2, a review of previous work is discussed.
A model for indoor localization using an IMU and a camera is presented in Section 3. The experimental
setup and result analysis is given in Section 4. Finally, Section 5 concludes the work and gives
future directions.

2. Related Work

Indoor localization has been studied in the past and recent times based on different localization
techniques and technologies used [12–15]. In this section, we discuss the existing technologies used
for IMU-based localization, camera based localization and various existing hybrid approaches for
indoor localization.

The IMU-based indoor localization uses an accelerometer, gyroscope and magnetometer sensors
for position estimation and is also known as pedestrian dead reckoning (PDR). Different PDR
approaches [16,17] have been proposed for indoor localization and these approaches have a
significant role in indoor positioning. The PDR study includes step detection [18–20], step length
estimation [21–25], heading estimation [26–28] and position estimation using step length and heading
information. The accuracy of PDR position results depends on the accurate step length estimation and
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accurate heading estimation. The basic PDR models are explained in [29–34]. In these PDR models,
different algorithms for indoor localization are explained and their proposed models show significant
position accuracy improvements for IMU-based indoor localization. Smartphone IMU-based indoor
localization systems are discussed in [35–39]. The smartphone IMU-based PDR systems have many
challenges due to the changes in smartphone coordinates. The changes in smartphone coordinates
are based on the user movements, hence affecting IMU sensor readings. Several studies have been
conducted on the smartphone IMU-based PDR system in indoor environments during the past
years [40–42]. These proposed smartphone based IMU localization systems achieve accurate position
results for indoor applications. However, the proposed PDR systems still exhibit sensor errors which
affect the indoor position accuracy. More recent works on IMU-based localization are shown in [43–47].
In these works they reached significant position accuracy levels for indoor localization. From all these
studies, it can be seen that IMU sensor-based localization is not free from sensor errors. It should also
be noted that indoor position accuracy depends on accurate sensor reading and calibration. In this
paper, we used our previous model presented in [48] for IMU sensor-based localization. In [48],
we implemented a pitch based step detector, step length estimator and position estimation algorithm
for indoor localization. Our proposed IMU-based localization model in [48] reduced the sensor errors
and gives significant results for indoor localization.

A camera based localization system has a major role when the experiment area is independent
from the building infrastructure. This method is also known as computer vision [49–52]. In this
method, we use a camera and captures the environment in the form of images or video. The video
or image data from the camera is used for estimating the position and orientation of an object or
device. Camera based localization can be divided based on the markers used in the indoor area.
If the localization system depends on the natural landmarks such as corridors, edges, doors, wall,
ceiling light etc., it is referred to as markerless localization [53–57]. If we use some special type of
markers such as fiducial markers or ArUco markers in the experiment area, then the localization
is known as marker based localization [58,59]. The most common technique used in computer
vision is SLAM based localization [60–64]. In SLAM based localization, we create a map of the
experiment area and at the same time locate the camera position. The SLAM technique is classified
as extended Kalman filter (EKF) SLAM [65,66], FastSLAM [67], low dimensionality (L)-SLAM [68],
GraphSLAM [69], Occupancy Grid SLAM [70–72], distributed particle (DP)-SLAM [73], parallel
tracking and mapping (PTAM) [74], stereo parallel tracking and mapping (S-PTAM) [75], dense
tracking and mapping (DTAM) [76,77], incremental smoothing and mapping (iSAM) [78], large-scale
direct (LSD)-SLAM [79], MonoSLAM [80], collaborative visual SLAM (CoSLAM) [81], SeqSLAM [82],
continuous time (CT)-SLAM [83], UcoSLAM [11], RGB-D SLAM [84] and ORB SLAM [85–87]. In this
paper, we used ORB SLAM and UcoSLAM for camera based localization. The ORB SLAM is a feature
based localization system and it operates in real time in indoor environments. The ORB SLAM includes
tracking, mapping, relocalization and loop closing. The ORB SLAM achieved significance indoor
position accuracy as compared to other state-of-the-art monocular SLAM approaches. To improve the
localization accuracy of camera based localization systems, a simple marker–based localization system
is introduced in [88]. The localization system proposed in [88] added the markers into the map with a
Tf package to the robot operating system (ROS) [89]. A 2D marker based monocular visual-inertial
EKF-SLAM system is proposed in [90] and a planar marker based mapping and localization system
is explained in [91]. The marker based systems explained have reduced the localization error as
compared to markerless localization. However, the marker based localization systems have serious
problems such as mapping distortion due to lack of correction, drift error if the markers are lost for a
long time and it requires increasing computation resources to handle a multiple number of markers.
In this paper, we use 4 ArUco markers for localization and the UcoSLAM based localization approach
gives more accurate results as compared to ORB-SLAM localization approach.

To reduce the sensor errors from IMU-based localization and heading errors for the camera-based
system, various studies have proposed a hybrid indoor localization approach. In hybrid based
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localization, we use the IMU data and camera data together for position estimation. The basic models
explained in [92–101] are used for IMU and camera data fusion. In their proposed methods, they
combined the IMU data and vision data for better performance. Their experiment results proved
that the hybrid indoor localization system has significant positional accuracy for indoor applications.
A comparative study of IMU and camera based localization can be seen in [102]. Most recent work
on hybrid localization is discussed in [103–109]. Among these studies, the hybrid indoor localization
can be used for better performance and which reduces IMU sensor and camera position errors. In this
paper, we use a linear Kalman filter (LKF) for combining IMU sensor and camera position data.
The LKF is simple and easy to implement for real time applications as compared to the extended
Kalman filter (EKF) [110–112], particle filter [113] and unscented Kalman filter (UKF) [114].

3. Model for Indoor Localization Using IMU Sensor and Smartphone Camera

The proposed model for indoor localization using IMU sensor and smartphone camera-based
system is shown in Figure 1. In the proposed model, different localization approaches are fused with
the sensor fusion frameworks. The proposed model is divided into three steps. Locating user position
using IMU sensor is the first step of the proposed model. In IMU-based localization, the position is
estimated by step length and heading information. The complementary features of accelerometer,
gyroscope and magnetometer sensors are used for position estimation. In the second step, we use
a smartphone camera for localization. The smartphone camera captures the experiment area and
the captured data used in the ORB SLAM algorithm for position estimation. To improve the camera
based localization, we used an UcoSLAM algorithm with ArUco markers. In the last step, we combine
the position results from IMU and camera based systems with a Kalman filter. The sensor fusion
framework uses a linear Kalman filter for combining position results from IMU and camera.

Figure 1. Proposed hybrid indoor localization model using IMU sensor and smartphone camera.

3.1. Indoor Localization Using IMU Sensor

The model presented in our previous work [48] is the same one that we used for IMU-based
localization. The proposed model utilizes accelerometer, gyroscope and magnetometer for position
estimation. A pitch based estimator is proposed for step detection. A sensor fusion algorithm is used
for estimating pitch and roll from accelerometer and gyroscope. The sensor fusion pitch value is
used for step detection. The step length is estimated from pitch amplitude. The heading is estimated
from gyroscope and magnetometer fusion. Finally, the position is estimated using step length and
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heading information. For more details on indoor localization using IMU sensor refer to our previous
work in [48].

3.2. Indoor Localization Using Smartphone Camera

To enhance the indoor position accuracy, we used smartphone camera for localization when the
privacy of the user is not a concern. The IMU sensor based localization gives accurate user position
results for indoor localization. However, the user position results are not free from sensor error
and it is necessary to compensate this sensor error by adding a smartphone camera to the system.
In this paper, we used two algorithms for camera based localization. The most common camera
based localization algorithm is the ORB-SLAM which gives the user position indoors. However,
the keypoints mismatch and camera pose problems, the ORB-SLAM shows heading errors and some
user position results are missing during the experiment time. To overcome these problems, we used
UcoSLAM algorithm for localization. The UcoSLAM uses special markers called ArUco markers for
localization. The ArUco markers solved the camera localization heading problems and improved the
position accuracy for localization.

3.2.1. Localization Using ORM-SLAM

The model presented in [10] is used for camera based ORB-SLAM localization. In this localization,
we use ORB features [115] instead of scale-invariant feature transform (SIFT) [116] or speeded-up
robust feature (SURF) [117,118] for feature matching. The ORB feature matching allows real-time
performance without GPUs and it gives best invariance to changes in viewpoint and illumination.
The ORB-SLAM consists of tracking, local mapping and loop closing. In the tracking step, we estimate
the camera position with every frame and control the new keyframe insertion. We used a motion only
bundle adjustment (BA) for optimizing the camera pose using an initial feature matching with previous
frame. If the tracking is not done, the place recognition module is used for global relocalization. When
the initialization of camera poses and feature map is done, a local map is retrieved using the covisibility
graph with keyframes that is used in the system. It then matches with the local map points which
are searched by reprojection and finally optimize the camera pose with all matches. The last step of
tracking is the new keyframe decision. If the new keyframe is inserted, it is used in the local mapping
process. The local mapping uses the new keyframes and performs the local BA to get an optimal
reconstruction in the surroundings of the camera pose. Loop closing is the final stage of ORB-SLAM.
In loop closing stage, the system searches for loops with every new keyframe. If a loop is identified,
a similarity transformation is computed which gives information about the accumulated drift in the
loop. If a drift accumulation is detected, then the duplicated points are fused. Finally, to achieve global
consistency, a pose graph optimization is performed. For more details on ORB-SLAM refer to [10].

3.2.2. Localization Using UcoSLAM

The ORB-SLAM approach uses natural landmarks (keypoints) for localization. However, it is
unstable over time or insufficient for indoor localization. To improve the indoor localization accuracy,
the UcoSLAM method proposed in [11] is used for camera based indoor localization. In UcoSLAM,
we use artificial landmarks (ArCuo) in the experiment area for tracking and relocalization. Figure 2
shows the UcoSLAM architecture.
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Figure 2. UcoSLAM architecture [11].

The UcoSLAM follows the same procedure used in the visual SLAM approaches for camera pose
estimation. The main difference in the UcoSLAM approach is the combined use of keypoints and ArCuo
markers for tracking and relocalization. The UcoSLAM system contains a map of the environment
which is created and updated every time a new frame is available to the system. The UcoSLAM
starts with map initialization. For map initialization, it uses homography, fundamental matrix
(using keypoints) [86] and one or several markers [119]. After the map initialization in UcoSLAM,
the system starts tracking or relocalization. If the system determines the camera pose in the last
frame, it tries to estimate the current position using the last one as a starting point. In the UcoSLAM
system, it uses the reprojection errors of keypoints and marker corners for tracking. For tracking
in the UcoSLAM system, a reference frame is selected as map keyframe before tracking and map
keyframe contains common matches to the frame analyzed in the previous time instant. After the
tracking process, the system searches for the loop closures caused by ArCuo markers. If a loop closure
is detected, then the system follows the keyframe insertion, loop fusion and global optimization steps
as shown in Figure 2. If the loop closure is not detected, the system uses the map manger block, which
runs the culling process when a new keyframe inserted. The culling process helps to maintain the
map size manageable by removing the redundant information in the map. After the culling process,
the system checks for the keypoint loop closure. If the keypoint loop closure is not detected, the system
performs local optimization to integrate the new information. If the keypoint loop closure is detected,
the system follows the loop fusion and global optimization steps. If the tracking process in the system
failed in the last frame, then the system uses the relocalization mode. In the relocalization mode,
it checks the markers already registered on the map. If the relocalization mode is unable to detect
the known markers, it uses the bag-of-words (BoW) [120] process. For more details on UcoSLAM
refer to [11].

3.3. Hybrid Indoor Localization Using IMU Sensor and Smartphone Camera

The objective of hybrid indoor localization is to improve the indoor position accuracy by reducing
the IMU and camera sensor errors. For combining IMU localization results with camera based
localization results, we used a linear Kalman filter (LKF) instead of other sensor fusion frameworks.
The LKF is computationally light and we tackle the problem in a linear perspective. The model
presented in [121] is used for sensor fusion frameworks. The system with controlled input and noise
is given as

Xg (k) = AXg (k − 1) + BU (k − 1) + ΓW(k − 1) (1)
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A =

 F 03×3 03×3

03×3 F 03×3

03×3 03×3 F

 (2)

B =

 G 03×3 03×3

03×3 G 03×3

03×3 03×3 G

 (3)

U (k − 1) = an(k − 1) (4)

with F =

 1 t −t/2
0 t −t
0 0 1

, G =

 t2/2
t
0

, where k is the variable used for the recursive execution of

Kalman filter, t is the sample period, A is the state-transition matrix, B is the controlled input matrix,
03×3 is the zero matrix, U (k − 1) is the controlled input, Γ is the noise matrix and W(k − 1) is the
Gaussian white noise with variance Q (k − 1). The state vector Xg (k) includes the position results
from the IMU sensor. The measurement model of ORB-SLAM + IMU is the camera position Pc (k) =(

PC
x (k) , PC

y (k)
)

and the measurement function is

z1 (k) =
[

PC
x (k) 0 0 PC

y (k) 0 0
]T

= H1X1 (k) + n1(k) (5)

where H1 = diag (1, 0, 0, 1, 0, 0), X1 (k) is the state vector of ORB-SLAM + IMU fusion, n1(k) is the
measurement noise with covariance matrix R1(k). The measurement of UcoSLAM + IMU is the camera
position Pu (k) =

(
Pu

x (k) , Pu
y (k)

)
and the measurement function is

z2 (k) =
[

Pu
x (k) 0 0 Pu

y (k) 0 0
]T

= H2X2 (k) + n2(k) (6)

where H2 = diag (1, 0, 0, 1, 0, 0), X2 (k) is the state vector of UcoSLAM + IMU fusion, n2(k) is the
measurement noise with covariance matrix R2(k). The sensor fusion algorithm uses linear Kalman
filter since the state and measurement functions are both linear. The Kalman filter consists of two
processes, predicting and updating [121].

Predicting:
X̂i (k, k − 1) = AX̂i (k − 1) + BU(k − 1) (7)

P̂i (k, k − 1) = AP̂i (k − 1) AT + Qi(k − 1) (8)

Updating:

Ki (k) = P̂i (k, k − 1) HT
i

(
Hi P̂i (k, k − 1) HT

i + Ri(k)
)−1

(9)

X̂i (k) = X̂i (k, k − 1) + Ki (k)
(
zi (k)− HiX̂i (k, k − 1)

)
(10)

Pi (k) = (I − Ki(k)Hi) P̂i (k, k − 1) (11)

The variables used in the LKF algorithm are summarized in Table 1.
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Table 1. Variables used in the LKF algorithm.

X̂i Estimated State Vector
Pi (k) Estimated state covariance

Qi(k − 1) Process noise
Ri(k) Measurement noise covariance matrix
Ki (k) Kalman gain matrix
zi (k) Measurement

A State-transition matrixt
B Controlled input matrix
H Observation model

X̂i (k, k − 1) , P̂i (k, k − 1) For internal computation

4. Experiment and Result Analysis

To evaluate the performance and accuracy of the proposed hybrid indoor localization systems,
we considered an experiment scenario shown in Figure 3. The data from IMU and camera were
collected at the fifth floor of IT building 1, Kyungpook National University, South Korea. During data
collection, a user of age 27 and height 172 cm held a smartphone and the IMU sensor in his hand and
walked around the table as shown in Figure 3c.

Figure 3. Experiment setup. (a) Smartphone. (b) IMU sensor. (c) Experiment area.

The experiment was conducted using an Android 5.0.2 Lollipop platform (Google, Mountain
View, CA, USA) on the Samsung Galaxy S6 edge smartphone with Exynos 7420 processor and 3 GB
ram. A BiscuitTM Programmable Wi-Fi 9-Axis absolute orientation sensor is used for IMU localization.
To reduce the computational complexity and delay problems from the proposed algorithm, we carried
out the proposed algorithm in an external server computer instead of smartphone to estimate the final
user position. The length of the experiment area is 3.1 m and the width is 6 m. The experiment is
carried out strictly along the reference path. The IMU sensor and smartphone camera data are collected
during the user motions in the reference path. The localization algorithms use the collected data and
estimate the current user position. For ground truth value estimation, the starting position of the
user is assumed as zero and manually measured the coordinates of the reference path. To analyze the
performance of the proposed system, we compared the estimated position results from the localization
systems with ground truth values and estimated the user position error in terms of meters. Figure 4
shows the experimental results from IMU-based localization and camera based localization approaches.
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Figure 4. Indoor localization. (a) IMU-based localization. (b) ORB-SLAM localization.
(c) UcoSLAM localization.

From Figure 4, the localization results show that the ArUco markers improved the localization
accuracy as compared to the IMU and ORB-SLAM based localization approaches. In IMU-based
localization, the accuracy of localization depends on the IMU sensor errors and the position estimation
results from IMU approach is not accurate. In the case of ORB-SLAM localization approach, some
user points are missing due to the absence of keypoints in the experiment area and the heading
error from ORB-SLAM approach is higher than IMU-based localization. To improve the localization
accuracy of ORB-SLAM approach, we used an UcoSLAM approach with ArUco markers and the
ArUco markers reduced the heading error. The red circles in Figure 4c indicate the ArUco markers
used for UcoSLAM localization.

To improve the indoor localization accuracy from IMU-based and camera based localization
systems, we proposed a hybrid indoor localization system using IMU and camera features together
and the estimated position results from proposed hybrid systems are shown in Figure 5.

Figure 5. Proposed hybrid systems. (a) ORB-SLAM + IMU. (b) UcoSLAM + IMU.

From Figure 5, it can be seen that the proposed hybrid localization systems remove the effect of
IMU sensor errors. The IMU-based localization exhibits accumulated error from the accelerometer
and drift error from the gyroscope. The camera based localization cannot estimate the position
accurately when user changes direction. The proposed ORB-SLAM + IMU hybrid system overcomes
the challenges of IMU and camera based systems. The proposed UcoSLAM + IMU based hybrid
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system is free from marker based localization problems. When the markers are not detected for a long
time, the proposed UcoSLAM uses the IMU position results for localization. The mapping distortion
and drift errors in the UcoSLAM are overcome by the effective utilization of the IMU position results.
The IMU sensor errors are also reduced by the ArUco markers in the UcoSLAM and the proposed
UcoSLAM + IMU outperforms conventional hybrid localization systems and gives high position
accuracy for indoor localization.

The accuracy of the proposed hybrid localization systems is evaluated using the average
localization error and probability distribution function of localization errors. The average localization
error (E) is defined as

E =
L

∑
i=1

((
xtrue

i − xest
i
)2

+
(
ytrue

i − yest
i
)2
)0.5

(12)

where (xtrue
i , ytrue

i ) is the actual user position and (xest
i , yest

i ) represents the estimated coordinate of
unknown user position calculated by localization methods. L is the total number of data samples used
for the localization. The average localization error results of IMU-based localization, camera based
localization and proposed hybrid localization systems are shown in Figure 6.

Figure 6. Average localization error. (a) IMU-based localization, camera based localization (b) Proposed
hybrid localization systems.

Figure 6a shows the average localization error results from IMU, ORB-SLAM and UcoSLAM based
localization approaches. The maximum error from IMU-based localization approach is 0.7528 m when
compared to the ground truth values. The ORB-SLAM localization approach gives 1 m localization
error when compared to the reference path. The UcoSLAM localization approach shows a maximum of
0.5120 m when compared to actual values. Figure 6b shows the average localization error results from
the proposed hybrid localization systems. The proposed hybrid systems show reasonable localization
accuracy when compared to the true position values. From the average localization error results,
the proposed hybrid localization approaches improved the localization accuracy when compared
to the independent localization approaches. Table 2 shows the performance analysis of different
localization approaches.
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Table 2. Performance of different localization approaches.

Localization Method Mean Error (m) Max. Error (m) Min. Error (m) Standard Deviation
of Error (m)

IMU 0.1710 0.7528 0.0031 0.2088
ORB-SLAM 0.2669 1 0 0.3150
UcoSLAM 0.0617 0.5120 0 0.0685

ORB-SLAM + IMU 0.1398 0.4996 0.0011 0.1375
UcoSLAM + IMU 0.0690 0.1985 0 0.0532

From Table 2, the proposed hybrid localization systems have less localization errors as compared
to the IMU and camera based localization approaches. The proposed hybrid localization gives high
position accuracy as compared to other localization approaches and the accuracy of proposed hybrid
approach is analyzed by probability distributions of localization errors. Figure 7 shows the probability
distributions of localization errors of IMU-based localization, camera based localization and proposed
hybrid localization approaches.

Figure 7. Probability distribution of localization errors. (a) IMU-based localization. (b) ORB-SLAM
localization. (c) UcoSLAM localization. (d) ORB-SLAM + IMU. (e) UcoSLAM + IMU.

From Figure 7, it is clear that the proposed hybrid localization approach reduces the position errors
and gives better performance when compared to the IMU and camera-based localization approaches.
The localization system based on ORB-SLAM approach has high possibilities for zero localization error
as compared to other localization systems. However, the system cannot estimate all user positions
due to the lack of keypoints in the experiment area. The UcoSLAM system has less mean localization
error than IMU and ORB-SLAM based systems. The IMU-based localization gives better performance
compared to camera-based localization in terms of heading errors. The error analysis shows that the
camera-based localization approach is affected by camera pose errors and hence degrades the indoor
position accuracy. From all this experiment result analysis, the proposed hybrid localization approach
gives reasonable position accuracy for indoor applications.
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5. Conclusions

This paper presented hybrid indoor localization system using IMU sensor and smartphone
camera. The IMU sensor errors are reduced by smartphone camera pose and the heading errors
from camera-based localization is overcome by the IMU localization results. The proposed hybrid
method show better positioning results compared to the individual localization method. We proposed
a Kalman filter based sensor fusion framework for hybrid localization approaches which enhanced
the results of the proposed methods. To improve the indoor position accuracy, the authors intend to
utilize optical flow and ultrasonic sensors in the proposed system in future work.
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21. Vezočnik, M.; Juric, M.B. Average Step Length Estimation Models’ Evaluation Using Inertial Sensors:
A Review. IEEE Sens. J. 2018, 19, 396–403. [CrossRef]

22. Díez, L.E.; Bahillo, A.; Otegui, J.; Otim, T. Step length estimation methods based on inertial sensors: A review.
IEEE Sens. J. 2018, 18, 6908–6926. [CrossRef]

23. Xing, H.; Li, J.; Hou, B.; Zhang, Y.; Guo, M. Pedestrian stride length estimation from IMU measurements and
ANN based algorithm. J. Sens. 2017, 2017, 6091261. [CrossRef]

24. Zhao, K.; Li, B.-H.; Dempster, A.G. A new approach of real time step length estimation for waist mounted
PDR system. In Proceedings of the International Conference on Wireless Communication and Sensor
Network, Wuhan, China, 13–14 December 2014; pp. 400–406.

25. Sun, Y.; Wu, H.; Schiller, J. A step length estimation model for position tracking. In Proceedings of the
International Conference on Location and GNSS (ICL-GNSS), Gothenburg, Sweden, 22–24 June 2015; pp. 1–6.

26. Shiau, J.-K.; Wang, I.-C. Unscented kalman filtering for attitude determination using mems sensors. J. Appl.
Sci. Eng. 2013, 16, 165–176.

27. Nguyen, P.; Akiyama, T.; Ohashi, H.; Nakahara, G.; Yamasaki, K.; Hikaru, S. User-friendly heading estimation
for arbitrary smartphone orientations. In Proceedings of the International Conference on Indoor Positioning
and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–7.

28. Liu, D.; Pei, L.; Qian, J.; Wang, L.; Liu, P.; Dong, Z.; Xie, S.; Wei, W. A novel heading estimation algorithm for
pedestrian using a smartphone without attitude constraints. In Proceedings of the International Conference
on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), Shanghai, China,
2–4 November 2016; pp. 29–37.

29. Jin, Y.; Toh, H.-S.; Soh, W.-S.; Wong, W.-C. A robust dead-reckoning pedestrian tracking system with low cost
sensors. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications
(PerCom), Seattle, WA, USA, 21–25 March 2011; pp. 222–230.

30. Shin, B.; Lee, J.H.; Lee, H.; Kim, E.; Kim, J.; Lee, S.; Cho, Y.-S.; Park, S.; Lee, T. Indoor 3D pedestrian tracking
algorithm based on PDR using smarthphone. In Proceedings of the International Conference on Control,
Automation and Systems, JeJu Island, Korea, 17–21 October 2012; pp. 1442–1445.

31. Ali, A.; El-Sheimy, N. Low-cost MEMS-based pedestrian navigation technique for GPS-denied areas. J. Sens.
2013, 2013, 197090. [CrossRef]

32. Fourati, H.; Manamanni, N.; Afilal, L.; Handrich, Y. Position estimation approach by complementary
filter-aided IMU for indoor environment. In Proceedings of the European Control Conference (ECC), Zurich,
Switzerland, 17–19 July 2013; pp. 4208–4213.

33. Kakiuchi, N.; Kamijo, S. Pedestrian dead reckoning for mobile phones through walking and running
mode recognition. In Proceedings of the International Conference on Intelligent Transportation Systems
(ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 261–267.

34. Kang, W.; Han, Y. SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization.
IEEE Sens. J. 2014, 15, 2906–2916. [CrossRef]

35. Tian, Q.; Salcic, Z.; Kevin, I.; Wang, K.; Pan, Y. A multi-mode dead reckoning system for pedestrian tracking
using smartphones. IEEE Sens. J. 2015, 16, 2079–2093. [CrossRef]

36. Shin, B.; Kim, C.; Kim, J.; Lee, S.; Kee, C.; Kim, H.S.; Lee, T. Motion recognition-based 3D pedestrian
navigation system using smartphone. IEEE Sens. J. 2016, 16, 6977–6989. [CrossRef]

http://dx.doi.org/10.18489/sacj.v29i3.452
http://dx.doi.org/10.1109/SURV.2012.121912.00075
http://dx.doi.org/10.1007/s11633-018-1150-y
http://dx.doi.org/10.5081/jgps.3.1.273
http://dx.doi.org/10.3390/s16091423
http://www.ncbi.nlm.nih.gov/pubmed/27598171
http://dx.doi.org/10.12720/jcm.10.7.520-525
http://dx.doi.org/10.1109/JSEN.2018.2878646
http://dx.doi.org/10.1109/JSEN.2018.2857502
http://dx.doi.org/10.1155/2017/6091261
http://dx.doi.org/10.1155/2013/197090
http://dx.doi.org/10.1109/JSEN.2014.2382568
http://dx.doi.org/10.1109/JSEN.2015.2510364
http://dx.doi.org/10.1109/JSEN.2016.2585655


Sensors 2019, 19, 5084 14 of 17
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