
DOI: 10.1002/minf.201900071

Prediction of Passive Membrane Permeability by Semi-
Empirical Method Considering Viscous and Inertial
Resistances and Different Rates of Conformational Change
and Diffusion
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Abstract: Membrane permeability is an important property
of drugs in adsorption. Many prediction methods work well
for small molecules, but the prediction of middle-molecule
permeability is still difficult. In the present study, we
modified a classical permeability model based on Fick’s law
to study passive membrane permeability. The model
consisted of the distribution of solute from water to
membrane and the diffusion of solute in each solvent. The
diffusion coefficient is the inverse of the resistance, and we

examined the inertial resistance in addition to the viscous
resistance, the latter of which has been widely used in
permeability prediction. Also, we examined three models
changing the balance between the diffusion of solute in
membrane and the conformational change of solute. The
inertial resistance improved the prediction results in
addition to the viscous resistance. The models worked well
not only for small molecules but also for middle molecules,
whose structures have more conformational freedom.
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1 Introduction

Permeability is one of the most important factors in a drug’s
adsorption and target-binding properties in cells. The
understanding and predicting membrane permeability of
molecules have been studied for last few decades. It is still
one of the hot topics, especially under circumstances where
the molecular weights of drug molecules have been
increasing and larger molecules often face the lower
permeability than smaller drug molecules do. There have
been a number of reports on permeability.[1–26] The main
permeability problems are adsorption in human intestine,
extraction from kidney, penetration of the blood-brain
barrier, skin permeability, and the permeability of the cell
membrane to approach target proteins in cells. Caco-2 cells
and MDCK cell systems are two of the model systems that
mimic human intestine adsorption and extraction from
kidney, respectively. Parallel artificial membrane permeabil-
ity assay (PAMPA) systems have been popular in vitro assay
systems for the past 20 years.[26–32] PAMPA systems have
been improved to mimic in vivo permeability by trying
various membrane materials, pH levels of donor and
acceptor liquids and the other conditions. Certain mecha-
nisms underlie permeability.[2,3,26] Namely, solute molecules
penetrate the cell membrane by diffusion (transcellular), the
solute molecules go through the tight junction (para-
cellular), and transporters and channel proteins work in the
influx and efflux processes. Among these mechanisms,

PAMPA permeability represents transcellular passive perme-
ability.

Recent advances in molecular dynamics (MD) simula-
tions enable the understanding and evaluation of trans-
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cellular passive permeability.[4–15] In these calculations, MD
simulations have been applied to explicit atomic models of
membrane molecules with solvent water molecules. Since
permeation is a very slow process, biased MD simulations
have been popular in this analysis. MD simulations have
shown that the distribution of the existence probability of
solute and the diffusion of solute in the membrane gave
the permeability constant.

On the other hand, many approaches have adopted
quantitative structure-property relationship (QSPR) models
for passive permeability based on Fick’s law.[2,3,26] Previous
works have shown the efficiency of this basic theory, and
some extensions from this theory have improved prediction
accuracy.[16,17] Fick’s law explains that permeability is a
combination of the transfer of solutes from the donor water
into the membrane and the diffusion of the solutes from
the donor to the acceptor sides in the membrane. Only the
neutral molecule moves into the lipid layer so that the pKa

and the partition coefficient (LogP) or the distribution
coefficient (LogD) determine the distribution of solute
between the donor water and the membrane. The perme-
ability Papp is given as follows.

LogPapp ¼ Log
D �M

h (1)

where Papp, D, M, and h represent the apparent membrane
permeability, distribution coefficient, diffusion constant of
the solute, and thickness of the membrane, respectively.
The above MD simulations support this assumption.
Namely, LogD corresponds to the probability distribution of
existence and M corresponds to the diffusion of solute
obtained by the MD simulation, respectively.

The diffusion constant M is estimated by the Einstein-
Stokes relation

M ¼
kB � T

6p � m � R (2)

where kB, T, μ, and R are the Boltzmann constant, temperature,
viscosity and radius of the solute, respectively. Since LogD
corresponds to the free energy of the transfer from water to
membrane, this value could be approximated by the acces-
sible surface area (ASA) method, the generalized Born (GB)
method, polar surface area (PSA), and so on.[33] Thus, the
following linear regression model can estimate LogPapp.

LogPapp ¼ LogD � LogRþ c0 ¼
XNdescriptor

i¼1

ci
1xi þ c0 (3)

where x, c, and Ndescriptor are the molecular descriptors, the
fitting parameters, and the total number of descriptors,
respectively, and the fitting parameters represent the
characteristic properties of the membrane.

Recent advances in pharmaceutical research have in-
creased the molecular size of drugs, and middle-molecule
drugs, with molecular masses >500 Da, have become
popular. In the last few decades, the major drug targets
have been receptors and enzymes. Pharmaceutical compa-
nies have released several thousands of drug molecules;
however, they are now facing a severe depletion in the
druggable targets with conventional strategies. Research
activities focusing on protein-protein interaction (PPI)
inhibitors have been started instead of the projects on
finding ligands to receptors and enzymes.[34,35] To inhibit
PPIs, larger molecules are often preferable than the small
molecules. However, the hydrophobic and often insoluble
physical properties of middle molecules that are distinct
from small ligands cause serious problems in their develop-
ment stages.

While one of the major problems of middle molecules is
the low membrane permeability, the synthetic accessibility
in chemical modifications is also limited. The synthetic
processes of middle molecules are more complicated and
time-consuming than that of small molecules. Thus, we
need the mechanistic understandings to unveil the domi-
nant factors of membrane permeability, rather than black-
box permeability predictions, to guide a rational modifica-
tion of the middle molecules.

A number of reports suggested that conformational
change is essential in permeability and cyclization as well as
in the methylation of main-chain amide groups, and some
chemical modifications have improved permeability.[18–22]

Many studies have challenged this problem by using QSPR
models and have successfully predicted membrane perme-
ability, including that of middle molecules.[23] However,
some studies have suggested that it is still difficult to
predict the membrane permeabilities of middle molecules.

Diffusion constant M in eq. 1 consists of viscous
resistance and inertial resistance. Equation 2, which is the
inverse of viscous resistance, assumes the slow migration of
solute in equilibrium. Permeability is non-equilibrium proc-
ess in general, and the density of the solute keeps changing
in the experiment. When solute molecules push solvent
molecules, the inertial resistance is proportional to the cross
section of the solute. In general, we have ignored inertial
resistance without examining the actual experimental data.
In a non-equilibrium state, the density of solute in the
membrane cannot reach equilibrium. The solute can pass
through the membrane before the conformational ensem-
ble of the solute reaches equilibrium distribution (see
Figure 1A).[4] In this case, the distribution of solute is
different from the distribution coefficient D observed in
equilibrium.

In the present study, we examined the diffusion process
by using a classical QSPR model. We considered inertial
resistance the same as viscous resistance. Also, we
developed formulas considering the above two cases in
which the conformational change occurs faster or slower
than the diffusion in the membrane.[5]
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2 Methods

We classify the membrane permeability process into two
models according to the speed of permeability.[5] If the
membrane permeation is faster than the conformational
change of the solute in the membrane, each conformer
penetrates the membrane while keeping the 3D structure
of each conformer, and the dominant conformer in water
could be the main contributor to the permeability (perme-
ability model A in Figure 1A). If the membrane permeation
is slower than the conformational change of the solute in
the membrane, the most stable conformer in the mem-
brane could contribute to the permeability (permeability
model B in Figure 1B). In this article, we apply Fick’s law to
membrane permeability, since the physical meaning of
Fick’s law is clear and simple.

2.1 Permeability Model A

Since each solute penetrates the membrane without
conformational change, the distribution of conformers in
the membrane is equal to that in water solvent. The total
permeability ratio (Papp

all) is the summation of the perme-
ability of all conformers.

LogPall
app ¼ Log

XNconformer

a¼1

dwatðaÞPappðaÞ

 !

(4)

Here, Papp(a), dwat(a), and Nconformer are the apparent perme-
ability of the a-th conformer, the distribution of the a-th
conformer in water, and the total number of conformers,
respectively. The following relation is obvious.

Pall
app ¼

DðaÞMðaÞ
h

� �

wat
¼ exp log

DðaÞMðaÞ
h

� �� �

wat

¼ exp LogPappðaÞ � log10
� �� �

wat

(5)

where the brackets < >wat stand for the average over the
distribution in water. The fraction of the a-th conformer in
water (=dwat(a)) is given by

dwatðaÞ ¼
nðaÞ expð� EwatðaÞ=ðkBTÞ
PNconformer

b¼1
nðbÞ expð� EwatðbÞ=ðkBTÞ

(6)

where Ewat(a) and n(a) are the energy and the degeneracy of
the a-th conformer, respectively.

When we apply Kubo’s cumulant expansion to eq. 5, the
first two terms of the expansion are as follows.[36]

LogPall
app ¼< LogPappðaÞ >wat �

1
2

LogPappðaÞ
2 � LogPappðaÞ

� �2� �
wat þ

1
6
� � �

(7)

The first term is the average LogPapp and the second is
the deviation of LogPapp.

A linear regression model that is a weighted summation
of the descriptor values approximates the LogPapp of the a-
th conformer as follows,

LogPappðaÞ ¼ Log
DðaÞMðaÞ

h ¼
XNdescriptor

i¼1

ci
1xiðaÞ þ c0 (8)

where c and x(a) are the fitting parameters and the
descriptor of the a-th conformer, respectively.

If the descriptors xA and xB are independent from each
other, <xA +xB> = <xA> + <xB> and also σ(xA +xB)=σ
(xA)+σ (xB), where σ stands for the deviation. Thus, if all the
descriptors are independent of each other, eq. 7 becomes
as follows.

Figure 1. Permeability mechanism Models A and B. The rings
represent the solute molecules and the different shapes represent
the different conformers. Thick solid and thin dotted rings
represent the large and small populations of molecules, respec-
tively. The buffer solvent region is separated by the lipid bilayer in
the middle (gray). Orange and green arrows represent the diffusion
in the membrane and conformer change in the membrane
depicted in gray. The open forms (3 and 4) are major rather than
the closed form (1 and 2) in the buffer solvent. In Model A, there is
no conformation change in the membrane. In Model B, the solute
molecules in membrane show conformation change and the closed
form becomes major.
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LogPall
app ¼ c0 þ

XNdescriptor

i¼1

ci
1 < xi >wat

þ
XNdescriptor

i¼1

ci
2sðxiÞwatþ � � �

(9)

In permeability model A, the deviations of all the
descriptors, including the ASA and the radius of the solute,
contribute to LogPapp

all in addition to the average values of
these descriptors.

2.2 Permeability Model B

If the membrane penetration is much slower than the
conformation change, the distribution of conformers
reaches equilibrium in the membrane and in water. The
distribution constant D is given by the partition function of
the molecule as follows.

LogD ¼ Log
Zoct

Zwat

¼ Log

PNconformer

b¼1
nðbÞ � expð� EðbÞoct=kBTÞ

PNconformer

b¼1
nðbÞ � expð� EðbÞwat=kBTÞ

(10)

where Z°ct, Zwat, and n(b) are the partition functions in
octanol and in water and the degradation number of the b-
th conformer. E°ct and Ewat are the energy of the conformer
in octanol and water, respectively.

The D value gives the density of molecules on the
donor � -membrane interface of the membrane. The sum-
mation of diffusions of all the conformers gives the total
diffusion.

LogPall
app ¼ Log

D
h

XNconformer

a¼1

dmemðaÞMðaÞ

 !

¼ LogD � Loghþ Log < MðaÞ >mem

(11)

The fraction of the a-th conformer in the membrane is
given by

dmemðaÞ ¼
nðaÞ expð� EmemðaÞ=ðkBTÞ
PNconformer

b¼1
nðbÞ expð� EmemðbÞ=ðkBTÞ

(12)

As in eq. 7, here we apply Kubo’s cumulant expansion to
eq. 11, giving

LogPall
app ¼ LogD � Loghþ < LogMðaÞ >mem

�
1
2
< LogMðaÞ2 � LogMðaÞh i2>mem þ � � �

(13)

In permeability model B, the deviations of the descrip-
tors relating to the diffusion contribute to LogPapp

all besides
the average values of the descriptors. Namely, the deviation
of the radius of the solute should contribute to the
prediction of LogPapp.

2.3 Regression and Prediction

Our physical-property prediction method was a principal
component regression (PCR) with an L2 regularization term
based on the molecular descriptors.[37,38] The regression
model was the same as that used in our previous study.
Namely, the principal component (PC) analysis projected
each compound into each point in a chemical space of the
PC, and a multiple linear regression was applied to the
molecular coordinates in the chemical space. The principal
component axes were selected to minimize the root-mean-
square error (RMSE) in regression. The addition of the L2
term reduced the RMSE in the prediction.

The physical property of the i-th molecule V(i) is
estimated based on the molecular descriptors {si

b} where b
represents the b-th descriptor as follows.

VðiÞ ¼
XNaxis

j¼1

cj � p
j
i þ c

0 (14)

pj
i ¼

XNdescriptor

b¼1

dj
b � ðs

b
i � < sb >Þ (15)

where cj, pi
j, and db

j are the intercept parameter of the linear
function, the PC vector, and the loading vector, respectively.
The PC analysis of the descriptor si

b gives the loading vector
db

j and the PC vector (axis) pi
j. The values of {cj} are

determined by multiple linear regression (MLR). Naxis (Naxis<

Ndescriptor) is determined so as to maximize the Q2-value
obtained by cross validation tests. The parameters are
determined based on the learning set and then are used for
prediction. The objective function O({c}) consists of the
summation of the square error between the experimental
(Vexptl) and calculated (Vcalc) property values with the
following regularization term:

OðfcgÞ ¼

XNdata

i¼1

ðVexptl
i � Vcalc

i ðfcgÞÞ
2 þ l

XNaxis

i¼1

ðciÞ
2 (16)
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Here, the parameter set {c} is determined to minimize
the O value. The weighting parameter λ is fixed to a
constant (λ= 0.000001) in the present study.

We apply this regression model to Papp, LogP, LogD, and
pKa. Since the permeability depends on the LogP, LogD,
and pKa, the Papp prediction model should include the
descriptors for LogD, LogP, and pKa prediction. All the
prediction models shared the same molecular descriptors.
We applied 4-fold CV tests to evaluate the accuracy, and all
the values in the tables were predicted in the 4-fold CVs.
The CV tests showed RMSE and Q2 values. The definitions of
Q2 and RMSE are determined as follows.

Q2 ¼ 1 �

PNcmp

i¼1
ðYpredi � YexpiÞ2

PNcmp

i¼1
ðYexpi � YexpiÞ2

(17)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNcmp

i¼1
ðYpredi � YexpiÞ2

Ncmp

v
u
u
u
t (18)

Here, Ypred and Yexp represent the predicted value in
validation and the experimental Y value, respectively. In the
present study, we do not compare the Q2 values of different
properties, since the variances of the experimental data
(denominator in eq. 17) differed from each other among
the different data sets.[39]

2.4 Regression and Prediction

Models A and B use the degeneracy and energy of the
conformers in eqs. 6 and 9 so that we must sample the
conformers. Although an exhaustive search of conformers is
very difficult and time-consuming, many heuristic con-
former generation methods have been proposed. The major
approaches are random search and systematic search.[40–47]

Especially, the conformer generation of ring systems is
more difficult than that of nonring systems. For ring
systems, some specialized methods, such as corner and
edge flips, have been used.[40,41] We applied a Monte Carlo
random-sampling method.[42] In conformer generation, a
difficult problem is the estimation of degeneracy (n(a)) in
eqs. 6 and 9. Most conformer generation programs focus on
the reproduction of the most stable conformers precisely,
but the degeneracy is unclear. Long-time MD simulations
could measure the degeneracy but are not realistic in this
work, since there are too many molecules.

One of the simplest approaches should be a uniform
sampling of conformers without solvent bias. If the con-
former search was a random sampling of dihedral angles of
rotatable bonds of a molecule, the generated structural
ensemble should mimic the uniform sampling (see some

discussions in APPENDIX A in the supporting information).
Unfortunately, this approach could not work in the
sampling of large or cyclic compounds, since the ring
systems could be opened by the random rotations of the
dihedral angles and an atomic collision could occur. Thus,
we applied a force field to close the ring systems and to
avoid atomic collisions. Our conformer generation program
transforms the ring systems of a molecule to nonring
systems by removing one of the bonds in the ring. The
following energy optimization closes the rings. The force
field used was an AMBER-like one including 1–2, 1–3, 1–4,
and 1–5 interactions. The 1–4 and 1–5 interaction terms
consisted of only van der Waals interactions without
electrostatic interactions, since the dielectric constant of
water is very different from that of membrane.

A clustering analysis of the conformers generated above
estimates the degeneracy number (n(a) in eqs. 6 and 9). The
clustering threshold is the heavy atom RMSD<1.5 Å.

2.5 Descriptors

The molecular descriptors consisted of physical and chem-
ical ones. The physical descriptors represent mainly the size
of a molecule that is related to the diffusion. The accessible
surface area (ASA) is a useful idea with which to represent
the solute � solvent interaction. The chemical properties
represent mainly the hydrophobicity/hydrophilicity of a
molecule that is related to the distribution between water
solvent and membrane. In general, charged molecules
cannot penetrate a membrane whose dielectric constant is
small, but neutral molecules can. The total charge of a
molecule is determined by the pKa and the MACCS key,[48]

which is a set of substructures that recognizes the func-
tional groups closely related to pKa.

[48] The atomic charges
were AM1-BCC charges obtained by MOPAC7.[49–51] The
hydrogen bonds are determined for the hydrogen atoms of
OH and NH groups and for the acceptor atoms with lone
pairs (O, N, S). The GBSA method was used to calculate the
LogD by eq. 10.[33] Since the descriptors include the ASA,
the ASA and the LogD term double-counted the solute-
solvent interaction. The PCR could combine these depend-
ent terms and thus reduce the number of independent
fitting parameters. The atomic solvation parameters in the
GBSA method were set to 10 cal/mol/Å2 and � 5 cal/mol/Å2
for water and membrane, respectively.

Models A (eq. 9) and B (eq. 13) include both the average
and deviation terms. The average <A> and deviation σ(A)
of property A are determined as follows. The conformer
generation program in section 2.4 generates the con-
formers.
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< A >¼

PNconformer

i¼1
nðiÞAðiÞ expð� EsolðiÞ=ðkBTÞÞ

PNconformer

i¼1
nðiÞ expð� EsolðiÞ=ðkBTÞÞ

(19)

sðAÞ ¼

PNconformer

i¼1
nðiÞðAðiÞ� < A >Þ2expð� EsolðiÞ=ðkBTÞÞ

PNconformer

i¼1
nðiÞexpð� EsolðiÞ=ðkBTÞÞ

(20)

where sol represents the solvent (water or membrane). Es°l

(i) is the relative energy of the i-th conformer in the solvent
compared to that in vacuum.

Since membrane permeability is related to LogD, or to
LogP and pKa values as described in eqs. 1, 3, 8, and 13, the
descriptors that could approximate LogD, LogP, and pKa

values should contribute to Papp values. Dissociations of
hydrogen atoms depend on the chemical bonds of the
functional groups and the electrostatic field generated by
the charge distribution of the solute. A previous work
proposed a linear correlation between the proton chemical
shift and the pKa value, and the chemical shift depends on
the electron density on the nucleus.[52] Thus, we adopted
the descriptors used in the LogD and pKa predictions.
Namely, we used the numbers of hydrogen donors and
acceptors, the atomic charges of the hydrogen atoms of the
NH and OH groups, and the MACCS key to represent the
chemical structures of the solutes.

3. Data Preparation

The PAMPA permeability data and molecular structures
were extracted from ChEMBL database version 24.[53] The
ChEMBL assay and compound IDs used are summarized in
Table S1. Most of the experimental conditions included
pH 7.4 and the observation times were several hours, but
the details of the conditions varied. In addition, a variety of
membrane materials have been used.[15,26–32] A desirable
assay data set consists of the Papp values obtained under the
unique experimental conditions.[18] The careful data selec-
tion limited the number and diversity of examined com-
pounds. While there have been differences in the Papp

values observed through the PAMPA assay, the systems
were designed to reproduce Papp values of the Caco-2 assay
system. To evaluate the wide variety of compounds, the
present data set consisted of 737 compound data obtained
under the heterogeneous experimental conditions.; There
were 70 pairs of the same solute with different Papp values;
for these 70 pairs, the average difference was 0.401 and the
RMSD was 0.500. Thus, we discussed the prediction
accuracy of LogPapp >0.5. As with the Papp, we also prepared
data on the octanol-water distribution coefficient (LogD,

4215 compounds),[54] and the dissociation coefficient (pKa,
240 compounds).[55,56]

Astellas Pharmaceutical kindly provided additional ex-
perimental data, since there were fewer data on macrocyclic
compounds than on acyclic compounds. The observed
experimental property data were Papp, LogD, and LogS data.
The test compounds were 58 selected commercially avail-
able macrocyclic compounds. In addition, we asked Enam-
ine Ltd. to evaluate the Papp values of two cyclic peptides
using the PAMPA assay. The molecular structures and
experimental values are summarized in Tables S1 and S2 in
the supporting information.[57]

We prepared three-dimensional molecular structures of
the examined compounds in the present study. The
computational procedure was summarized as APPENDIX B
in the supporting information. The initial molecular struc-
tures were 2D planar structures without hydrogen atoms in
the SD file format. A file transfer program, Hgene/myPresto,
was used to prepare the three-dimensional molecular
structures with hydrogen atoms in electrically neutral forms
including acids and amines. The atomic charges were the
AM1-BCC charges provided by the MOPAC program. A
molecular dynamics simulation program, cosgene/myPres-
to, gave the energy-optimized structures with the general
AMBER force field (GAFF) assigned by the tplgeneL/
myPresto topology generator.[58,59] The energy optimization
gave one stable or meta-stable molecular structure for each
molecule in vacuum. All the molecular structures were
prepared in the Sybyl mol2 file format.

The total data set consisted of 795 data points from the
ChEMBL database and the unpublished assay data. Table 1
shows the distributions of molecular weight and the total
number of atoms as well as the numbers of heavy atoms,
ring structures, rotatable bonds, and atoms included in the
biggest ring system of each molecule.

4 Results and Discussion

4.1 Prediction Models for Models A and B

Our LogPapp prediction model represents the dissociation of
solute in water, the distribution of solute from donor water
(donor) to membrane, and the diffusion of solute in the
membrane towards the water (acceptor) phase. Diffusion
depends on the solute molecular radius R, and many
previous works adopted R as the descriptor in LogPapp

Table 1. Statistical features of the data set for permeability
prediction.

Average Deviation

Molecular weight (Da) 424.1 160.4
No. of all atoms 54.5 23.1
No. of heavy atoms 29.6 11.4
No. of rings 3.2 1.3
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prediction.[2,16,23,24] The ES term (eq. 2) represents the viscous
resistance, while the real solute molecule feels both the
viscous resistance and the inertial resistance. The inertial
resistance is proportional to the product of the cross section
of the solute and the square of the velocity of the molecule.
The Taylor series of the total diffusion becomes as follows.

LogM ¼ Log
1

fvRþ fiR2

� �

¼ � LogfvR 1þ fi=fvRð Þ

¼ � Logfi � LogRþ ðfi=fvÞ � R

� 1=2ðfi=fvÞ
2 � R2 þ 1=3ðfi=fvÞ

3 � R3 þ � � �

(21)

where R, fv, and fi are the average radius of the solute and
the respective coefficients of the diffusions related to the
viscous and inertial resistance. In the actual calculation, we
used the average R (denoted as <R>) instead of R. Thus,
we described the diffusion term of LogPapp as a weighted
summation of <R> , <R> 2, <R> 3, and Log<R> . Also,
the <R> 3 term represented the permeant’s volume, since
the transfer of the molecule from the donor phase to the
membrane needed a volume change of the membrane, and
this change generated additional energy corresponding to
pressure in the membrane. In addition to these terms, we
adopted the σ(R) term of the cumulant expansion (eqs. 7
and 13).

We discussed only a passive permeability. The Fick’ law
(eq. 1) suggested that the permeability process consisted of
several processes in a sequential order (the diffusions in
water, the partitioning between water and membrane, the
diffusion in membrane) and the LogPapp could be given by a
summation of the effects of these processes. In addition,
our modifications (eqs. 7, 13 and 21) could be represented
by linear regression models. Thus, we started from simple
linear regression models as the QSPR equations based on
Models A (eq. 22) and B (eq. 23).

LogPModelA
app ¼ cD < LogDðaÞcalc

ow >wat

þcEsðLogDðaÞcalc
ow Þwat þ

XNA

i¼1

cAW
i � < Ai >wat

þ
XNA

i¼1

cAM
i � < Ai >mem þcB� < B >wat þcr� < R >wat

þcS� < R >2
wat þcV � < R >3

wat þcr � sðRÞwat

þcl � log < R >wat þcOH � qðOHÞ þ cNH � qðNHÞ

þcatom � Natom þ crot � Nrot þþcHA � NHA

þcHD � NHD þ
X

cMACCS
i �MACCSi þ c0

(22)

and

LogPModelB
app ¼ cD � Log10D

calc
ow þ

XNA

i¼1

cAW
i � < Ai >wat

þ
XNA

i¼1

cAM
i � < Ai >mem þcB� < B >mem

þcr� < R >mem þcS� < R >2
mem þcV � < R >3

mem

þcr � sðRÞmem þ cl � log < R >mem

þcOH � qðOHÞ þ cOH � qðOHÞ

þcatom � Natom þ crot � Nrot þ cHA � NHA

þcHD � NHD þ
X

cMACCS
i �MACCSi þ c0

(23)

where Ai, B, q(OH), q(NH), Natom, Nrot, NHA, NHD, and MACCS
represent the ASA of the i-th atom type, the number of
intramolecular hydrogen bonds, the maximum atomic
charge of the H atom in the OH groups, that in the NH
groups, the number of atoms, the number of rotational
bonds, that of hydrogen donors, that of acceptors, and the
MACCS key. The coefficient c’s (cD, cAW, cAM, cB, cR, cS, cV, cr, cl,
c°H, cNH, cat°m, cr°t, cHA, cHD, cMACCS, and c0) are the fitting
parameters determined by the regression. The atom type
was Sybyl mol2.

4.2 Prediction Results by Models A and B: Conformer
Dependence

To examine the adequacy of Models A and B, we calculated
the conformer dependence of each. Before the validation of
the prediction models, we examined the conformer gen-
eration. Table 2 shows the average values of <R>wat and <
R>mem, σ(A)wat, and σ(A)mem over all of the 795 solute
molecules in the dataset, when the number of conformers
was set to 100. The conformer generation represented the
solute-size change in water and in membrane. The results
supported previous findings.[18–22,25] Namely, the solutes in
membrane were folded into smaller compact structures
than those in water (<R>mem< <R>wat), and the solutes
in water fluctuated more than those in membrane (σ
(R)mem<σ(R)water). These results showed a consensus with
the previously reported phenomena.[18–22,25] Thus, we ap-

Table 2. Statistics on diffusion-related values of 795 compounds at
Nstructure =100.

Term Average Deviation Min Max

<R>wat
a 4.27 0.80 1.73 7.07

<R>mem
a 3.85 0.75 1.73 6.44

σ(R)wat
a 0.28 0.17 0.00 0.64

σ(R)mem
a 0.03 0.05 0.00 0.51

<B>wat
b 0.02 0.13 0.00 1.41

<B>mem
b 0.02 0.16 0.00 2.00

a: units in Å. b: number of intramolecular hydrogen bonds.
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plied this conformer generation method in the present
study.

We applied Models A and B to the ensemble of
conformers by restricting the maximum number of gener-
ated conformers up to 300. Then the 4-fold CVs of LogPapp

predictions were used to estimate the Q2 and RMSE values.
Figure 2 and Table S3 show the conformer-number depend-

ence of the LogPapp prediction. Both Models A and B worked
well, and the increase in conformers improved the
prediction accuracy. Some previous works showed that the
conformer change increased the membrane
permeability.[3,6,7,24,25] Namely, if the molecule has some
conformers that show hydrophilic or hydrophobic surfaces,
it can select stable conformers depending on the solvent
(hydrophobic conformer in lipid and hydrophilic conformer
in water).

There are two problems that make the validation of the
models difficult. One of the problems is the lack of sufficient

experimental observations of the conformational dynamics
of solute in permeability process. Solution NMR experi-
ments could determine the conformations in different
environments including those mimic membrane interiors.
However, available NMR experimental data that directly
compare aqueous and lipid bilayer environments are rather
limited. Often, the limited solubilities of middle molecules
prevent the observation of NMR signals in aqueous
solution.

In addition, most of the permeability data are for small
molecules, which are less flexible than middle molecules
and have smaller number of possible conformers. There are
only small number of experimentally determined perme-
ability data on middle molecules to establish the dynamics-
activity relationships. The limited number of flexible mole-
cules with membrane permeability data also causes the
problem in validating of the models based on the
prediction accuracy. Recent progress of the solution NMR
and molecular dynamics simulations of membrane systems
should elucidate and validate the permeability mechanism
in near future.

Table S4 also shows the average and maximum CPU
times elapsed for one molecule. The longest CPU time was
less than 62 minutes. The calculation speed should be faster
than the precise MD simulation.

The results obtained by Model A were close to those by
Model B. Thus, we combined the models into one by
merging their descriptors. Model AB represents the united
model, and the fitting parameters were determined in the
same way as for Models A and B. The results obtained by
Model AB were slightly better than those by Models A and
B (see Figure 2 and Table S3). The RMSE values were about
0.5 and close to the deviation of the experimental data
(about 0.4). Since these results showed that both Models A
and B were possible permeability processes, we could not
clarify the ratio of the speeds of conformer change and
diffusion. The ratio should be different for each molecule in
the data set.

The conformer generation represented two effects. One
was the molecular-size change depending on the solvent.
The radius of the molecule in water was different from that
in membrane. One conformer rich of intra-molecule hydro-
phobic contacts could be dominant in water and the other
conformer rich of intra-molecule hydrogen bonds could be
dominant in water. The other effect was the structural
fluctuation of the molecule. The dynamics of the molecule
in water were different from those in membrane. In this
case, multiple conformers existed in water and in mem-
brane, and the population of conformers in water could be
different from that in membrane. The deviation terms (σ(R))
in eqs. 22 and 23 correspond to this structural fluctuation of
the solute molecule. To evaluate the effect of this deviation
term, we removed the deviation terms from eqs. 22 and 23.
Figure 2D shows the RMSE values obtained by Models A, B,
and AB without the σ(R) terms. The σ(R) terms did not
improve the accuracy drastically as the number of con-

Figure 2. Conformer-number dependence of predicted properties.
X axis is in Log scale. Red, green, and black circles represent the
RMSE values obtained by Models A, B, and AB, respectively. (A)
LogPapp, (B) LogD, (C) pKa, (D) LogPapp without σ(R) terms, and (E)
LogPapp values with n(i)=1, respectively.
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formers increased. These results suggested that the struc-
tural change of the solute molecule was important in the
LogPapp prediction, but the dynamic structural fluctuation of
the solute molecule in each condition was not so important
in the LogPapp prediction.

We examined which terms in eqs. 22 and 23 reflect the
conformer number dependence. The permeability process
includes the dissociation of solutes in water and the
distribution of electrically neutral solute molecules from
water to membrane. These processes relate to the LogD,
LogP, and pKa values. Thus, the permeability-prediction
models (eqs. 22 and 23) should predict the LogD, LogP, and
pKa values by adjusting the coefficients {c} of eqs. 22 and
23. Figures 2B and 2 C show the conformer dependences of
the predicted LogD and pKa values, respectively. The
prediction models worked and the RMSE values of these
predictions were similar to those previously reported. These
predicted values did not show clear dependence on the
number of conformers. Using the same model, only the
predicted LogPapp values showed the conformer-number
dependence among these properties. Considering eq. 1,
these results suggested that the conformer-number de-
pendence of LogPapp originated from the diffusion process
(M in eq. 1) in the present models and that the <R> terms
in eqs. 22 and 23 should contribute to the conformer-
number dependence of LogPapp.

We also examined the RMSE and Q2 values when all the
degeneracies of conformers were identical (n(i)= 1 in
eqs. 19 and 20). Figure 2E shows the conformer depend-
ence of the predicted LogPapp values with n(i)= 1. The
results were worse than those with estimated degeneracy,
and increasing the number of generated conformers did
not improve the RMSE. These results suggested that the
conformer generation worked properly and that the
estimation of conformer populations was important in the
LogPapp prediction.

4.3 Contribution of Diffusion Terms to LogPapp Prediction

We examined the diffusion process in terms of viscous (ES
term, eq. 2) and inertial resistances. Table 3 shows the Q2

and RMSE values for various combinations of diffusion
terms. The diffusion was described by the Log<R> , <R> ,
<R> 2, <R> 3, and σ(R) terms in eqs. 22 and 23. Since the
Taylor series in eq. 21 includes higher-order terms than
<R> 3, we examined the effect of <R> 4 too. <R> 3 was
proportional to the volume of solute molecule, but it did
not originally refer to volume. <R> 2 and <R> 3 corre-
spond to the cross section of the solute molecule and the
cross section of it that causes inertial resistance. The <R>
and Log<R> terms represented viscous resistance. The
<R> 2 and <R> 3 terms improved the accuracy, as did the
ES term that corresponded to <R> and Log<R> . The
higher-order term (<R> 4) and the deviation σ(R) did not
improve the results so much.

4.4 Molecular Weight and Ring-Size Dependences

We examined how Models A and B worked in the prediction
of the LogPapp of middle molecules. If the prediction model
was adequately constructed, the predicted results should
not depend on the molecular size. Since molecules with
MW>500 Da and those with Nring (the number of ring-
member atoms of the biggest ring) >12 are so-called
middle molecules and macrocyclic molecules, respectively,
we examined the MW and Nring dependences of the
predicted data distributions. Figures 3 and 4 show the
prediction results obtained by the 4-fold CV of Model B at
Nstructure = 100. Figure 3A and 4 A show the correlations
between the predicted and experimental LogPapp values,
and Figure 3B and 4B show the principal component
analysis results as the chemical space of the data points.

Table 3. LogPapp prediction results obtained by various diffusion terms at Nstructure = 100.

Diffusion term
including R

Model A Model B Model AB
RMSE Q2 RMSE Q2 RMSE Q2

None 0.54 0.77 0.54 0.77 0.54 0.77
<R> 0.54 0.77 0.54 0.78 0.54 0.77
Log<R> 0.54 0.78 0.53 0.78 0.54 0.78
σ(R) 0.54 0.77 0.54 0.77 0.54 0.77
R, σ(R) 0.54 0.77 0.53 0.78 0.54 0.78
Log<R> , σ(R) 0.53 0.78 0.53 0.78 0.53 0.79
<R> , Log<R> 0.53 0.78 0.53 0.78 0.53 0.78
<R> , Log<R> , σ(R) 0.53 0.78 0.53 0.78 0.53 0.79
{<R> n; n=1–2},
Log<R> , σ(R)

0.53 0.78 0.53 0.78 0.53 0.79

{<R> n; n=1–3},
Log<R> , σ(R)

0.53 0.78 0.52 0.79 0.52 0.79

{<R> n; n=1–2},
Log<R>

0.53 0.78 0.54 0.78 0.53 0.78

{<R> n; n=1–3},
Log<R>

0.53 0.78 0.53 0.78 0.52 0.79
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Since Models A and AB showed the same trends as Model
B, these results were omitted.

The colors in Figure 3 represent molecular weight (MW).
The overall trend was that the set of small molecules
showed high permeability and that of large molecules
showed low permeability, but the overlaps among different
color points were spread across a wide area. The overlap
among the smaller and bigger molecules showed wide
distribution in the chemical space. The RMSE did not
depend on the MW so much. These results suggested that
the present prediction model should be robust against the
MW difference.

The colors in Figure 4 represent the number of ring-
member atoms of the biggest ring (Nring). The distributions
of the same color data points were not localized in the
LogPapp prediction and chemical space, or the data points of
similar size compounds spread across a wide area. The
distributions of middle molecules and macrocycles over-
lapped that of small molecules. The RMSE did not depend
on the Nring so much. In addition, Table 4 shows the
dependence of the RMSE on the number of rotational
bonds (Nrot). Nrot represents the flexibility of a molecule. As
with the MW and Nring, the Nrot dependence of LogPapp was
weak. These results suggested that the prediction model

worked well in the wide molecular-size range and should
be robust against various molecular sizes and shapes.

We depicted the PCA plots based on Mordred descrip-
tors to examine the chemical space of the collected
molecules in the present study.[61] Mordred consists of 1826
molecular descriptors and it has been widely used in the
chemoinformatics. Figures 3C and 4 C show the results. As
same as Figures 3B and 3 C, the distributions of molecules
were widely spread, and the groups of molecules colored
according to their size and shape distributed contiguously
except very small molecules <150 Da (colored in red). Thus,

Figure 3. Predicted and experimental LogPapp (A), chemical spaces
(B) based on the descriptors in eq. 23 and (C) based on the Mordred
descriptors in term of MW, respectively. The model used is Model B
at Nstruct = 100. Red, orange, gray, green, and blue spheres represent
the molecules with 0<MW<150 Da, 150 Da<MW<300 Da,
300 Da<MW<500 Da, 500 Da<MW<600 Da, and 600 Da<MW,
respectively.

Figure 4. Predicted and experimental LogPapp (A) and chemical
spaces (B) based on the descriptors in eq. 23 and (C) based on the
Mordred descriptors, respectively. The model used is Model B at
Nstruct =100. Gray, green, and blue spheres represent the molecules
with Nring C<12, 12<Nring<20, and 20<Nring, respectively.

Table 4. RMSE and Q2 values in terms of molecular size at Nstructure =

100.

Molecular features No. of
mols

Model A Model Bb Model AB
RMSE Q2 RMSE Q2 RMSE Q2

MW<150 37 0.47 0.36 0.45 0.43 0.46 0.40
150<MW<500 571 0.52 0.78 0.50 0.80 0.49 0.80
500<MW 187 0.40 0.77 0.39 0.78 0.38 0.78
Nrot<10 242 0.48 0.73 0.45 0.76 0.45 0.77
10<Nrot<20 448 0.50 0.81 0.49 0.82 0.48 0.82
20<Nrot 99 0.46 0.84 0.43 0.86 0.44 0.85
Nring<6 511 0.52 0.81 0.50 0.82 0.50 0.82
6<Nring<11 171 0.41 0.71 0.39 0.73 0.37 0.76
11<Nring 111 0.47 0.80 0.42 0.84 0.44 0.82
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most of the data should be suitable for the present
analysis..

4.5 Verifications of Models A and B

To verify Models A, B and AB, we also examined the L1
regularization (eq. 24) instead of the L2 regularization in
eq. 16.

The L1 regularization could show the descriptors that
show the major contributions to the results. The accuracy
was almost equivalent to that obtained by the L2 regulari-
zation. Namely, Models A, B, and AB showed the RMSE and
Q2 values of 0.73 and 0.60, respectively, in the 4-fold cross
validation tests (Table 5). The important descriptors sug-

gested by the L1 regularization were the <R> , Log<R> ,
<R> 2, some ASA, mainly sub-structures including O and N
atoms, and q(OH)/q(NH) among 324 descriptors including
166 MACCS keys. The results were summarized in Table S5
and Figure S1 in the supporting information. The results
supported the results obtained by the present regression
models.

We examined the robustness of the present method by
using hold-out tests and compared the results obtained by
the Mordred-descriptor set as an alternative method. We
examined five hold-out tests and compared the coefficient
sets {c} of generated regression models, in addition to the
comparisons of predicted LogPapp values. In each hold-out
test, the molecules were sorted by the molecular features
and the top 25 % bigger molecules form the hold-out set
and the other smaller 75 % of molecules were used for the
prediction model construction. The considered molecular
features were the molecular weight (MW), number of atoms
(Natom), number of ring structures (Ncycle), number of rota-
tional bonds (Nrot), and the number of member atoms of the
maximum ring system of molecule (Nring). In addition to
these biased sets, we prepared a non-biased set (None) by
a random selection of molecules to make a reference
prediction model.

In each hold-out test, we applied the 3-fold cross
validations to the teaching sets (the smaller molecules) and
generated the prediction models. The prediction models
estimated the LogPapp values of the molecules in the hold-
out set (the bigger molecules). Table 6 summarizes the
correlation coefficients (R) and the RMSE between the
predicted and experimental LogPapp values of the hold-out
set. These results show that both the present and Mordred

descriptors worked well (see Figure S2 in the supporting
information).

Then, we examined the robustness of the model
construction. Table 7 shows the correlation coefficients
between the coefficients {c} of the prediction model
obtained by the hold-out test and that of the reference
model. The {c} based on the present descriptors did not
depend on the difference of the teaching sets so much. On
the other hand, the {c} based on the Mordred descriptors
depended on the difference of the teaching sets strongly.
The PAMPA systems represent a passive permeability only.
It means that the {c} does not depend on the choice of the
teaching sets. Thus, the present method should be realistic
and useful rather than the collection of many descriptors.

5. Conclusion

We proposed a QSPR method for for evaluating the
apparent membrane permeability (Papp) based on an
analysis of the diffusion process and the partition function
calculation with conformer sampling. This method gener-

Table 5. RMSE and Q2 values obtained by eq. 24 (L1 regularization).

Model AB Model A Model B

RMSE 0.59 0.59 0.59
Q2 0.72 0.73 0.73

Table 6. RMSE and R values obtained by the hold-out tests.

Molecular feature The present descriptors (eq. 23)
L1 (eq. 24)a L2 (eq. 16)a

R RMSE R RMSE

Noneb 0.84 0.64 0.89 0.54
MW 0.43 0.73 0.78 0.54
Natom 0.81 0.78 0.90 0.58
Ncycle 0.45 0.62 0.59 0.53
Nrot 0.82 0.80 0.89 0.63
Nring 0.68 0.71 0.84 0.51

Molecular feature Mordred descriptors
L1 L2
R RMSE R RMSE

Noneb 0.81 0.68 0.89 0.53
MW 0.58 0.72 0.83 0.47
Natom 0.84 0.74 0.91 0.55
Ncycle 0.48 0.59 0.66 0.49
Nrot 0.84 0.76 0.90 0.61
Nring 0.71 0.68 0.81 0.55
a: Model B was used. b: The reference models used in Table 7.

Table 7. Correlation coefficients (R) among {c} of the defferent
prediction models in the hold-out tests.

Molecular
feature

The present descriptors (eq. 23) Mordred descriptors
L1 (eq. 24) L2 (eq. 23) L1 L2

NW 1.00 0.94 0.70 0.90
Natom 1.00 0.95 0.71 0.84
Ncycle 1.00 0.62 0.33 0.60
Nrot 1.00 0.90 0.75 0.86
Nring 1.00 0.88 0.81 0.63

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900071 (11 of 13) 1900071

www.molinf.com


ated conformers of the solute by a random structural
sampling and the following structure optimization. The
molecular descriptors were calculated based on the struc-
tural ensemble of the solute. Namely, the descriptors were
the average and deviation values of the calculated ASA, the
LogD and number of hydrogen bonds in water and in
membrane, and the MACCS key. In addition, the descriptor
set included a diffusion coefficient that is the inverse of the
resistance in diffusion. To estimate the diffusion of solute,
we examined the inertial resistance in the diffusion of
solute in addition to the viscous resistance. We assumed
two types of permeability models of solute with multiple
conformers. One was the fast diffusion process (Model A), in
which the solute diffused in the membrane with a fixed
conformer, whose fractions were the same as those in
water. The other was the slow diffusion process (Model B),
in which the solute changed the conformer in the diffusion
process and the fractions of conformers followed the most
stable distribution in the membrane. The present QSPR
models represented Models A and B based on the
molecular descriptors mentioned above.

This prediction method worked in the Papp prediction of
the middle molecules and macrocycles, the same as with
that of the small molecules. The results suggested that the
inertial resistance should be important in the diffusion, as is
the viscous resistance known as the Einstein-Stokes equa-
tion. The ensemble of conformers improved the prediction
accuracy. This study supported both Models A and B, and
the permeability process could be a combination of Models
A and B.
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