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Abstract

This investigation examined anthropometric, hormonal, and physiological differences

between advanced (ADV; n = 8, 27.8 ± 4.2 years, 170 ± 11 cm, 79.8 ± 13.3 kg) and recrea-

tional (REC; n = 8, 33.5 ± 8.1 years, 172 ± 14 cm, 76.3 ± 19.5 kg) CrossFit (CF) trained par-

ticipants in comparison to physically-active controls (CON; n = 7, 27.5 ± 6.7 years, 171 ± 14

cm, 74.5 ± 14.3 kg). ADV and REC were distinguished by their past competitive success.

REC and CON were resistance-trained (>2 years) and exercised on 3–5 days�wk-1 for the

past year, but CON utilized traditional resistance and cardiovascular exercise. All partici-

pants provided a fasted, resting blood sample and completed assessments of resting meta-

bolic rate, body composition, muscle morphology, isometric mid-thigh pull strength, peak

aerobic capacity, and a 3-minute maximal cycle ergometer sprint across two separate occa-

sions (separated by 3–7 days). Blood samples were analyzed for testosterone, cortisol, and

insulin-like growth factor-1. Compared to both REC and CON, one-way analysis of variance

revealed ADV to possess lower body fat percentage (6.7–8.3%, p = 0.007), greater bone

and non-bone lean mass (12.5–26.8%, p� 0.028), muscle morphology characteristics

(14.2–59.9%, p < 0.05), isometric strength characteristics (15.4–41.8%, p < 0.05), peak aer-

obic capacity (18.8–19.1%, p = 0.002), and 3-minute cycling performance (15.4–51.1%, p�

0.023). No differences were seen between REC and CON, or between all groups for resting

metabolic rate or hormone concentrations. These data suggest ADV possess several physi-

ological advantages over REC and CON, whereas similar physiological characteristics were

present in individuals who have been regularly participating in either CF or resistance and

cardiovascular training for the past year.

Introduction

CrossFit1 (CF) is a form of high-intensity functional training that combines resistance exer-

cises, gymnastics, and traditional aerobic modalities (e.g., cycling, rowing, running) into single

workouts that vary by day to elicit general physical preparedness [1, 2]. This training form is
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enjoyed recreationally by participants of varying levels of fitness, training experience, age, and

lifestyles [3] and also exists as its own sport. The primary CF competition is the Reebok Cross-

Fit Games™ (the Games) which awards individual winners the title of “Fittest on Earth™”. His-

torically, this competition has consisted of several stages designed to narrow the initial

participant pool down to the top athletes. Although the competition’s structure has changed

over time [4, 5], the presence of an initial online qualifying round (e.g., the CrossFit OpenTM)

has remained. This round typically involves multiple workout challenges that are completed

over the course of several weeks. Competitors who complete all workouts and rank high

enough will progress to the next stage of the competition. Regardless of which stage, it is

expected that each workout will consist of a set of challenges that will require some combina-

tion of strength, power, endurance, and/or sport-specific skill [1]. However, little is known

about which physiological characteristics of competitors who progress beyond the opening

round of the competition.

Body mass [6], strength and anaerobic power [6–10], aerobic capacity [9], sport-specific

skill [8, 10], and experience [9] have all been associated with either CF workout performance

or competitive ranking. Collectively, these data imply that athletes must train to be proficient

in each to perform well in competition. However, several limitations exist among these studies

that prevent making such a conclusion. For instance, Serafini et al. (2018) reported that higher

ranking competitors of the 2016 Open were stronger, more powerful, and more proficient at

short-duration, sprint-type CF workouts. Among regional competitors, final ranking was posi-

tively related to 400-m sprint time and time-to-completion in longer, benchmark workouts

(i.e., Filthy-50) (r = 0.69–0.77), and negatively related to maximal weight lifted in the Olympic

lifts (r = -0.39 to -0.42) [10]. Although these studies involved participants who have successful

competitive records, the measures used to distinguish rank were all self-reported. As such, the

authenticity and actual data of measurement (self-reported data were obtained from an online

resource) cannot be verified. In contrast, others have measured a variety of physical parame-

ters and related them to CF-style workouts performed in a controlled, laboratory setting [6, 7,

9]. While these studies have also included successful CF athletes, laboratory workouts do not

adequately emulate the competitive setting and may influence the physiological response to

CF training [11–14]. Thus, questions remain about the distinguishing characteristics of suc-

cessful CF athletes.

In more traditional sports (e.g., football, baseball, basketball, etc.), identifying the key physi-

ological and athletic characteristics that distinguish performance is common [15–18]. The

practice enables strength and conditioning professionals to develop sport-specific training

programs that are more effective in translating adaptations to in-game performance. However,

CF is unique in that typical training session workouts mirror those that appear in competition.

Moreover and consistent with its primary purpose [1, 2], chronic participation in CF training

has been documented to improve a variety of fitness parameters [19]. Though it might be

assumed that CF training represents an ideal training strategy for developing the physiological

characteristics present in successful competitors, such a conclusion would be premature based

on the available data.

Evidence of CF training being more advantageous towards developing a variety of fitness

outcomes in comparison to alternative training strategies (e.g., resistance training, high-inten-

sity interval training) is equivocal [19–25]. This is likely because most comparative training

studies have utilized untrained or novice (to CF) participants, which is problematic because

they do not require a very specific or intense training stimulus to elicit adaptations compared

to experienced trainees [26]. It is possible that either a longer training duration or more

advanced participants are necessary to observe the advantages or disadvantages of the CF strat-

egy. Unfortunately, elite competitors rarely share their training strategies and anecdotal
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evidence suggests that they incorporate more than what commonly occurs during a typical CF

training session. To the best of our knowledge, only one well-controlled study exists where a

variety of physiological parameters were examined between CF-trained participants and those

trained in more traditional exercise modalities (e.g., resistance training) [27]. In that cross-sec-

tional investigation, men with at least on year of CF training experience outperformed their

resistance-trained (> 1 year) counterparts in a multi-stage shuttle run test and possessed a

higher aerobic capacity; all other measures were statistically similar. While this study provides

evidence in favor of CF training, there was no aerobic training requirement for the resistance-

trained group, and the actual experience of the CF group was unclear beyond their having par-

ticipated in the strategy for at least one year. It is possible that multiple physiological differ-

ences exist when experience is considered. Therefore, the purpose of this study was to examine

anthropometric, hormonal, and physiological differences between advanced CF athletes, recre-

ational CF practitioners, and physically-active adults who regularly participate in both resis-

tance and cardiovascular training. Since adaptations are specific to the training modality and

effort [26], we hypothesized that body composition, muscle morphology, aerobic and anaero-

bic performance, and strength would be different between groups. Specifically, the advanced

CF athletes would outperform the other groups whereas recreational CF practitioners and

physically-active adults would be similar. However, because resting hormonal concentrations

do not typically change through training [14], it was hypothesized that these would be similar

between groups.

Materials and methods

Experimental design

For this cross-sectional study, physically-active adults were recruited and assigned into groups

based on their experience with CF training and performance during specific CF competitions.

Participants who possessed CF training experience (> 2 years) were classified as advanced

(ADV) if they had previously qualified for the regional round of the Games competition. Oth-

erwise, they were classified as recreational (REC) because they had never progressed beyond

the opening round of the competition (i.e., The Open) but still trained on 3–5 days per week

for at least the previous year. Individuals who did not possess CF training experience but pos-

sessed resistance training experience (> 2 years) and participated in both resistance and car-

diovascular training on 3–5 days per week for at least the previous year, were assigned to the

physically-active control (CON) group. All participants reported to the Exercise Physiology

Laboratory on two separate occasions, within one month of the onset of the Open, to complete

all testing. During the first visit, each participant provided a fasted blood sample before com-

pleting assessments of muscle morphology and then a graded exercise test to measure peak

aerobic capacity. Participants returned to the Exercise Physiology Lab for the second visit

(within 3–7 days of the first visit) to complete assessments of resting metabolic rate, body com-

position, and strength before finishing the study with a 3-minute all-out cycling test. All testing

sessions occurred in the morning (~6:00–10:00 a.m.) with the participants having abstained

from unaccustomed physical activity and alcohol for 24 hours, caffeine for 12 hours, and fasted

for 8 hours. Participants completed all measurements while wearing comfortable athletic

clothing and were able to consume a light snack prior to performance testing (i.e., peak aerobic

capacity, strength, and 3-minute cycling performance). Prior to leaving the laboratory on the

first visit, participants were asked to complete a 24-hour dietary recall, retain a copy, and fol-

low a similar diet prior to their second visit. Comparisons were made between groups for all

anthropometric, biochemical, and physiological measures.
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Participants

A priori analysis was based on published [8, 28] and related unpublished data collected by our

laboratory where comparisons were made between competitive levels and ranks for self-

reported measures of strength and power in CF athletes. The effect sizes produced from group

comparisons (partial eta squared> 0.485), standard alpha (p = 0.05), and minimum beta (ß =

0.80) were input into statistical software (G�Power, v. 3.1.9.4, Heinrich-Heine-Universität,

Germany). It was determined that a minimum of 20 participants was needed to obtain suffi-

cient power to observe differences between sexes and groups. Consequently, twenty-three

physically-active adults (29.7 ± 6.8 years, 171 ± 12 cm, 76.9 ± 15.4 kg) agreed to participate in

this study. All participants were free of any physical limitations (determined by medical and

physical-activity history questionnaire and PAR-Q+) and had been regularly participating (at

the time of recruitment) in their chosen exercise form (i.e., CrossFit training or Resistance/

Cardiovascular training) for a minimum of 2 years. Participants in ADV (n = 8 [men = 4,

women = 4], 27.8 ± 4.2 years, 170 ± 11 cm, 79.8 ± 13.3 kg) reported having regularly partici-

pated in resistance training for 11.5 ± 5.8 years and CF training for 6.4 ± 5.6 years (6–7 ses-

sions�week-1). As individual competitors, the highest rank these participants ever achieved in

the Open was 659th ± 991st (range: 19th– 3,052nd) within their respective divisions worldwide.

While each of these athletes qualified for this study by having competed as members of a team

in regional (highest average rank = 11th ± 13th) and Games competition (highest average

rank = 20th ± 9th), three competed individually in their respective regions with one having pro-

gressed to the Games on multiple occasions. REC participants (n = 8 [men = 4, women = 4],

33.5 ± 8.1 years, 172 ± 14 cm, 76.3 ± 19.5 kg) reported having regularly participated in resis-

tance training for 8.1 ± 7.9 years and CF training for 3.3 ± 1.7 years (4–5 sessions�week-1). The

highest rank these participants had ever achieved in the Open was 22,306th ± 14,028th (range:

5,466th– 44,315th) within their respective divisions worldwide. Participants in CON (n = 7

[men = 4, women = 3], 27.5 ± 6.7 years, 171 ± 14 cm, 74.5 ± 14.3 kg) reported having 7.6 ± 4.8

years of regular resistance training experience and incorporated 3.7 ± 1.3 sessions and 3.6 ±
1.0 sessions of resistance and cardiovascular training per week. Although two participants in

CON reported having previously participated in CF-style workouts, these did not occur with

regularity (< 3 sessions�week-1) or for an extended duration (< 1 year) and they had never

competed in the Open at the time of data collection. Following an explanation of all proce-

dures, risks and benefits, each participant provided his or her written informed consent to par-

ticipate in the study. The study was conducted in accordance with the Declaration of Helsinki,

and the protocol was approved by the Kennesaw State University Institutional Review Board

(#17–501).

Blood sampling and biochemical analysis

Blood samples were obtained on the first visit prior to any physical activity. All samples were

obtained from an antecubital vein using a needle by a research team member who was trained

and experienced in phlebotomy. Approximately 15 mL of blood was drawn into SST tubes (for

serum collection) and EDTA-treated Vacutainer1 tubes (for plasma). SST tubes were allowed

to clot for 10 minutes prior to centrifugation, while EDTA treated tubes were centrifuged

immediately for 10 minutes at 3600 rpms at 4 ºC. The resulting serum and plasma were ali-

quoted and stored at -80ºC until analysis.

Circulating concentrations of testosterone (T; in ng�dL-1), cortisol (C; in μg�dL-1), and insu-

lin-like growth factor (IGF-1; in ng�mL-1) were assessed via enzyme-linked immunosorbent

assays (ELISA) via a 96-well spectrophotometer (BioTek, Winooski, VT) using commercially

available kits. To eliminate inter-assay variance, all samples for each assay were thawed once
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and analyzed in duplicate in the same assay run by a single technician. Samples were analyzed

in duplicate, with an average coefficient of variation of 1.63% for T, 6.88% for C, and 2.00%

IGF-1.

Muscle morphology

Non-invasive skeletal muscle ultrasound images were collected from the right thigh and arm

locations of all participants. Prior to image collection, all anatomical locations of interest were

identified using standardized landmarks for the rectus femoris (RF), vastus medialis (VM),

vastus lateralis (VL), biceps brachii (BB), and triceps brachii (TB) muscles. The landmarks for

the thigh musculature were identified along the longitudinal distance over the femur. The RF

and VM were respectively assessed at 50% and 20% of the distance from the proximal border

of the patella to the anterior, inferior suprailiac crest. The VL was assessed at 50% of the dis-

tance from the lateral condyle of the tibia to the most prominent point of the greater trochan-

ter of the femur. VL measurement required the participant to lay on their side. Landmark

identification of the BB and TB required the participant to sit upright on the examination table

and extend their arm to rest upon the shoulder of the researcher. Both muscles were assessed

along the humerus at a position equal to 40% of the distance from the lateral epicondyle to the

acromion process of the scapula [29]. Subsequently, the participant resumed laying supine on

the examination table for a minimum of 5–10 minutes to allow fluid shifts to occur before

images were collected [30]. The same investigator performed all landmark measurements for

each participant.

A 12 MHz linear probe scanning head (General Electric LOGIQ S7 Expert, Wauwatosa,

WI, USA) was coated with water soluble transmission gel to optimize spatial resolution and

used to collect all ultrasound images. Collection of each image began with the probe being

positioned on (and perpendicular to) the surface of the skin to provide acoustic contact with-

out depressing the dermal layer. Subsequently, two consecutive images were collected in the

extended field of view mode (Gain = 50 dB; Image Depth = 5–6 cm) using a cross-sectional

sweep in the axial plane to capture panoramic images of each muscle. At the same sites, two

consecutive images were collected with the probe oriented longitudinal to the muscle tissue

interface using Brightness Mode (B-mode) ultrasound [31]. Each of these images included a

horizontal line (approximately 1 cm), located below the image, which was used for calibration

purposes when analyzing the images offline [32]. To capture images of the RF and VM, the

participant remained in the supine position, with their legs extended but relaxed. A rolled

towel was placed beneath the popliteal fossa of the dominant leg, allowing for a 10˚ bend in the

knee as measured by a goniometer, and the dominant foot secured [33]. For the VL, the partic-

ipant was placed on their side with their legs together and the rolled towel between their needs.

Once again, the legs were positioned to allow a 10˚ bend in the knees, as measured by a goni-

ometer [33]. Measurement of the BB and TB required the participant to sit upright with their

arm extended, resting on the shoulder of the researcher. The same investigator positioned

each participant and collected all images.

After all images were collected, the ultrasound data were transferred to a personal computer

for analysis via Image J (National Institutes of Health, Bethesda, MD, USA, version 1.45s) by

the same technician. All panoramic images were used to measure cross-sectional area (CSA)

and echo intensity. For these measures, the polygon tracking tool in the ImageJ software was

used to isolate as much lean muscle as possible without any surrounding bone or fascia [31].

Subsequently, Image J calculated the area contained within the traced muscular image and

reported this value in centimeters squared (± 0.1cm2). Concurrently, echo intensity was deter-

mined by grayscale analysis using the standard histogram function in ImageJ [31] and

PLOS ONE Physiological characteristics among CrossFit athletes

PLOS ONE | https://doi.org/10.1371/journal.pone.0223548 April 7, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0223548


expressed as an arbitrary unit (au) value between 0–255 (0: black; 255: white) with lower values

reflecting more contractile tissue within each muscle [31, 34]. Mean echo intensity values were

then corrected for subcutaneous fat thickness (SFT; averaged from the SFT values obtained at

the medial, midline, and lateral sites of each muscle) using Eq 1 [35]. All B-mode images were

used to measure muscle thickness (± 0.01 cm; perpendicular distance between the superficial

and deep aponeuroses) and pennation angle (± 0.1˚; intersection of the fascicles with the deep

aponeurosis). Fascicle length (± 0.1 cm) across the deep and superficial aponeuroses was esti-

mated from muscle thickness and pennation angle using Eq 2. Intraclass correlation coeffi-

cients (ICC3,k = 0.77–0.99) for determining muscle thickness, pennation angle, CSA and echo

intensity was previously determined in ten active, resistance-trained men (25.3 ± 2.0 years,

180 ± 7 cm, 90.8 ± 6.8 kg) using the methodology described above. The methodology for deter-

mination of FL has a reported estimated coefficient of variation of 4.7% [36].

Corrected echo intensity ðEIÞ ¼ Raw echo intensity þ ðSFT x 40:5278Þ Eq 1

Fascicle length ¼ Muscle thickness � sin ðpennation angleÞ� 1
Eq 2

Graded exercise testing

Peak aerobic capacity (VO2peak; ml�kg-1�min-1), respiratory compensation threshold (RCT;

ml�kg-1�min-1), and gas exchange threshold (GET; ml�kg-1�min-1) were assessed using a contin-

uous, ramp exercise protocol performed on an electromagnetic-braked cycle ergometer (Lode

Excalibur Sport, Lode., B.V., Groningen, The Netherlands). Prior to testing, each participant

completed a standardized warm-up that consisted of riding a cycle ergometer for 5 minutes

at the participant’s preferred resistance and cadence followed by 10 body weight squats, 10

alternating lunges, 10 walking knee hugs and 10 walking butt kicks. Participants were then per-

mitted to continue their warm-up with any additional practices that would help them feel

comfortable entering the test. Participants were fitted with a heart rate (HR) monitor (Team2,

Polar, Lake Success, NY), a nose clip, and a 2-way valve mask connected to a metabolic mea-

surement system (True One 2400, ParvoMedics Inc., Salt Lake City, UT) to measure expired

gases. The cycle ergometer seat height and handlebar distance were adjusted to the partici-

pant’s comfort. The participants initially completed a 3-minute warm-up period with the resis-

tance set at 50 W before starting the test at 75 W. During testing, the participants were asked

to maintain a self-selected pedaling rate (> 50 rpm’s) while power output was increased by 25

W every minute until volitional fatigue or pedaling rate dropped below 50 rpm’s for longer

than 15 seconds. Upon completion of the test, each participant immediately progressed to a

3-minute active recovery period where they continued to pedal at their own cadence against a

50 W load. HR was assessed on each minute of the 3-minute recovery period. Participants

were then removed from the cycle ergometer and asked to rest in a chair for an additional two

minutes.

Relative oxygen consumption values (i.e., VO2�kg-1) collected on each breath were averaged

using the 11-breath averaging technique [37] and used to determine the highest value achieved

during the test (i.e., VO2peak). RCT, also known as the second ventilatory threshold, was iden-

tified as the VO2 value at which the increase in ventilation-VO2 relationship was accompanied

by an increase in the ventilation-VCO2 relationships [38]. The GET was determined using the

V-slope method described by Beaver et al. [39]. The GET was defined as the VO2 value corre-

sponding to the intersection of two linear regression lines derived separately from the data

points below and above the breakpoint in the CO2 produced (VCO2) versus the VO2 relation-

ship [40].
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Dietary recall

Participant’s dietary intake was tracked for the 24-hour period preceding each visit via a paper

dietary food recall form. All participants were instructed on how to properly log their food,

snacks and drinks via the paper form. Specifically, following their enrollment on their first

visit, participants were asked to record their food intake (breakfast, lunch, dinner, drinks and

snacks) for the previous 24 hours prior. Prior to leaving the laboratory on the first visit, the

participants were given a copy of their food recall form and asked to consume a similar diet

during the 24 hours prior to their second visit. Each form was visually inspected to confirm

dietary compliance.

Resting metabolic rate assessment

Resting metabolic rate (RMR, kcals�day-1) assessment was completed in a quiet room with

minimal lighting (e.g., only light from the RMR machine) located within the Exercise Physiol-

ogy Laboratory. Prior to their arrival, participants were informed of all pre-test guidelines as

outlined by Compher et al. [41]. These included: 1) avoiding alcohol consumption 24 hours

prior to testing, 2) no food or caffeine ingestion 8 and 12 hours prior to testing, respectively,

and 3) discontinuing unaccustomed physical activity 24 hours prior to testing. Resting meta-

bolic rate was measured via a metabolic measurement system (Parvo Medics TrueOne 2400,

ParvoMedics Inc., Salt Lake City, UT) utilizing a ventilated hood. Participants were asked to

rest in the supine position with the ventilated hood placed over their face and neck for a maxi-

mum of 30 minutes. RMR determination was based on a 5-minute interval of measured vol-

ume of oxygen consumption (VO2) with a coefficient of variation less than 10% [41]. The

average coefficient of variation was 6.36%.

Body composition assessments

Initially, height (± 0.1 cm) and body mass (± 0.1 kg) were determined using a stadiometer

(WB-3000, TANITA Corporation, Tokyo, Japan) with the participants standing barefoot, with

feet together, in their normal daily attire. Subsequently, body composition was assessed by

three common methods (i.e., dual energy X-ray absorptiometry [iDXA, Lunar Corporation,

Madison, WI], air displacement plethysmography [BodPod, COSMED USA Inc., Chicago,

IL], and bioelectrical impedance analysis [770 Body Composition and Body Water Analyzer,

InBody, Seoul, South Korea]) using standardized procedures. Briefly, iDXA scanning required

participants to remove any metal or jewelry and lay supine on the iDXA table prior to an entire

body scan in “standard” mode using the company’s recommended procedures and supplied

algorithms. Quality assurance was assessed by daily calibrations performed prior to all scans

using a calibration block provided by the manufacturer. All iDXA measurements were per-

formed by the same researcher using standardized subject positioning procedures. For air dis-

placement plethysmography, the device and associated scale were calibrated daily using a

known volume and mass provided by the manufacturer. During testing, participants were

asked to wear a tight-fitting bathing suit or compression shorts and swim cap before entering

the device. Two trials were performed for each participant to obtain two measurements of

body volume within 150 mL. A third trial was performed if body volume estimates from the

first two trials were not within 150 mL, and values from the two closest trials were averaged.

Thoracic lung volume was estimated [42]. Bioelectrical impedance analysis required partici-

pants to stand barefoot on two metal sensors located at the base of the device and hold two

hand grips for approximately 30–60 seconds. Prior to stepping onto the device, participants

cleaned the soles of their feet with alcohol wipes provided by the manufacturer.
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Following testing, body mass, bone mineral content (BMC; from iDXA), body volume

(from BodPod), and total body water (from bioelectrical impedance analysis) were entered

into a 4-compartment model, Eq 3 to estimate body fat percentage (BF%) [43], fat mass (± 0.1

kg), and fat-free mass (± 0.1 kg). These values, along with regional (arms [sum of each arm],

legs [sum of each leg], and trunk [sum of spine and pelvis]) estimates of bone mineral content

(± 0.1 kg) and non-bone lean mass (± 0.1 kg) obtained from iDXA following manual demarca-

tion of these regions of interest were used for all group comparisons. Intraclass correlation

coefficients (ICC3,1 = 0.74–0.99) for manually determining regional estimates of bone mineral

content and non-bone lean mass had been previously found in 10 healthy, physically-active

adults (25.1 ± 2.4 years; 176 ± 7 cm, 81.1 ± 18.5 kg).

BF% ¼
ð2:748 x volumeÞ � ð0:699 x waterÞ þ ð1:129 x BMCÞ � ð2:051 x Body MassÞ

Body Mass
x 100 Eq 3

Strength assessment

Following RMR and body composition assessments, strength was assessed by an isometric

mid-thigh pull test. Prior to testing, each participant completed the same standardized warm-

up described for the first visit (i.e., 5 minutes of cycling, dynamic stretching, additional self-

selected warm-up practices) followed by a protocol specific to the isometric mid-thigh pull

test. The specific component included three isometric efforts on an immobilized barbell posi-

tioned at approximately the mid-thigh using a perceived intensity of 50, 70, and 90% of maxi-

mum effort, interspersed with a one-minute recovery. The specific warm-up and isometric

mid-thigh pull test were completed within a power rack (Rogue Fitness, Columbus, OH) while

standing upon a portable force plate (Accupower, AMTI, Watertown, MA). While standing on

the force plate, the mid-thigh position was determined for each participant before testing by

marking the midpoint distance between the knee and hip joints. Each participant was

instructed to assume their preferred second pull power-clean position by self-selecting their

hip and knee angles. The height of the barbell was adjusted to a position approximately equal

(± 2.54 cm) to the mid-thigh. The participants were then asked to use an overhand, hooked

grip on the barbell. The hook grip was selected for this test because all participants reported

having had experience with the technique and it is commonly used among CF athletes during

competition. Participants were also allowed to wrap their thumbs with athletic training tape

and use chalk. Upon the researcher’s “3, 2, 1, Go!” command, the participants were instructed

to pull upwards on the barbell as hard and as fast as possible and to continue their maximal

effort for 6 seconds. All participants were instructed to relax before the command “GO!” to

avoid precontraction and were allotted three maximal attempts. The portable force plate mea-

sured the ground reaction forces, imposed onto the plate by the participant, as he/she pulled

upon the bar. Peak force (F; in N) production, peak and average rate of force development

(RFDPEAK, RFDAVG; in N�s-1), and F and RFD across specific time bands (i.e., 0–30, 0–50,

0–90, 0–100, 0–150, 0–200, and 0–250 milliseconds) were subsequently calculated, as previ-

ously described [44].

3-minute all-out cycling test

Following the strength assessment, performance was assessed during a 3-minute maximal

sprint on an electromagnetic-braked cycle ergometer (Lode Excalibur Sport, Lode., B.V., Gro-

ningen, The Netherlands). Prior to the test, seat height and handlebar positions were adjusted

to mirror their positions during the peak aerobic capacity test, and participants were provided

with time (~3–5 minutes) to acclimate to the cycle ergometer. A 5-minute rest period was then

allotted before initiating the testing protocol, which has been previously described in detail
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elsewhere [45]. Briefly, the test began with a 1-minute baseline period that involved 55 seconds

of unloaded cycling at 90 rpm and then accelerating up to approximately 110 rpm over the last

5 seconds of the minute. The protocol immediately transitioned to the 3-minute testing period

where the participants attempted to maintain cadence as high as possible throughout its

entirety. Resistance for the test was set using the linear mode of the cycle ergometer (linear

factor = power / [preferred cadence]2). That is, the linear factor was calculated as the power

output halfway between the VO2peak and GET, divided by the preferred cadence of untrained

cyclists (70 rpm2) [46–48]. To prevent pacing and ensure an all-out effort, participants were

not informed of the elapsed time and strong verbal encouragement was provided. After 3 min-

utes, the participants progressed to a 3-minute recovery stage at 50 Watts at their preferred

cadence. Peak power (± 1 W), critical power (CP; average power over the final 30 seconds of

the test; ± 1 W) [47], and anaerobic work capacity (AWC; work done above CP; (± 0.1 kJ) (48)

were calculated based upon performance during the 3-minute sprint test.

Statistical analysis

Data were modeled using both a frequentist and Bayesian approach. The frequentist approach

involved a two-tailed, two-way (Group x Sex) analysis of variance (ANOVA) for each depen-

dent variable. Since no between-group differences were observed, age was not included in the

model as an additional factor or covariate. Assumptions of normality and equal variance were

verified by Shapiro-Wilk and Levene’s tests, respectively. Significant interactions and main

effects were further examined using Tukey’s post-hoc analysis. Criterion alpha was set at

p� 0.05. To further assess the likelihood (or the effect of group and/or sex) of the data under

the alternative hypothesis compared to the null hypothesis, a two-way Bayesian ANOVA was

performed with default prior scales [49]. Likelihood was represented in the form of Bayes fac-

tors (i.e., BF10) and were interpreted according to the recommendations of Wagenmakers

et al. [50]. That is, data were interpreted as evidence in favor of the null hypothesis when BF10

< 1. Otherwise, it was interpreted as “anecdotally” (1< BF10 < 3), “moderately” (3 < BF10 <

10), “strongly” (10 < BF10 < 30), “very strongly” (30< BF10 < 100), or “extremely” (BF10 >

100) in favor of the alternative hypothesis. All statistical analyses were performed using JASP

0.10.2 (Amsterdam, the Netherlands). All data are reported as mean ± standard deviation.

Results

Resting hormone concentrations

No interactions were observed for T, C, IGF-1. However, a trend for an interaction (F = 2.87,

p = 0.090) driven by a main sex effect was seen for T (F = 6.11, p = 0.027) with anecdotal differ-

ences between sexes being 2.058 times likely compared to the null hypothesis. Specifically,

women in ADV tended to exhibit lower T concentrations (p = 0.083) than ADV men. Male

and female hormone concentrations are illustrated in Fig 1.

Muscle morphology

Measures of muscle morphology for each group and sex are presented in Table 1. Significant

(p< 0.05) group x sex interactions were observed for BB fascicle length and EI for each mus-

cle, though the likelihood of these interactions favored the null hypotheses (BF10 < 1). Rather,

the observed interactions were primarily driven by anecdotal-to-strong evidence (1.7< BF10 <

30.0) of main effects for sex and group. The observed interaction for BB fascicle length was pri-

marily driven by a main effect for sex where women were 8.8 times more likely to possess

shorter fascicles than men, specifically REC women compared to the men of REC (p = 0.029)
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and CON (p = 0.012). Though the underlying causes for the interactions seen for EI varied with

each muscle, anecdotal-to-moderate evidence indicated that men were 1.7–5.5 times more likely

to possess a lower EI than women. Specifically, women in REC possessed higher EI (p< 0.05)

than men in ADV (RF, VL, and TB; a trend [p = 0.056] for VM) and REC (RF, VM, VL, and

TB; a trend [p = 0.087] was noted for BB), and tended (p< 0.10) to be higher than men in CON

(RF, VL, and TB). Even though a main effect was not seen, the effect of group was 2.4–30.0

times likely to influence EI. Specifically, post-hoc analysis of the interaction showed that women

in REC possessed higher EI than their counterparts in ADV (RF, VM, VL, and TB).

Significant group effects were found for muscle thickness (VL and BB), pennation angle

(BB and TB), fascicle length of TB, and CSA (VM and VL). Compared to CON, ADV pos-

sessed greater muscle thickness in VL (p = 0.013, BF10 = 3.0) and in BB (p = 0.012, BF10 = 2.2),

larger BB pennation angle (p = 0.007, BF10 = 21.9), and greater CSA in VM (p = 0.050, BF10 =

2.1) and VL (p = 0.009, BF10 = 0.7). Compared to REC, ADV possessed greater muscle thick-

ness in VL (p = 0.026, BF10 = 1.9), larger pennation angle in TB (p = 0.009, BF10 = 3.2), longer

fascicles in TB (p = 0.019, BF10 = 3.9), and greater CSA in VL (p = 0.009, BF10 = 0.8); a ten-

dency for greater muscle thickness in BB was also noted for ADV compared to REC

(p = 0.086, BF10 = 0.9). No differences were seen between REC and CON. Morphological com-

parisons are presented in Table 1.

Fig 1. Male and female resting concentrations in A) testosterone, B) cortisol, and C) IGF-1.

https://doi.org/10.1371/journal.pone.0223548.g001
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Graded exercise test

No significant group x sex interactions were observed for VO2peak (F = 1.09, p = 0.358, BF10 =

10.1), RCT (F = 0.32, p = 0.730, BF10 = 1.7), or GET (F = 0.05, p = 0.949, BF10 = 1.1). However,

moderate-to-strong evidence were found in favor of main group effects for each variable.

VO2peak (F = 9.10, p = 0.002, BF10 = 17.0) and RCT (F = 5.56, p = 0.014, BF10 = 4.5) were sig-

nificantly greater in ADV compared to REC (p� 0.039) and CON (p� 0.020), while GET

(F = 5.29, p = 0.016, BF10 = 5.7) was significantly greater in ADV compared to CON (p =

0.016) and tended to be greater compared to REC (p = 0.087). No differences were seen

between REC and CON. Further, the percentage of VO2peak for GET and RCT were similar

between ADV (GET = 55.2 ± 11.2%; RCT = 71.7 ± 7.5%), REC (GET = 55.9 ± 6.8%; RCT =

73.5 ± 5.9%), and CON (GET = 53.9 ± 4.3%; RCT = 74.6 ± 7.7%). Group differences in mea-

sures of aerobic performance are illustrated in Fig 2.

Table 1. Measures of muscle morphology by group and sex.

ADV REC CON Group Sex Group x Sex

Women Men Women Men Women Men p BF10 p BF10 p BF10

Muscle thickness (cm) Rectus femoris 2.48 ± 0.36 3.28 ± 0.50 2.32 ± 0.27 2.86 ± 0.20 2.46 ± 0.25 2.61 ± 0.43 0.155 8.2 0.004 6.7 0.248 0.5

Vastus medialis 3.44 ± 0.84 4.35 ± 0.58 2.77 ± 0.08 4.28 ± 0.61 3.41 ± 0.62 4.26 ± 0.22 0.439 >100 0.001 39.8 0.502 0.3

Vastus lateralis 1.92 ± 0.49 2.47 ± 0.39 1.49 ± 0.25 1.97 ± 0.19 1.63 ± 0.19 1.67 ± 0.28 0.009 11.9 0.017 7.9 0.288 1.7

Biceps brachii 3.32 ± 0.60 4.29 ± 0.87 2.62 ± 0.19 3.74 ± 0.71 2.43 ± 0.08 3.31 ± 0.17 0.013 >100 0.001 40.6 0.910 1.3

Triceps brachii 2.51 ± 0.45 3.05 ± 0.76 2.44 ± 0.64 2.91 ± 0.58 1.98 ± 0.24 3.05 ± 0.43 0.674 7.1 0.008 2.1 0.541 0.3

Pennation angle (˚) Rectus femoris 12.7 ± 3.5 15.5 ± 0.5 10.0 ± 3.0 14.5 ± 1.2 13.3 ± 5.6 16.4 ± 5.5 0.375 2.9 0.036 1.4 0.894 0.5

Vastus medialis 19.2 ± 3.9 26.2 ± 9.3 17.2 ± 3.4 24.9 ± 6.0 27.7 ± 10.8 24.0 ± 3.5 0.417 0.7 0.216 0.4 0.229 0.2

Vastus lateralis 14.3 ± 3.1 14.8 ± 2.9 10.7 ± 3.4 12.4 ± 5.8 12.3 ± 0.4 13.2 ± 3.5 0.286 0.6 0.502 0.5 0.947 0.1

Biceps brachii 13.6 ± 3.1 17.5 ± 2.2 12.8 ± 2.1 12.3 ± 5.0 10.5 ± 2.2 9.7 ± 1.5 0.009 7.0 0.489 3.2 0.249 0.4

Triceps brachii 17.9 ± 5.1 26.8 ± 7.8 11.1 ± 3.2 16.8 ± 4.5 14.2 ± 2.6 20.3 ± 4.1 0.012 34.5 0.004 13.8 0.791 2.4

Fascicle length (cm) Rectus femoris 12.2 ± 5.1 12.3 ± 2.2 14.1 ± 3.8 11.5 ± 0.8 12.8 ± 7.6 10.3 ± 4.5 0.852 0.6 0.365 0.3 0.786 0.1

Vastus medialis 10.6 ± 2.4 11.2 ± 4.8 9.6 ± 1.8 10.6 ± 2.7 7.9 ± 2.4 10.6 ± 1.1 0.552 0.6 0.280 0.3 0.758 0.1

Vastus lateralis 7.7 ± 0.4 9.9 ± 2.1 8.3 ± 1.5 10.5 ± 4.6 7.6 ± 0.6 7.7 ± 2.2 0.399 0.8 0.163 0.4 0.643 0.2

Biceps brachii 14.5 ± 2.8 14.2 ± 1.3 12.0 ± 1.1df 19.0 ± 4.8c 13.8 ± 2.8 19.9 ± 2.7c 0.271 9.8 0.002 8.8 0.043 0.5

Triceps brachii 8.7 ± 2.8 7.3 ± 2.9 12.8 ± 1.7 10.5 ± 3.1 8.2 ± 0.9 9.1 ± 2.2 0.018 4.3 0.370 2.4 0.448 0.5

Cross-sectional area (cm2) Rectus femoris 10.8 ± 2.4 17.8 ± 3.3 8.8 ± 1.5 15.6 ± 1.8 11.2 ± 1.3 15.0 ± 2.8 0.216 >100 0.000 >100 0.364 0.4

Vastus medialis 24.3 ± 6.6 29.8 ± 4 17.0 ± 3.9 27.8 ± 6.4 18.2 ± 2.1 23.7 ± 1.2 0.046 22.3 0.002 12.0 0.441 0.8

Vastus lateralis 29.8 ± 4.1 44.9 ± 4.1 24.4 ± 2.6 38.2 ± 4.5 24.1 ± 1.7 37.9 ± 3.0 0.004 >100 0.001 >100 0.912 0.5

Biceps brachii 8.4 ± 1.7 17.7 ± 9.2 7.4 ± 2.0 14.9 ± 2.5 7.9 ± 0.2 12.9 ± 1.0 0.464 77.5 0.001 32.6 0.622 0.3

Triceps brachii 10.5 ± 1.2 18 ± 4.3 7.0 ± 1.4 17.0 ± 5.7 8.9 ± 1.4 14.0 ± 3.6 0.273 >100 0.000 >100 0.417 0.3

Echo intensity (au) Rectus femoris 116 ± 26c 113 ± 11c 174 ± 33abd 97 ± 14ce 151 ± 16d 129 ± 14 0.061 30.0 0.001 5.5 0.008 0.6

Vastus medialis 105 ± 16c 108 ± 11 153 ± 39ad 104 ± 12c 116 ± 11 134 ± 13 0.093 2.4 0.289 0.8 0.012 0.4

Vastus lateralis 111 ± 20c 113 ± 15c 171 ± 42abd 107 ± 19c 134 ± 16 123 ± 10 0.087 4.3 0.023 1.7 0.028 0.7

Biceps brachii 123 ± 26 140 ± 9 170 ± 45 115 ± 29 148 ± 9 142 ± 17 0.585 0.6 0.206 0.5 0.044 0.2

Triceps brachii 83 ± 17c 89 ± 18c 145 ± 43abd 78 ± 13c 114 ± 16 100 ± 6 0.079 7.2 0.014 1.8 0.012 0.6

a = Significantly (p < 0.05) different from ADV women
b = Significantly (p< 0.05) different from ADV men
c = Significantly (p < 0.05) different from REC women
d = Significantly (p < 0.05) different from REC men
e = Significantly (p < 0.05) different from CON women
f = Significantly (p< 0.05) different from CON men.

https://doi.org/10.1371/journal.pone.0223548.t001
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Resting metabolic rate

Neither a group x sex interaction (F = 0.21, p = 0.817, BF10 = 0.2) or main group effect

(F = 1.67, p = 0.220, BF10 = 0.1) was observed for RMR recordings in ADV (1788 ± 232 kcal�-

day-1), REC (1768 ± 407 kcal�day-1), and CON (1572 ± 356 kcal�day-1).

Body composition

No significant group x sex interactions were observed for any measure of body composition

(presented in Table 2). However, the evidence was strongly-to-extremely in favor of main

group effects for body density, regional and total BMC, regional and total lean mass, and BF%.

Compared to the REC, ADV possessed greater body density (p = 0.004), greater BMC of the

arms (p = 0.009), greater lean mass (i.e., total and regional; p� 0.035), lower BF% (p = 0.009),

and tended to possess more BMC (total-body: p = 0.066; legs: p = 0.060) and less fat mass

(p = 0.064). Compared to CON, ADV possessed greater body density (p = 0.006), greater BMC

throughout the body (p� 0.024), lean mass throughout the body (p� 0.009), and lower BF%

(p = 0.023). No differences were observed between REC and CON.

Strength

No significant group x sex interactions were observed for variables obtained from the isomet-

ric mid-thigh pull assessment. Extreme evidence suggested significant main group effects for F

(F = 3.89, p = 0.042, BF10 = 667,577) and RFD at 200 ms (F = 3.67, p = 0.049, BF10 = 12,676), as

well as tendencies for group differences in F at 150 ms (F = 2.80, p = 0.091, BF10 = 1,898), F at

200 ms (F = 3.50, p = 0.055, BF10 = 17,296), F at 250 ms (F = 3.14, p = 0.071, BF10 = 21524),

RFD at 150 ms (F = 2.94, p = 0.082, BF10 = 1,868), and RFD at 250 ms (F = 3.37, p = 0.060,

BF10 = 20,187). According to post-hoc analysis, ADV produced a higher peak F than CON

(p = 0.036) and expressed greater RFD at 200 ms than REC (p = 0.049). ADV also tended to

produce greater F at 200 ms (p = 0.062) and 250 ms (p = 0.097) compared to REC. No other

specific differences were seen between groups. Group differences in F and RFD production

across time are illustrated in Fig 3.

Fig 2. Group differences in aerobic performance measures. � = Significantly (p< 0.05) different from ADV. # =

Different (p< 0.10) from ADV.

https://doi.org/10.1371/journal.pone.0223548.g002
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3-minute all-out cycling test

No significant group x sex interactions were observed for measures collected from the 3-min-

ute all-out cycling test. Extreme evidence in favor of a significant group main effect for CP

(F = 7.56, p = 0.005, BF10 = 267) indicated that ADV possessed a higher CP than REC (p =

0.029) and CON (p = 0.005). Although extreme evidence was also seen for AWC (F = 4.79,

p = 0.023, BF10 = 247), post-hoc analysis did not reveal specific group differences. No other dif-

ferences were observed. Group differences in measures of performance during the 3-minute

all-out cycling test are illustrated in Fig 4.

Discussion

The primary objectives of this study were to examine anthropometric, hormonal, and physio-

logical differences between advanced CF athletes, recreational CF participants, and resistance

and cardiovascular trained adults. Previously, only one other cross-sectional investigation has

made physiological comparisons between individuals with at least one year of CF or resis-

tance-training experience [27]. The authors reported no differences between the groups except

for the CF-trained group possessing greater aerobic ability. This outcome, however, is not sur-

prising considering that the resistance-trained group was not required to also have been per-

forming aerobic exercise. Typical CF training workouts will concurrently incorporate strength

and conditioning elements into training [1, 2, 51]. Although the conditioning component

Table 2. Group differences in measures of body composition.

ADV REC CON Group Group x Sex

Women Men Total Women Men Total Women Men Total p BF10 p BF10

Anthropometric

Height (cm) 160 ± 13 177 ± 3 170 ± 11 161 ± 4 183 ± 8 172 ± 14 158 ± 4 180 ± 9 171 ± 14 0.785 >100 0.526 0.3

Weight (kg) 68.3 ± 5.0 91.5 ± 5.1 79.8 ± 13.3 59.0 ± 2.0 93.5 ± 9.5 76.3 ± 19.5 60.8 ± 6.3 84.9 ± 7.3 74.5 ± 14.3 0.127 >100 0.169 0.3

BMI (kg�m-2) 26.0 ± 3.5 29.2 ± 1.9 27.6 ± 3.1 22.9 ± 1.2 28.0 ± 3.4 25.5 ± 3.6 24.4 ± 3.4 26.1 ± 0.7 25.4 ± 2.2 0.163 6.6 0.456 0.6

Density (kg�L-1) 1.07 ± 0.01 1.07 ± 0.01 1.07 ± 0.01 1.05 ± 0.01 1.06 ± 0.01 1.05 ± 0.01� 1.04 ± 0.02 1.06 ± 0.01 1.05 ± 0.02� 0.002 13.8 0.159 1.1

Bone Mineral
Content (kg)

Total 3.05 ± 0.38 3.75 ± 0.13 3.45 ± 0.44 2.42 ± 0.16 3.62 ± 0.41 3.02 ± 0.70# 2.43 ± 0.14 3.29 ± 0.41 2.92 ± 0.55� 0.012 >100 0.299 0.7

Arms 0.45 ± 0.07 0.62 ± 0.05 0.55 ± 0.11 0.32 ± 0.03 0.57 ± 0.05 0.44 ± 0.14� 0.30 ± 0.01 0.48 ± 0.06 0.40 ± 0.11� 0.001 >100 0.266 1.2

Legs 1.12 ± 0.13 1.44 ± 0.11 1.30 ± 0.20 0.82 ± 0.05 1.38 ± 0.17 1.10 ± 0.32# 0.81 ± 0.03 1.31 ± 0.22 1.09 ± 0.31� 0.022 >100 0.255 0.5

Trunk 0.95 ± 0.11 1.16 ± 0.03 1.07 ± 0.13 0.79 ± 0.11 1.11 ± 0.14 0.95 ± 0.21 0.82 ± 0.08 0.97 ± 0.09 0.90 ± 0.11� 0.028 >100 0.271 0.8

Non-bone fat-free
mass (kg)

Arms 7.15 ± 0.89 11.12 ± 1.22 9.42 ± 2.35 4.87 ± 0.49 10.02 ± 0.56 7.45 ± 2.79� 4.83 ± 0.42 9.04 ± 1.14 7.24 ± 2.40� 0.001 >100 0.400 0.6

Legs 18.4 ± 1.4 25.4 ± 1.6 22.4 ± 4.0 14.3 ± 1.0 24.4 ± 1.1 19.3 ± 5.4� 14.7 ± 0.7 22.5 ± 3.2 19.2 ± 4.7� 0.008 >100 0.252 0.5

Trunk 27.7 ± 2.9 35.2 ± 2.0 32.0 ± 4.5 20.3 ± 1.2 33.5 ± 1.4 26.9 ± 7.2� 21.4 ± 2.2 30.1 ± 3.7 26.4 ± 5.5� 0.001 >100 0.073 0.8

4-compartment
model

Body fat

percentage (%)

11.9 ± 2.4 11.0 ± 2.6 11.4 ± 2.3 23.3 ± 2.4 16.1 ± 6.2 19.7 ± 5.8� 23.9 ± 8.4 13.7 ± 3.2 18.1 ± 7.6� 0.007 16.1 0.183 2.7

Fat-free mass

(kg)

60.2 ± 3.5 81.3 ± 3.4 72.3 ± 11.7 45.2 ± 2.3 78.1 ± 5.3 61.7 ± 18.0� 45.9 ± 1.6 73.3 ± 8.4 61.6 ± 15.9� 0.001 >100 0.097 0.5

Fat mass (kg) 8.2 ± 2.1 10.2 ± 2.7 9.3 ± 2.5 13.8 ± 1.4 15.4 ± 7.0 14.6 ± 4.7# 14.9 ± 6.7 11.5 ± 2.2 13.0 ± 4.5 0.069 1.5 0.436 0.3

� = Significantly (p < 0.05) different from ADV

# = Different (p < 0.10) from ADV.

https://doi.org/10.1371/journal.pone.0223548.t002
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varies in intensity and duration for each workout, it is important that alternative exercise strat-

egies include both elements to make a fair comparison. The present study builds upon this lim-

itation by having required participants in the CON group to have been participating in both

resistance and cardiovascular training on at least 3 days per week each; a similar training fre-

quency was expected of the recreational CF group (i.e., training on at least 3 days per week).

Another important aspect of CF training worth consideration is that it includes a wide variety

of traditional resistance and aerobic training exercises, along with simple-to-complex gymnas-

tic movements. Proficiency in these movements cannot be assumed after only a year of train-

ing and would likely necessitate frequent workout modification. Recently, our group has

reported different physiological responses and recovery rates to CF workouts that are

Fig 3. Group differences in A) force and B) rate of force production during an isometric mid-thigh pull. � =

Significantly (p< 0.05) different from ADV. # = Different (p< 0.10) from ADV.

https://doi.org/10.1371/journal.pone.0223548.g003
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completed as prescribed versus those that are modified (i.e., scaled) [11]. Thus, CF-trained par-

ticipants were required to possess at least two years of experience and they were further

divided into ADV and REC based upon evidence of their skill as CF athletes (i.e., their previ-

ous success in CF competition). Within these contexts, advanced CF athletes were observed to

have a more favorable body composition and muscular morphological characteristics, as well

as greater aerobic capacity, strength, and ability to sustain high-intensity effort compared to

recreational CF participants and physically-active adults. In contrast, no differences were

observed between recreational CF participants and physically-active adults in any measure and

no differences were seen in resting hormone concentrations or metabolic rate across all

groups. This is the first investigation to make comparisons among CF practitioners based on

their competitive rank and relative to resistance- and cardiovascular-trained, active adults.

Most competitive CF workouts require athletes to perform 2 or more exercises in a circuit

or listwise fashion for several repetitions and rounds, and to do so as quickly as possible or to

complete as much work as possible within a given time limit [1, 2, 51]. Athletes who can main-

tain a faster pace or rapidly recover between minimal rest periods would appear to be best

positioned to excel in this sport. A recent study in advanced CF athletes, as determined by

their performance in a common benchmark workout (i.e., “Fran”), supports this idea [52].

Feito et al. (2018) found that the best predictor of repetitions completed during a 15-minute

CF workout was the amount of work the athletes could perform on the final trial of four

Fig 4. Group differences in A) anaerobic work capacity, B) peak power, and C) critical power. � = Significantly (p < 0.05) different than ADV.

https://doi.org/10.1371/journal.pone.0223548.g004
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maximal Wingate sprints separated by 90 seconds of rest. In the present study, the ADV group

possessed a lower percentage of body fat and greater non-bone fat-free mass compared to the

REC and CON groups. In sports, possessing an ideal ratio of skeletal muscle to fat mass may

offer a competitive advantage by improving efficiency, thermoregulation, and the ability to

sustain effort [53]. Aside from their historical success in CF competition, the ADV group’s per-

formance during testing provide evidence of this ability. ADV participants possessed a higher

VO2peak than the other groups, which would imply that they were able to perform aerobic

work throughout a greater range of workloads [54, 55] but it does not completely explain their

ability to sustain effort at higher intensities [56]. As the oxygen requirements of a workload

exceed an athlete’s capacity to efficiently deliver oxygen, the ability to sustain effort may be fur-

ther explained by measures of anerobic performance and specific threshold points indicative

of the onset of fatigue (i.e., GET, RCT, and CP) [48, 56, 57]. Participants in the ADV group

were also found to possess a higher GET, RCT, and CP, which are all strongly correlated [57]

and thought (specifically RCT and CP) to demarcate the point in which exercise transitions

from ‘heavy’ to ‘severe’ [57, 58]. Together, these data suggest that the ADV athletes in this

study had a greater capacity to produce energy aerobically, and that they were better equipped

to maintain efforts at higher absolute workloads and thus, be successful in their sport.

Skeletal mass and the morphological characteristics of muscle are suggestive of a greater

ability to produce force [59–62]. That is, the size, architecture and quality of skeletal muscle

reflect the capability of activated muscle to produce force, whereas bone mass provides the

structural support and stability needed to effectively translate force production into human

movement. In the present study, ADV athletes possessed greater bone and muscle mass/size,

larger pennation angles, shorter fascicles, and better quality in the arm and quadriceps muscu-

lature compared to the other groups. However, these only partially translated to greater force

production by ADV group participants during the IMTP test. IMTP performance was highly

variable until 0 to 200–250 ms, upon which ADV clearly produced greater force and at a faster

rate. The lack of uniformity across all strength measures might be explained by testing specific-

ity and the skillset of our sample. The importance of being able to rapidly activate muscle (i.e.,

higher RFD) and the magnitude of IMTP force production varies across sports and athletic

activities. In weightlifters, significant relationships have been reported between one-repetition

maximums in the Olympic lifts and IMTP force (peak and from 0 to 100–250 ms) [63] but

relationships to RFD have either been limited to specific time bands (from 0 to 200–250 ms)

[63] or remain unclear in other athletes [64, 65]. Although maximal strength in the Olympic

and power lifts can distinguish competitive ranking in CF athletes [8, 10], it is not a common

requisite of CF competition to maximally perform these lifts. Rather, most competitive work-

outs either utilize submaximal loads that are performed for several repetitions or they require

the athlete to perform maximal (or near maximal) lifts after a fatiguing task (i.e., not a true

measure of maximal strength) [51]. It is also possible that the composition of the ADV group

may help explain the variability observed prior to 200 ms. While all ADV group participants

ranked higher than REC in the Open, their participation in later rounds of the Games compe-

tition had primarily occurred as part of a team. Within this capacity, team members may be

included based on their skill set (e.g., strong/powerful athletes, gymnastically-skilled athletes,

endurance athletes) to minimize team weaknesses. This differs from individual competitors

who must be proficient in a broader set of skills to be competitive [8, 10]. Currently, evidence

documenting the physiological differences between high-ranking individual and team compet-

itors does not exist.

There is little evidence to suggest that consistent alterations will occur to resting concentra-

tions in T, C, or IGF-1 as a result of chronic training [14]. Rather, their concentrations gener-

ally reflect the current status of muscle tissue in response to the demands of training. Transient
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changes in T, IGF-1, and C may occur following acute and prolonged overreaching (or over-

stress) periods that could negatively impact anabolic status [14]. CF training is characterized

by an effort to maximize training density (i.e., complete a set amount of work as quickly as

possible, or maximize work completed within given time frame) within an unplanned (i.e.,

non-periodized) training structure to promote general physical preparedness [1, 2]. Further,

the 5-week Open is the most common avenue used by athletes to qualify for the Games [4, 5].

Prior to an important competitive event, athletes may elevate training intensity to promote

peak performance [66]. Thus, the combination of the CF training strategy and the approach of

an important, extended competitive event could increase the likelihood of a prolonged period

of overstress. The occurrence of which might be identified by changes in resting hormonal

concentrations, resting metabolic rate, performance, as well as a variety of other factors [14,

67, 68]. However, the present investigation did not reveal any evidence of prolonged stress or

negative adaptations to training. Resting hormone concentrations and metabolic rates were

similar between groups and the physiological advantages demonstrated by the ADV group

appeared to reflect their reported training habits over the past six months (via medical and

physical activity history questionnaire). Excluding the conditioning component typically pres-

ent in CF workouts, members from each group reported using a similar number of sets per

muscle group (3–6), repetitions (3–12), and rest intervals (60–90 seconds) during the strength

component of their workouts. Only training frequency was reported to be different with the

ADV group utilizing a form of resistance exercise on approximately 5.3 days per week whereas

the REC and CON groups averaged 4.6 days per week and 3.7 days per week, respectively.

Although the greater training frequency seen in ADV would have theoretically provided more

of an opportunity to accumulate training volume and promote adaptations, it could have also

interfered with their recovery. Nevertheless, ADV possessed a more favorable body composi-

tion and generally outperformed the other groups in each performance measure. Therefore, as

of one-month prior to competition, adequate recovery appeared to be present in this group.

Likewise, the lack of differences seen between REC and CON, who were not actively training

for the Open, also provides evidence of adequate recovery. Future investigations can expand

on this by more closely monitoring training and performance surrounding the extended Open

competition.

The findings of this study suggest that advanced CF athletes possess a more favorable body

composition, greater bone and muscle mass, greater muscle quality and strength, greater aero-

bic capacity, and a greater ability to sustain effort than recreational CF participants and physi-

cally-active adults. The reasons for these differences remain unclear due to the cross-sectional

design of this study but may be related to differences in training experience and recent training

habits. Although all participants in this study could be considered well-trained [69], ADV

group participants reported having more resistance training experience and having been train-

ing more frequently over the past 6 months than the other groups. It is possible that their

advantages are simply the result of training for a longer amount of time or creating more

opportunities to increase their volume load throughout the week. Without documentation

(i.e., extensive, detailed training logs), however, it is only possible to speculate upon their

potential influence as unknown factors (e.g., training quality, genetic predisposition) would

certainly modulate resultant adaptations. It may be worthwhile for future investigations to

make comparisons between advanced CF athletes and non-CF individuals with comparable

training experience and habits to better determine whether an advantage exists.

It is also interesting to note that despite the superficial differences in each strategy (i.e., CF

versus traditional resistance and cardiovascular training), REC and CON were found to pos-

sess similar physiological characteristics. It is possible that this was the consequence of our

sample size being sufficient to observe the large differences that existed between ADV and the
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other groups but not for the smaller differences that existed between REC and CON. However,

it may also be the consequence of effort and volume load during training being similar

between these groups. To be included in the study, both REC and CON had to have been regu-

larly participating in their chosen training strategy on 3–5 days per week for at least the past

year. Beyond this requirement, however, our ability to quantify training volume load was lim-

ited to the participants’ recall over the past 6 months. Future longitudinal investigations that

document both the quality and quantity of these training forms may help to provide insight

into whether an advantage exists between these strategies or if they promote comparable adap-

tations among recreationally-active adults. Nevertheless, the present findings represent a start-

ing point for future comparisons between experienced CF participants (athletes and

recreational) and resistance-trained and cardiovascular-trained adults, as well as between

sexes across these populations.
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