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Background: Head and neck squamous cell carcinoma (HNSC) is a prevalent

and heterogeneous malignancy with poor prognosis and high mortality rates.

There is significant evidence of alternative splicing (AS) contributing to tumor

development, suggesting its potential in predicting prognosis and therapeutic

efficacy. This study aims to establish an AS-based prognostic signature in HNSC

patients.

Methods: The expression profiles and clinical information of 486HNSC patients

were downloaded from the TCGA database, and the AS data were downloaded

from the TCGA SpliceSeq database. The survival-associated AS events were

identified by conducting a Cox regression analysis and utilized to develop a

prognostic signature by fitting into a LASSO-regularized Cox regression model.

Survival analysis, univariate and multivariate Cox regression analysis, and

receiver operating characteristic (ROC) curve analysis were performed to

evaluate the signature and an independent cohort was used for validation.

The immune cell function and infiltration were analyzed by CIBERSORT and the

ssGSEA algorithm.

Results: Univariate Cox regression analysis identified 2726 survival-associated

AS events from 1714 genes. The correlation network reported DDX39B, PRPF39,

and ARGLU1 as key splicing factors (SF) regulating these AS events. Eight

survival-associated AS events were selected and validated by LASSO

regression to develop a prognostic signature. It was confirmed that this

signature could predict HNSC outcomes independent of other variables via
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multivariate Cox regression analysis. The risk score AUCwas more than 0.75 for

3 years, highlighting the signature’s prediction capability. Immune infiltration

analysis reported different immune cell distributions between the two risk

groups. The immune cell content was higher in the high-risk group than in

the low-risk group. The correlation analysis revealed a significant correlation

between risk score, immune cell subsets, and immune checkpoint expression.

Conclusion: The prognostic signature developed from survival-associated AS

events could predict the prognosis of HNSC patients and their clinical response

to immunotherapy. However, this signature requires further research and

validation in larger cohort studies.

KEYWORDS

head and neck squamous cell carcinoma, alternative splicing, prognostic signature,
immune microenvironment, risk score

Introduction

Head and neck squamous cell carcinoma (HNSC) is the

sixth most common cancer globally, with an estimated

900,000 new cases and 450,000 deaths annually (Ferlay

et al., 2019). HNSC patients are normally diagnosed at the

later stages with a poor prognosis. Although chemotherapy,

radiation, and targeted therapies have made great progress,

the survival rate of advanced or recurrent HNSC remains low

(Cohen et al., 2016). This is due to the heterogeneity of HNSC.

Patients with advanced HNSC are treated with cetuximab, an

anti-EGFR antibody, with a 13% success rate (Licitra et al.,

2011). An immunotherapy agent, anti-PD1 antibody,

successfully stimulated anti-tumor immunity and produced

a significant clinical response in patients with aggressive

HNSC. However, only a subset of patients (~18%)

benefitted from this strategy, while most HNSC patients

displayed clinical resistance (Chow et al., 2016; Ferris et al.,

2016; Seiwert et al., 2016). Therefore, it is crucial to identify

new markers to provide an accurate HNSC prognosis and the

appropriate treatment strategies.

Alternative splicing (AS) is a process in which mRNA

precursors are alternatively spliced and ligated to produce

mature mRNAs for protein diversity (Larochelle, 2016; Ule

and Blencowe, 2019). Research has identified the contribution

of AS to a variety of diseases, including cancer. The dysregulated

expression of splice isoforms is considered a potential driver of

tumor development and progression (Sciarrillo et al., 2020).

Recent studies suggest that cancer-specific splice isoforms can

be important signatures for predicting treatment efficacy. For

instance, squamous cell carcinoma patients with EGFR isoform

D splicing patterns showed better responses toward EGFR-TKIs

(Tan et al., 2017). More importantly, AS was reported to

contribute to the development of the immune

microenvironment (Frankiw et al., 2019; Li et al., 2019; Yu

et al., 2020). Changes in AS can alter both immune cell

infiltration and tumor-associated immune cytolytic activity.

Hence, AS signature may accurately predict the clinical

response of HNSC patients to immunotherapy.

Herein, a comprehensive analysis of genome-wide AS events

was performed with RNA sequencing (RNA-Seq) data obtained

from TCGA-HNSC samples. We developed a novel prognostic

signature from the data via LASSO regression analysis. HNSC

patients could be categorized into either high or low-risk groups

based on their risk scores calculated with the prognostic

signature. Immune infiltration and functional analysis were

then performed to identify the role of the signature in the

tumor microenvironment. Our analysis suggested that this

prognostic signature could be an effective tool for predicting

the prognosis of HNSC patients and their clinical response to

immunotherapy.

Methods

Data collection and pretreatment

The expression profiles, somatic mutation, and matching

clinical follow-up information of HNSC patients were obtained

from the TCGA database. AS data was obtained from the TCGA

SpliceSeq database. A total of 486 patients were enrolled based on

the following criteria (Ferlay et al., 2019): histologically

confirmed HNSC (Cohen et al., 2016); patients with RNA-Seq

data; and (Licitra et al., 2011) patients with basic clinical and

follow-up information. Patients who lacked AS data in the TCGA

SpliceSeq database had been excluded. HPV status information

was collected from published data and the TCGA database

(Cancer Genome Atlas Network, 2015). The clinical

characteristics of patients are listed in Supplementary Table

S1. For validation, RNA-Seq data of an independent cohort

(86 oral cavity squamous cell carcinoma patients) was

accessed from the European Nucleotide Archive (study

accession: PRJEB24758) and processed by SpliceSeq software

to obtain the AS profiles. The percent spliced-in index (PSI), a
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ratio of normalized read counts indicating the inclusion of a

transcript element over the total normalized reads, was used to

quantify AS events (Ryan et al., 2012). From here, seven different

types of AS events were identified: exon skip (ES), alternate donor

site (AD), alternate acceptor site (AA), retained intron (RI),

exclusive exons (ME), alternate terminator (AT), and alternate

promoter (AP). To obtain a set of more reliable AS events, several

conditions were implemented (i.e., percentage of samples with

PSI value ≥75, average PSI value ≥0.05). Figure 1 depicts the flow
chart representative of this study.

Identification and functional analysis of
survival-associated AS events

The hazard ratios (HRs) and 95% confidence interval (95%

CI) of the overall survival of AS events were calculated after

performing a univariate Cox regression analysis. AS events with

p < 0.05 were considered survival-associated AS events. The

seven types of identified AS events were utilized to develop an

UpSet plot with a “UpSetR” package (version 1.4.0). Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis were performed to determine the

parental genes in survival associated AS events. To visualize the

results, functionally organized networks were constructed

through the Cytoscape plug-in, ClueGO (version 2.5.8), with

network connectivity (κ-score) ≥ 0.5, as described by Bindea et al.

(Bindea et al., 2009).

Splicing correlation network construction

The list of 71 experimentally validated splicing factor (SF)

genes was obtained from the SpliceAid 2 database, and their

expression profiles were obtained from the TCGA database.

Pearson correlation analysis was performed between SF

expression and PSI value of survival-associated AS events,

with several conditions (i.e., |R| ≥ 0.7, and p < 0.001). The

splicing correlation network was then established using the

Cytoscape software (version 3.8.2).

Construction and evaluation of the
prognostic signature

Our prognostic signature was developed based on a LASSO-

regularized Cox regression model (Luo et al., 2020; Wang et al.,

2021a; Guo et al., 2021). The survival-associated AS events

FIGURE 1
The flow chart of AS-based prognostic signature construction and evaluation.
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obtained above were input into the LASSO regression analysis

with a “glmnet” package (version 4.1.3) to remove highly

correlated variables and prevent overfitting. The optimum

shrinkage parameter (λ) was determined using 10-fold cross-

validation. AS events with non-zero parameters estimated in the

model were selected and used to fit a multivariate Cox regression

model to obtain the regression coefficients. The risk score of each

sample was calculated by the formula:

Risk Score � ∑n
i�1Coefi × PSIi, where Coefi is the coefficient

and PSIi is the PSI value of selected AS events.

From the median risk score, patients were classified into two risk

groups. Kaplan–Meier survival analysis with a log-rank test was

conducted to verify the statistical differences. Then, each selected AS

event’s risk score distribution, survival time, and expression

thermogram were visualized. Univariate and multivariate Cox

regression models were fitted to analyze whether the risk scores

were independent of clinical variables. A time-dependent receiver

operating characteristic (ROC) curve analysis was performed to

evaluate the prediction capability of the prognostic signature.

Validation of the prognostic signature was performed with an

indirect method due to insufficient RNA-Seq data with survival

information. Briefly, three published and well-validated

prognostic signatures served as references and were used to

calculate risk scores for the TCGA-HNSC and independent

cohort samples (Wang et al., 2021c; Liu et al., 2021a; Chen

et al., 2022). Our AS-based signature was also used to score the

patient with the PSI profiles produced by SpliceSeq software.

Correlation analysis and heatmaps were then used to

demonstrate the consistency between the calculated risk scores

of the prognostic signature and other signatures.

Immune cell infiltration and functional
analysis

We used ESTIMATE, CIBERSORT, and ssGSEA to measure

immune cell infiltration and functional differences between the risk

subgroups. The presence of infiltrating stromal and immune cells in

tumor samples was estimated with the “estimate” package (version

1.0.13) and classified into four scores: Stromal, Immune, ESTIMATE,

and Tumor purity. The ESTIMATE score that infers tumor purity is

the sum of immune and stromal enrichment scores and can be

converted to tumor purity score as previously mentioned (Yoshihara

et al., 2013). Immune cell infiltration in each sample was quantified

by CIBERSORT, a validated deconvolution algorithm for

characterizing cell composition based on the leukocyte signature

matrix (LM22) (Newman et al., 2015). We used an R script to

implement this algorithm with 1000 permutations, without quantile

normalization. The quantified immune population was validated

with ssGSEA using the “GSVA” package (version 1.40.1). The

immune signatures that were identified using this approach

included immune cell types (e.g., plasmacytoid DCs, inactivated

DCs, activated DC, DCs, NK cells, B cells, mast cells, neutrophils,

macrophages, CD8+ T cells, helper T-cells, Tfh, Th1, Th2, and Treg),

immune-related functions (e.g., APC co-inhibition, APC co-

stimulation, T cell co-inhibition, T cell co-stimulation, cytolytic

activity, type I IFN response, type II IFN response, pro-

inflammation, HLA, MHC class I, and CCR), and immune-

related pathways (e.g. extracellular matrix, epithelial-mesenchymal

transition, angiogenesis, and VEGF signaling pathway). These

signatures were collected from publications and the MsigDB

database (Barbie et al., 2009; Xue et al., 2019). A heatmap and a

boxplot were plotted to visualize these results with the “heatmap”

(version 1.0.12) and “ggplot2” (version 3.3.5) packages. The

differential expression analysis for the identification of immune

checkpoints between the two groups was performed with the

“limma” package (version 3.48.3) and the Wilcoxon test. The

correlation coefficient between risk score and immune checkpoint

expression was calculated with Spearman correlation analysis. The

tumor mutational burden (TMB) in each HNSC patient was

calculated with the “maftools” package (version 1.0.12) from the

somatic mutation data downloaded from the TCGA.

Functional analysis of the AS parent genes
involved in the prognostic signature

We performed expression, survival, and functional analysis to

determine the AS parent genes. For expression analysis, the log2-

transformed Fragments Per Kilobase Million (FPKM) value of each

gene was counted, and the differences between tumor and normal

groups were analyzed by the GraphPad 8.0 software and the Mann-

Whitney test. For survival analysis, HNSC patients were categorized

into two groups based on their gene expression. The survival outcomes

were determined through a Kaplan-Meier analysis. The pathways that

were significantly linked to the expression of parent genes were

identified with GSEA analysis (version 4.1.0) of the Hallmark gene

sets. Using the gene expression lists ranked by Pearson, we calculated

the weighted enrichment scores. Gene sets with a nominal p-value <
0.05 and FDR ≤0.1 were considered statistically significant. The first

seven significantly correlated pathways were visualized using

GraphPad 8.0 software. For immune function analysis, Spearman’s

correlation method was used to calculate the correlation coefficient

between gene expression and immune checkpoint or immune cell

infiltration. The immune correlation network was then established

using the Cytoscape software (version 3.8.2) with a p-value <
0.05 threshold.

Statistical analyses

R (version 4.1.0) and GraphPad 8.0 were utilized for all

statistical analyses. p-value < 0.05 was statistically significant. The

categorical clinical characteristics variables were analyzed by the

Chi-square and Fisher’s exact tests, while the continuous

variables were analyzed by the Mann-Whitney non-parametric
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and ANOVA tests. The non-normal data distribution was

analyzed via Spearman correlation analysis, while the

continuous variables with normal distribution were analyzed

via the Pearson correlation analysis.

Result

Identification of survival-associated AS
events in HNSC

Univariate Cox regression analysis were done on 486 HNSC

patients to evaluate the correlation between AS events and OS.

Out of 1714 genes, 2726 AS events were identified as survival-

associated. ES was the predominant type (26.1%), followed by AP

(23.5%) and AT (23.2%). Given the multiple splicing patterns for

a single gene, the genes intersecting sets and survival-associated

AS events were visualized using the UpSet plot (Figure 2A).

Function enrichment analyses were performed to study the

biological characteristics of AS events. Our findings revealed

that the parent genes were enriched in KEGG and BP, which were

related to important biological functions, including mRNA

surveillance pathway, adherens junction, RNA transport,

protein localization, intracellular transport, and mRNA

metabolic process (Figure 2B).

Splicing factors (SFs) regulate AS events. To better

understand the regulation of survival-associated AS events, we

performed a Pearson correlation analysis between reported

FIGURE 2
Identification and functional analysis of survival-associated AS events in HNSC. (A) Interactive sets between the seven types of survival-
associated AS events (n = 2726) shown in an UpSet plot. (B) Functionally grouped Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) categories for parent genes of survival-associated AS events. GO and KEGG categories were grouped based on their similarity (κ-
score ≥ 0.5), and themost significant term in each group is shown in bold. (C)Correlation network of splicing factors and survival-associated AS
events. This network was built based on significant correlations (|R| ≥ 0.7, p < 0.001) between the expression of 71 splicing factors and the PSI values
of survival-associated AS events. Splicing factors are represented with orange triangles, and AS events are represented with circulars (red/blue
represents favorable/inferior prognosis). The red/blue lines are represented with positive/negative correlation. Data were analyzed using Pearson’s
correlation method.
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FIGURE 3
Construction and evaluation of prognostic signature. (A) Distribution of LASSO regression coefficients for survival-associated AS events. (B)
Shrinkage parameter selection in the LASSO model used ten fold cross-validation via minimum criteria. Vertical dotted lines were drawn at the
optimum λ values. (C) The risk score distribution, overall survival status, and expression profile of selected AS events of each HNSC sample. (D)
Kaplan-Meier survival curve of overall survival. Log-rank test was used for data analysis. (E,F) Forest plots of hazard ratios (HRs) calculated by
univariate (E) and multivariate (F) Cox regression for risk score and clinical features associated with overall survival. (G) Receiver operating
characteristic (ROC) curve and the area under the curve (AUC) of risk score and clinical features in predictive performance for HNSC patients. (H)
ROC plots and AUC of the risk score at 1, 2, and 3 years.
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71 expressions of SFs and PSI values. Following the significant

correlation (|r|≥0.7, p < 0.001), a splicing regulatory network was

built, which contained 206 SF-AS pairs, 21 SFs, and 88 survival-

associated AS events (Figure 2C). Most SF-AS pairs were

positively correlated in this network. Splicing factors such as

DDX39B, PRPF39, and ARGLU1 might be key regulators in AS

events.

The construction of the prognostic
signature of AS events revealed the
prognostic predictor in HNSC

Survival-associated AS events were fitted to LASSO Cox

regression analysis to remove highly correlated variables and

prevent overfitting when constructing the prognostic signature.

The shrinkage parameter was determined using 10-fold cross-

validation. This signature achieved minimal deviation with 11 OS-

associated AS events, but only eight of them were retained after

optimization by a stepwise multivariate Cox regression analysis

(Figures 3A,B). The details of these AS events, including their

corresponding coefficients and hazard ratios are listed in

Supplementary Table S2. The risk scores of HNSC patients were

calculated according to the PSI values and their coefficients as follows:

risk score � −3.77 × AIG1|77971|AT − 2.71 × PACS2|29633|AP −
2.20 × PTGR1|87219|AA − 2.46 × RHOT1|40176|ES − 1.98 × AG

TRAP|670|AA − 0.98 × ABCC5|67820|RI − 1.45 × SH3KBP1|886
42|AP − 1.02 × RBMX|90220|RI.

To study the correlation between risk scores and clinical

features, HNSC patients were categorized into two risk groups.

The clinical characteristics of these groups are shown in Table 1.

Notably, there were more HPV-positive patients in the low-risk

group. The score distribution, overall survival status, and

expression profile of AS events are as plotted in Figure 3C.

TABLE 1 Correlation between risk score based subgroups and clinical characteristics.

Characteristics High-risk
(n = 243)

Low-risk
(n = 243)

Total
(n = 486)

p Value FDR

Age (mean ± SD) 60.61 ± 12.01 61.40 ± 11.85 61.00 ± 11.92

Gender 0.68 1

Male 175 (36.01%) 180 (37.04%) 355 (73.05%)

Female 68 (13.99%) 63 (12.96%) 131 (26.95%)

Primary site <0.001 <0.001
Oral cavity 164 (33.95%) 131 (27.12%) 295 (61.08%)

Oropharynx 20 (4.14%) 51 (10.56%) 71 (14.70%)

Larynx and hypopharynx 59 (12.22%) 58 (12.01%) 117 (24.22%)

Smoking history 0.03 0.16

Non-Smoker 44 (9.22%) 67 (14.05%) 111 (23.27%)

Former and current smoker 191 (40.04%) 175 (36.69%) 366 (76.73%)

Alcohol history 0.58 1

No 73 (15.37%) 80 (16.84%) 153 (32.21%)

Yes 164 (34.53%) 158 (33.26%) 322 (67.79%)

Pathologic T <0.001 <0.001
T1-2 71 (16.32%) 105 (24.14%) 176 (40.46%)

T3-4 150 (34.48%) 109 (25.06%) 259 (59.54%)

Pathologic N 0.18 0.53

N0-1 107 (26.95%) 123 (30.98%) 230 (57.93%)

N2-3 90 (22.67%) 77 (19.40%) 167 (42.07%)

Pathologic stage 0.03 0.17

Stage I-II 39 (9.24%) 55 (13.03%) 94 (22.27%)

Stage III-IV 179 (42.42%) 149 (35.31%) 328 (77.73%)

HPV status <0.001 <0.001
Negative 152 (45.92%) 119 (35.95%) 271 (81.87%)

Positive 15 (4.53%) 45 (13.60%) 60 (18.13%)

Events

Progression 48 (10.88%) 35 (7.94%) 83 (18.82%) 0.06 0.26

Dead 116 (23.87%) 47 (9.67%) 163 (33.54%) <0.001 <0.001

HPV, human papillomavirus; FDR, false discovery rate.
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The high-risk group had a lower OS rate as the Kaplan-Meier

survival analysis indicated (p < 0.001, Figure 3D), which

validated the prediction capability of our prognostic signature.

To establish that risk score is independent of other variables in

predicting HNSC outcome, univariate and multivariate Cox

regression analyses were employed using clinical features like

age, gender, pathologic stage, and HPV status. The analysis

reported that the risk score variable was statistically significant

(Figures 3E,F). From the ROC analysis, the AUC of risk score was

higher than the other variables and remained above 0.75 for

3 years, which suggested a powerful predicting capability of our

signature (Figures 3G,H). Together, these results revealed the

satisfactory efficiency of our signature in predicting prognosis for

HNSC patients.

To validate our signature in an independent cohort, we

utilized three published and well-validated prognostic

signatures as references in our study. Correlation analysis

reported that risk scores correlated significantly with the

FIGURE 4
Validation of our signature in a independent HNSC cohort. (A–F) Scatter plots of correlations between the risk scores calculated by our
signature and that calculated by reference signatures in TCGA-HNSC and independent cohort. Data were analyzed using Spearman’s correlation
method. (G,H) Heatmaps showing the risk status of each sample predicted by our signature and reference signatures.
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reference signatures in the TCGA-HNSC and independent

cohorts (Figures 4A–F). The risk status of HNSC patients was

visualized with a heatmap, revealing the consistency of our

signature with the reference signatures in predicting the

prognosis of HNSC (Figures 4G,H). These results validated

the credibility of our prognostic signature.

Correlation of risk score with the immune
microenvironment signatures

Given the pivotal role of the immune microenvironment in

tumor development and progression, we investigated the

correlation between risk score and immune features. As

shown in Figures 5A–D, the immune and stromal cells in

tumors were quantified based on the ESTIMATE algorithm.

This finding indicated that the high-risk group had lower

immune and stromal cell concentration and higher tumor

purity (Figures 5A–D). Immune subpopulation analysis

demonstrated that tumors in the high-risk group were highly

infiltrated with immune cells such as M2 and M0 macrophages,

and lowly infiltrated with CD8+ T cells, Treg, memory

CD4 T cells, naïve B cells, and M1 macrophages (Figure 5E).

Further correlation analysis indicated that the infiltration of

activated mast cells, eosinophils, M2 macrophages, and

M0 macrophages had a positive correlation with the risk

score. On the other hand, naïve B cells, plasma cells, T

follicular helper cells, Tregs, resting mast cells, CB8+ T cells,

memory CD4 T cells, and γδ T cells had a negative correlation

with the risk score (Supplementary Figure S1A, ranked by the

Spearman correlation coefficients). Related immune function

signatures were quantified using ssGSEA analysis and

visualized with a heatmap (Figures 5F,G). The result was

consistent with the distribution of immune cell

subpopulations, where the immune functions such as cytolytic

activity, T cell co-stimulation, and APC co-stimulation were

lower in the high-risk group. We also analyzed the expression

of immune checkpoints and demonstrated that most immune

FIGURE 5
Immune cells infiltration and functional analysis. (A–D) The analysis of the stromal score, immune score, ESTIMATE score, and tumor purity
between the high- and low-risk groups. (E) Immune cell subpopulations analysis between the high- and low-risk groups based on CIBERSORT
algorithm. (F) Heatmap of the enrichment score of immune cells subpopulations and immune-related pathways signatures based on ssGSEA
algorithm. (G) Differential enrichment analysis of immune cells subpopulations and immune-related pathways between the high- and low-risk
groups based on ssGSEA algorithm. (H–L) Scatter plot of correlations between representative immune checkpoint expression and risk score. Data
were analyzed using Spearman’s correlation method. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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checkpoints were lowly expressed in the high-risk group

(Supplementary Figure S1B). The correlation analysis

indicated that the risk scores were negatively correlated with

PDCD1, CD274, CTLA4, and CD80, and positively correlated

with CD276 (Figures 5H–L). TMB was linked to immune

infiltration of tumors (Goodman et al., 2017; Jardim et al.,

FIGURE 6
Expression and functional analysis of the parent genes of AS involved in prognostic signature. (A)Heatmap and differential expression analysis of
the parent genes between HNSC and normal samples. The filled color represents the log2 (FPKM value) for each gene. Data were analyzed using
Mann-Whitney nonparametric test. (B–I) Kaplan-Meier survival curve of overall survival for each parent gene. Log-rank test was used for data
analysis. (J–M)GSEA plots for the top seven Hallmark gene sets significantly correlatedwith the parent gene expression. The enrichment scores
were calculated with gene expression lists ranked by pearson. NES, normalized enrichment score. (N) The network diagram shows the correlation
between parent genes, immune checkpoints, and immune cell subsets (CIBERSORT). Colored triangles, squares, and circles represent respectively
parent genes, immune checkpoints, and immune cells, respectively. The thickness of the line represents the strength of correlation. Red and blue
represent positive and negative correlation, respectively. Data were analyzed using Spearman’s correlation method.
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2021), but no significant difference was found between the two

groups (Supplementary Figure S1C).

AS events involved in our signature might
play a role in the HNSC tumorigenesis,
prognosis, and immune regulation.

We studied the expression, function, and prognosis of parent

genes in AS events. Expression analysis indicated that five genes

had significant differential expressions between tumor and

normal samples (Figure 6A). AGTRAP1, ABCC5, SH3KBP1,

and RBMX were upregulated, while PTGR1 was downregulated

in tumor samples as compared to normal samples (Figure 6A).

Survival analysis showed that AIG1, PACS2, PTGR1, AGTRAP,

SH3KBP1, and RBMX expressions significantly affected the

overall survival (Figures 6B–I). High expressions of AGTRAP,

SH3KBP1, and RBMX were found in tumor tissues and

correlated with a poor prognosis. This finding suggested that

these genes could have a role in tumor initiation and progression.

The lack of correlation between the PTGR1 expression and

prognosis suggested its complex regulatory mechanism. We

then analyzed the pathways and functions of these genes

using GSEA with Hallmark gene sets. The seven significantly

enriched gene sets are shown in Figures 6J–M. These results

revealed that these parent genes could be involved in HNSC

development. Notably, SH3KBP1 had a significantly positive

correlation with immune-related pathways, such as

complement system, allograft rejection, and IL-2-

STAT5 signaling (Figure 6K). In addition, PTGR1 had a

positive correlation with the metabolic pathways and a

negative correlation with the immune pathways (Figure 6M).

We also analyzed the correlation of these genes with immune

cells and the expression of immune checkpoints. The analysis is

illustrated in Figure 6N. It was worth noting that SH3KBP1 was

positively correlated with immune checkpoints such as CD80,

CD86, HAVCR2, PDCD1LG2, CTLA4, PDCD1 and CD274 (r =

0.55, 0.53, 0.52, 0.47, 0.47, 0.44, and 0.38, respectively). These

results highlighted its role in the progression and prognosis of

HNSC. Furthermore, there was a negative correlation between

ABCC5 and PDCD1LG2 (r = -0.36), between AGTRAP and B

and plasma cells (r = −0.28, −0.22), and between PACS2 and

memory CD4 T cells and neutrophils (r = −0.23, 0.21). These

genes could play a role in carcinogenesis and the tumor immune

microenvironment.

Discussion

HNSC is a diverse group of cancers occurring in the oral

cavity, oropharynx, and larynx. The limitations of the anatomic

region, TNM stage, and HPV status as predictors for prognosis

and treatment outcomes have limited clinical applications.

Genome-wide research revealed that HNSC patients can be

categorized into separate AS subgroups according to their AS

patterns, which exhibited uneven distribution of survival status,

EGFR mutation/amplification, TP53 mutation, and immune

characteristics (Li et al., 2019). These data indicated that AS

events may help stratify high-risk patients and predict the

treatment response. In this study, we used the LASSO-

regularized Cox regression model to screen eight prognostic

AS events and established a prognostic signature for HNSC.

Patients can be easily classified as high- or low-risk, according to

our signature. Our results reported that the high-risk group had a

significantly worse survival outcome. The multivariate Cox

regression analysis revealed that risk score was independent of

clinical variables such as age, pathological stage, and HPV status.

The ROC curve displayed the AUC of risk score above 0.75 in

both the short- and long-term. These results highlighted the

predictive capability of our signature.

Previously, a genome-wide AS profiling analysis revealed that

clusters of AS with distinct patterns correlated with different

immune statuses (Li et al., 2019). This was consistent with our

finding that the AS risk score was connected to distinct immune

cell populations and immune activation. The findings indicated

that the predicted low-risk group had a higher level of immune

cell infiltration (e.g., CD8+ T cells, Tregs, memory CD4 T cells,

naïve B cells, and M1 macrophages) and immune activation

signatures (e.g., cytolytic activity, CD8+/Treg ratio, and IFN-γ
signaling). Conversely, most immune cells and activation

signatures were lowly expressed in high-risk patients.

However, we observed an increased infiltration of M2 and

M0 macrophages in these patients. These results characterized

low-risk patients as “Immune Class”, with high immune cell

infiltration, enhanced cytolytic activity, and active IFN signaling

(Mandal et al., 2016; Chen et al., 2019). In contrast, high-risk

patients were labeled as “non-Immune Class”, with “Exhausted

Subtype” characteristics such as increased M2 macrophage

infiltration (Chen et al., 2019).

Anti-tumor immunity is dependent on several key aspects:1)

recognition of tumor-specific antigens; 2) immune cell

infiltration; 3) freedom from immunosuppressive effects of

immunoregulatory pathways and cells (Kim and Chen, 2016).

Non-synonymous mutation load, which can result in the

expression of neoantigens, may contribute to immunogenicity

and inflamed cancer phenotype (Goodman et al., 2017; Jardim

et al., 2021). However, we did not find a difference in the

mutation load between high- and low-risk groups. In addition

to the neoantigens generated by mutations, viral antigens can

compromise the immune system and are targeted by T-cells

(Tashiro and Brenner, 2017). HPV + HNSC has a better

prognosis than HPV-cancer, reflecting the high level of viral

activity (Mandal et al., 2016; Gameiro et al., 2018; Johnson et al.,

2020). Our research found that the proportion of HPV + HNSC

was lower in the high-risk group, indicating that the difference in

the HPV + cancer distribution may be part of the low immunity
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in the high-risk group. Antigens released by tumor cells are taken

up by antigen-presenting cells (APC), such as dendritic cells

(DCs), which become activated and migrate to the tumor-

draining lymph node. The activation of DCs is known to

initiate the cancer-immunity cycle (Steinman, 2012). In

comparison with the low-risk group, DC signatures (e.g.,

activated and plasmacytoid DCs) were lowly expressed in the

high-risk group, contributing to the low immune infiltration in

these patients. For successful trafficking or infiltration, the

immune cells need to overcome the pressure from the tumor

itself and the surrounding stroma cell (Ariffin et al., 2014; Joyce

and Fearon, 2015; Turley et al., 2015). Stromal cells can reduce

lymphocyte adhesion by regulating the expression of adhesion

molecules (e.g., ICAM-1 and VCAM-1) (Griffioen et al., 1996;

Bouzin et al., 2007). Recent studies have shown that activated

stromal cells combined with increased TGF-β andM2 infiltration

can lead to an immunosuppressive phenotype. This correlated to

poor prognosis and good response to immunotherapy (Chen

et al., 2019). Nevertheless, no difference was found in stroma cell

scores and extracellular matrix signatures between the two risk

groups. This indicated that the exclusion exerted by stromal cells

may not be the reason for the difference in immune infiltration

between the two groups.

Anti-tumor immunity also relieves the immunosuppressive

effects from immune pathways and regulatory cells. Our research

demonstrated that in the low-risk group, most immune

checkpoints were highly expressed, and some were negatively

correlated with the risk score. These results are consistent with a

previous observation that immune-high HNSC is often

accompanied by a high immunoregulatory response (Mandal

et al., 2016). Interestingly, we found a high expression of

CD276 in the high-risk group. CD276, also known as

B7 homolog three protein (B7-H3), is recently considered a

T cell inhibitor that promotes tumor proliferation and

invasion (Zhou and Jin, 2021). Compared to other immune

checkpoints, CD276 affects immunity, as well as regulates the

cancer cell aggressiveness via multiple non-immune pathways

(Liu et al., 2011; Li et al., 2017; Shi et al., 2019). Overexpression of

CD276 was found in various tumors, including HNSC, and

conferred a poor prognosis (Liu et al., 2021b). Recent research

reported a negative correlation between CD276 expression and

CD8+ T cell infiltration in human HNSC (Mao et al., 2017).

Inhibition of CD276 increased the infiltration of CD8+ T cells and

T cell activation in mice models (Mao et al., 2017; Wang et al.,

2021b). Given these results, the abnormal expression of

CD276 might be responsible for excluding the immune cells

in the high-risk group. Immune cells are an important source of

immunosuppression. Our results found that M2 macrophage

infiltration was increased in high-risk patients. M2 macrophages

have been demonstrated to reduce tumor-infiltrating

lymphocytes, especially CD8+ T cells, by reducing the

expression of chemokines and promoting the production of

extracellular matrix (Peranzoni et al., 2018; Pan et al., 2020).

The depletion of M2 macrophages had been reported to restore

CD8+ T cell migration and infiltration, and improve the efficacy

of immunotherapies (Peranzoni et al., 2018). Therefore, high

expression of M2 macrophages may led to low immune

infiltration in the high-risk group.

Immune hot tumors are better recognized by the immune

system and can trigger a better response to checkpoint therapies

(Kim and Chen, 2016). Therefore, we hypothesized that

checkpoint blockade may benefit low-risk HNSC patients,

with high immune infiltration and immune checkpoint

expression (e.g., PD-1 and CTLA-4). Tregs are also highly

infiltrated in these patients, indicating that a combination of

molecular antagonists (e.g., CTLA-4, CCR4, and

STAT3 antagonist) can attain a better response rate (Selby

et al., 2013; Sugiyama et al., 2013; Woods et al., 2018). In

contrast, the immune landscape of the high-risk group is

characterized by lower immune cell infiltration and higher

expressions of CD276 and M2 macrophages. This kind of

immunologically cold tumor can be responsive to the

checkpoint blockade by a combination of therapies that

promote tumor immune cell infiltration and convert tumors

into an immunologically hot phenotype (Ribas et al., 2018).

Therefore, we hypothesized that the strategy of combining the

following therapies can be more effective in the high-risk group:

1) Cytokine and tumor vaccine therapies. A randomized phase

III trial of IL-2 given via the perilymph after oral cavity

surgery reported that cancer patients exhibited >25%
improvement in OS (De Stefani et al., 2002). Furthermore,

perilymphatic delivery of cytokines increased lymphocyte

infiltration and improved prognosis in HNSC patients

(Berinstein et al., 2012). Cancer vaccines can bypass the

immune cold tumor microenvironment and deliver

antigens directly to the APC (Tan et al., 2018; Shibata

et al., 2021). This approach displayed significant potential

to upregulate CD8+ T cells and sustain their function (Ott

et al., 2017). HPV E6 and E7 are ideal vaccine targets for

HNSC because of their highly immunogenic epitopes. Clinical

trials assessing E6/E7 protein-based vaccines, DNA-based

vaccines encoding E6/E7, or pathogen vector-based

vaccines containing E6/E7-encoding DNA are currently in

progress (Tan et al., 2018; Shibata et al., 2021).

2) Immunotherapy based on targeting CD276.

CD276 expression is associated with resistance to anti-PD-

1 immunotherapy in non-small cell lung and ovarian cancer

(Yonesaka et al., 2018; Cai et al., 2020). In solid tumor mice

models, blocking of CD276 with mAbs increased CD8+ T and

NK cell infiltration, decreased tumor development, and

prolonged survivability (Wang et al., 2021b). In addition to

mAbs, chimeric antigen receptor (CAR) T cell technology is

another option for targeted CD276 immunotherapy.

Autologous T cells are designed with CARs to target

tumor antigens and destroy cancer cells. Majzner et al.

Frontiers in Genetics frontiersin.org12

Ye et al. 10.3389/fgene.2022.989081

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.989081


described a CAR-T cell system targeting CD276 which

showed significant effectiveness against various xenograft

cancer types, including osteosarcoma, medulloblastoma,

and Ewing sarcoma (Majzner et al., 2019). They also

demonstrated that the efficacy of CAR-T cells depended

on the density of CD276 on the tumor surface. Recently,

Tang et al. demonstrated that the local administration of

CAR-T cells limited tumor development without off-target

toxicity or major adverse effects in recurrent anaplastic

meningioma (Tang et al., 2020). This evidence supports

the application of CD276 CAR-T cell therapy in NHSC

patients. Hence, future research should focus on this aspect.

3) Therapy to inhibit M2 macrophages. M2 macrophages,

derived from peripheral blood monocytes, are recruited at

the tumor site via the CCL2-CCR2 axis. Blockade of the

CCL2-CCR2 axis could reduce the incidence of tumors by

preventing M2 macrophage recruitment and enhancing the

efficacy of CD8+ T cells in the tumor microenvironment

(Yang et al., 2020). Targeting immunosuppressive

molecules on M2 macrophages is also an effective method.

CSF-1R, a tyrosine kinase transmembrane receptor on

M2 macrophages, is currently the most studied tumor-

associated macrophages (TAMs) (Peyraud et al., 2017).

Several clinical trials have reported a decrease in

M2 macrophages and an increase in CD8/CD4+T cell ratio

in advanced solid tumors treated with single or combined

anti-CSF-1R agents (Strachan et al., 2013; Ries et al., 2014;

Peyraud et al., 2017). Other promising targets includeMerTK,

Axl, and Tyro3, which have yielded encouraging results in

preclinical studies (Myers et al., 2019).

Finally, we performed expression and functional

analysis on the parent genes in AS events. Our results

highlighted the role of SH3KBP1 in tumor immune

regulation in HNSC. SH3KBP1, also called Cbl-

interacting 85 kD (CIN85), encodes an adaptor protein

that is involved in many signaling pathways, connecting

multiple cellular compartments and processes (Havrylov

et al., 2010). We observed that the expression of

SH3KBP1 was higher in tumors than in normal tissues,

indicating a poor prognosis in HNSC. Importantly, our

correlation analysis found a correlation between its

expression and the immune checkpoint expression.

Although SH3KBP1 mediates the inhibition of T cell

activation (Kong et al., 2019), the regulatory mechanism

remains unclear. Yakymovych et al. proved that

SH3KBP1 promoted the expression of TGFβ receptor on

the cell surface and positively regulated TGFβ signaling

(Yakymovych et al., 2015). TGFβ signaling induced the

expression of both PD-1 and PD-L1 in infiltrating T cells in

multiple preclinical models (Baas et al., 2016; Strait and

Wang, 2020). Furthermore, a recent study demonstrated

that TGFβ induced PD-L1 in vitro on human non-small

cell lung cancer cell lines by Smad2-mediated canonical

TGFβ signaling (David et al., 2017). Therefore, TGFβ
signaling may regulate the expression of immune

checkpoints via SH3KBP1, which should be verified in

future studies.

Several AS-based prognostic signatures have been

identified in HNSC (Xing et al., 2019; Li et al., 2020;

Zhao et al., 2020). However, these studies have not

focused on the prognostic signatures and the tumor

microenvironment. In this research, the AS events were

analyzed in a large-scale HNSC cohort using the TCGA

database. We established a predictive AS event signature for

the prognosis and treatment of HNSC. This research had

several limitations. Due to the lack of RNA-Seq data with

survival information in the public database, we were unable

to perform survival analysis in the independent cohort.

Thus, these results need further validation by other

available datasets and future research. Secondly, the two

risk groups exhibited distinct immune landscapes, but their

differences were insignificant. Hence, greater subgroup

differentiation is required for precision therapy. Despite

these limitations, our signature can successfully

differentiate between high- and low-risk patients and

suggest accurate treatment strategies.

Conclusion

This research established a prognostic factor for HNSC

patients according to the eight survival-associated AS events.

The risk score was confirmed to be connected to HNSC prognosis

and immune infiltration, suggesting that the prognostic signature

could be an effective tool for the prognosis of HNSC patients and

their clinical response to immunotherapy. However, this

signature requires further research and validation in larger

cohort studies.
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