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BoostMe accurately predicts DNA
methylation values in whole-genome
bisulfite sequencing of multiple
human tissues
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Abstract

Background: Bisulfite sequencing is widely employed to study the role of DNA methylation in disease; however,
the data suffer from biases due to coverage depth variability. Imputation of methylation values at low-coverage
sites may mitigate these biases while also identifying important genomic features associated with predictive power.

Results: Here we describe BoostMe, a method for imputing low-quality DNA methylation estimates within
whole-genome bisulfite sequencing (WGBS) data. BoostMe uses a gradient boosting algorithm, XGBoost, and
leverages information from multiple samples for prediction. We find that BoostMe outperforms existing algorithms in
speed and accuracy when applied to WGBS of human tissues. Furthermore, we show that imputation improves
concordance between WGBS and the MethylationEPIC array at low WGBS depth, suggesting improved WGBS
accuracy after imputation.

Conclusions: Our findings support the use of BoostMe as a preprocessing step for WGBS analysis.

Keywords: DNA methylation, XGBoost, Whole-genome bisulfite sequencing (WGBS), EPIC, Imputation, Adipose,
Skeletal muscle, Pancreatic islets

Background
DNA methylation is an epigenetic mark that is known to
play a role in many fundamental biological processes, in-
cluding differentiation, development, and gene regula-
tion [1, 2]. In mammals, DNA methylation occurs
primarily on cytosines of CG dinucleotides (CpGs). CpG
methylation marks convey epigenetic information across
the lifespan, as they can be stably propagated through
mitosis, and in special circumstances even through mei-
osis [3–7]. DNA methylation is an important mechanism
for gene-environment interaction, and can thus influ-
ence health of cells, organs, and organisms.
DNA methylation is most commonly measured in cell

lines or bulk tissue samples using microarrays or

sequencing of bisulfite-converted DNA. These assays
provide an estimate of the fraction of chromosomes in
the cell population that are methylated at each CpG of
interest (“beta” values). Microarrays such as the Illumina
Infinium Methylation450k, and more recently the
MethylationEPIC [8] (“EPIC”), allow beta value estima-
tion using fluorescent probe technology, and are cost-
effective platforms for measuring methylation in genes,
promoters, and enhancers. However, the EPIC array
measures only ~ 3% of all CpGs in the genome and has
relatively little coverage of intergenic regions. In con-
trast, whole-genome bisulfite sequencing (WGBS) pro-
vides coverage of most of the ~ 28 million CpGs in the
genome of an average tissue, giving it a clear advantage
over the EPIC array. However, due to the high cost and
sample input requirements of WGBS, it is often infeas-
ible to generate deep-coverage data for a large number
of replicates. Since beta values are estimated from
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WGBS by calculating the ratio of methylated and
unmethylated reads at each CpG, CpGs sequenced at
low read depth are subject to error and are typically re-
moved or imputed before performing downstream ana-
lyses, such as detecting differentially methylated regions
[9, 10]. One potential remedy for inefficiencies with
WGBS is the generation of a small number of high-
coverage reference samples in relevant tissues and
disease states. These reference samples could be used to
facilitate lower coverage and/or lower density methyla-
tion profiling in a larger number of samples. Similar
techniques have already been used to increase the power
of GWAS studies by leveraging data from sparse yet
cost-effective SNP arrays [11–13].
Machine and deep learning algorithms have shown

promise in providing accurate beta value estimates after
training on sparse data sets [14, 15]. Prediction accuracy,
however, is still far from what is achieved with SNP
imputation in GWAS [14], leading to the need for algo-
rithm improvement. The most recent beta value imput-
ation methods were based on either random forests [16]
or deep neural networks [17]. A relatively new algorithm
called extreme gradient boosting (XGBoost) has been
shown to outperform both methods in accuracy and
computational efficiency when highly predictive features
can be constructed [18]. Previous imputation methods
have also only classified beta values as fully unmethy-
lated or methylated. This binarization of the data not
only represents a loss of information but also ignores
the possible significance of intermediate beta values as a
conserved and biologically relevant genomic signature
[19]. Specifically, although single chromosome methyla-
tion is binary, intermediate methylation in a population
of cells has been shown to be a predominantly tissue
specific signature that is enriched in genes, enhancers,
and evolutionarily conserved regions [19, 20]. Further-
more, although previous algorithms have constructed
features that capture the local correlation structure of
beta values [14, 21] as well as information from the
surrounding DNA sequence context [14, 15, 22–24], no
algorithms have created features that incorporate infor-
mation from multiple samples in the same tissue and/or
disease state. This adaptation could improve prediction
for CpGs that are not highly correlated to neighboring
CpGs or strongly associated with their surrounding
DNA context.
Importantly, machine and deep learning algorithms

not only can impute missing values in sparse methyla-
tion data sets but can also identify genomic features and
sequence motifs associated with methylation patterns in
different tissues [14, 15, 22, 25–27]. For example, a pre-
vious random forest [14] algorithm applied to whole
blood identified co-localized active transcription factor
binding sites (TFBS), including those for ELF1, MAZ,

MXI1, and RUNX3, to be predictive of beta values in
whole blood. A recent deep learning algorithm [15]
found that transcription factor motifs such as Foxa2 and
Srf, which are both implicated in cell differentiation and
embryonic development, were important to beta value
prediction in mouse embryonic stem cells. These algo-
rithms are therefore useful for characterizing methyla-
tion regulatory networks.
Methylation regulatory networks may have particular

significance in complex diseases such as type 2 diabetes
(T2D). The complexity of T2D is characterized by inter-
actions between genetic and environmental factors
acting in multiple tissues over time. Implicated tissues
include pancreatic islets, skeletal muscle, adipose, liver,
intestine, and brain. Genome-wide association studies
(GWAS) have shown that the majority of T2D-
associated loci lie in non-coding regions of the genome
[28–30]. These loci therefore lack a clear relationship
with any potential causal genes, underscoring the im-
portance of identifying the epigenetic mechanisms by
which they could affect gene expression.
In this work, we generated EPIC and WGBS data on

58 human samples from adipose, skeletal muscle, and
pancreatic islets (Additional file 1: Table S1). Samples
from adipose and skeletal muscle included those from
patients with normal glucose tolerance (NGT) and T2D;
all pancreatic islet samples were NGT. We found 1) a
high rate of missingness in the WGBS data and 2) dis-
cordance between WGBS and EPIC, biased towards low
coverage and intermediate methylation sites. To address
these issues, we developed an imputation method based
on XGBoost called BoostMe, which is designed to lever-
age information from multiple independent samples
from the same tissue type and disease state to impute
low-coverage CpGs in WGBS data. We find that, for all
tissues and all genomic contexts, BoostMe outperforms
other methods, achieving the lowest error as well as the
highest computational efficiency. We also examine the
effect of imputation on WGBS accuracy by comparing
raw WGBS and imputed beta values to those of the
EPIC array. We find that discordance between EPIC and
WGBS measurements at low WGBS depth is mitigated
after imputation using BoostMe, supporting the use of
imputation as an important preprocessing step for
WGBS data analyses.

Results
Characterizing beta values in WGBS of adipose, skeletal
muscle, and pancreatic islets
We generated WGBS and EPIC data from 58 samples of
human adipose, skeletal muscle, and pancreatic islets.
We discovered that, despite deep mean sequence cover-
age across samples (~ 30× genome-wide), there was a
relatively high rate of missingness in DNA methylation

Zou et al. BMC Genomics  (2018) 19:390 Page 2 of 15



(beta) values (CpG sequencing depth < 10×) (Fig. 1a).
The number of missing beta values across all samples
ranged from 2.6 million to 10.5 million, or roughly 10 to
40% of all ~ 25.5 million autosomal CpGs. We next ex-
plored the overlap between beta value missingness and
the underlying tissue-specific epigenomic architecture.
We used previously published chromatin state segmen-
tations for the corresponding tissues [31]. We found that
missingness was spread across chromatin states (Fig. 1b)
, with the highest raw numbers of missing beta values lo-
cated in the Quiescent/Low Signal and Weak Transcrip-
tion states (Additional file 1: Figure S1).
Previous imputation work using array-based technol-

ogy has shown that the beta value of a CpG is correlated
with the beta values of its neighboring CpGs [14]. The
average distance between neighboring CpGs in the hu-
man genome is 50 bp (Additional file 1: Figure S2); how-
ever, there is a high degree of variance in inter-CpG
distance among chromatin states. To determine the ex-
tent to which neighboring beta values in WGBS are
correlated, we quantified neighboring CpG similarity as
a function of distance by calculating pairwise differences
between beta values within chromatin states for each
tissue and disease state combination (Fig. 2,
Additional file 1: Figure S3, S4). The majority (~ 70%) of
CpG pairs genome-wide were highly similar, with an ab-
solute difference in beta values less than 0.1 (Fig. 2a). As
distance between CpGs increased, chromatin states such
as active and bivalent/poised transcription start site
(TSS), strong and weak transcription, and quiescent/low
signal had generally low differences, suggesting that
neighboring beta values may be highly informative for
prediction in these regions. In contrast, enhancer, flank-
ing TSS, and repressed polycomb states exhibited larger
differences as distance increased, suggesting that neigh-
boring information alone may not be enough to make

accurate predictions in these states, particularly when
the nearest neighboring CpG is located at some
distance.
Since ~ 70–80% of CpGs are invariantly methylated

across tissues and samples [32], we also calculated pair-
wise differences within regions of higher across-tissue
variance. In contrast to the bimodal distribution of beta
values genome-wide, average beta values in these high-
variance blocks were more highly enriched for inter-
mediate values (Additional file 1: Figure S5). Pairwise
differences within these blocks exhibited less drastic
changes over distance compared to the genome-wide
analysis and were more similar across chromatin states
(Fig. 2b). However, they had slightly larger magnitudes
at low distances, where the bulk of differences occurred,
indicating that even proximal CpGs may be less inform-
ative in these regions.

BoostMe outperforms random forests and DeepCpG for
methylation imputation
To address the high rate of missingness in our data, we
developed BoostMe, a method for imputing beta values
using WGBS data from at least three samples. Previous
attempts at beta value imputation based on penalized
functional regression [24], random forests [14], and deep
neural networks [15] yielded relatively poor predictive
accuracy genome-wide (RMSE > 0.23, AUROC < 0.93)
(Additional file 1: Table S2). To improve on those
methods, we implemented predictive models optimized
for WGBS data using both random forest and gradient
boosting [18] algorithms.
We constructed a total of 648 features designed to

both parallel and improve upon previous work [14]. Pre-
diction features constructed from the WGBS data in-
cluded the nearest non-missing neighboring CpG beta
values upstream and downstream of the CpG of interest,

Fig. 1 Characterization of WGBS missingness. (a) WGBS coverage (sequencing depth) distributions across tissue types and samples, visualized as
the proportion of the ~ 25.5 million autosomal CpGs lying in each coverage interval. Each column is one sample from that tissue type. (b) WGBS
missingness is distributed across chromatin states in all tissues. The normalized fraction of total missingness (y-axis) was calculated as the number
of CpGs in each chromatin state that had missing methylation (beta) values (sequencing depth < 10×) normalized by the total number of CpGs
in that chromatin state for each tissue. Abbreviations: AN, adipose NGT; AT, adipose T2D; MN, muscle NGT; MT, muscle T2D; Isl., islets; NGT, normal
glucose tolerance; T2D, type 2 diabetes

Zou et al. BMC Genomics  (2018) 19:390 Page 3 of 15



base-pair distance to the neighboring CpGs, and the
average beta value of the CpG of interest in other
samples from the same tissue and disease state (sample
average). We also used tissue-specific reference data to
create features that describe the genomic context of
individual CpGs such as histone marks (n = 7), computa-
tional predictions of transcription factor binding sites

(TFBSs) (n = 608), chromatin states (n = 13), and ATAC-
Seq peaks (as a measure of DNA accessibility; see
Methods, Additional file 1: Table S3 for a full list of
features).
We tested the inclusion of different features and se-

lected the best combination by assessing performance
on a held-out validation set (Table 1). We found that the

Fig. 2 CpG methylation pairwise differences increase with distance and have different average behaviors across chromatin states. Differences
were calculated using the average methylation (beta) value of each CpG across all 12 muscle NGT samples. Smoothed lines were fit using a
generalized additive model. Average behaviors across chromatin states were similar across all tissue and disease state combinations examined in
this work; see Additional file 1: Figure S3, S4. (a) Absolute pairwise differences within chromatin states genome-wide. We randomly sampled
blocks of chromatin states genome-wide and used ~ 2 million pairwise differences for each chromatin state. Marginal histograms indicate the
number of pairwise differences across chromatin states within the range of the graph. (b) Pairwise differences in blocks of consecutive CpGs with
higher across-tissue variance. Variances were calculated across all 58 tissue samples; CpGs with beta value variances above the third quartile of
variances were considered as having higher variances. Pairs of CpGs lying in the same high-variance region but different chromatin states were
excluded from this analysis

Table 1 Performance of BoostMe using different feature combinations

Features RMSE (all) RMSE (int.) AUROC AUPRC Accuracy

Nearest non-missing upstream and downstream
neighboring beta values and distances (N)

0.15046 ± 0.00940 0.21429 ± 0.01133 0.94983 ± 0.00774 0.98595 ± 0.00337 0.93743 ± 0.01065

Sample average (A) 0.09594 ± 0.00478 0.14304 ± 0.00649 0.98954 ± 0.00177 0.99424 ± 0.00486 0.96237 ± 0.00464

A, N 0.09330 ± 0.00461 0.13768 ± 0.00620 0.99019 ± 0.00160 0.99769 ± 0.00049 0.96389 ± 0.00457

A, N, transcription factor binding sites 0.09333 ± 0.00459 0.13776 ± 0.00617 0.99018 ± 0.00159 0.99769 ± 0.00049 0.96384 ± 0.00457

A, N, recombination rate 0.09330 ± 0.00462 0.13774 ± 0.00621 0.99018 ± 0.00160 0.99769 ± 0.00049 0.96386 ± 0.00459

A, N, ATAC-seq peaks (P) 0.09327 ± 0.00461 0.13768 ± 0.00620 0.99019 ± 0.00160 0.99769 ± 0.00049 0.96389 ± 0.00457

A, N, histone marks (H) 0.09322 ± 0.00461 0.13758 ± 0.00619 0.99020 ± 0.00159 0.99769 ± 0.00049 0.96393 ± 0.00456

A, N, GENCODE annotations (G) 0.09323 ± 0.00461 0.13759 ± 0.00619 0.99019 ± 0.00159 0.99769 ± 0.00049 0.96390 ± 0.00457

A, N, chromatin states (C) 0.09318 ± 0.00461 0.13759 ± 0.00619 0.99019 ± 0.00159 0.99769 ± 0.00049 0.96390 ± 0.00457

A, N, P, H, G, Ca 0.09311 ± 0.00459 0.13735 ± 0.00616 0.99022 ± 0.00158 0.99770 ± 0.00049 0.96401 ± 0.00454

Feature selection performance was evaluated on holdout validation sets by repeating the training and validation process ten times using ten different random
seeds. All metrics were calculated by averaging across all 58 samples and are displayed as mean ± standard deviation. RMSE, root-mean-squared error; int., intermediate
beta values, defined as having a sample average between 0.2 and 0.8; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-
recall curve. Accuracy was calculated as the number of beta values correctly predicted as methylated or unmethylated divided by the total number of beta values. aFinal
set of features used to benchmark performance
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RMSE obtained using sample average alone was within
one standard deviation of the RMSE obtained using
sample average and neighbor CpG features combined;
however, the AUPRC of the latter was higher and had a
standard deviation that was approximately one order of
magnitude smaller. We also found that some genomic
features had negligible effect on accuracy. In particular,
TFBS and recombination rate did not improve perform-
ance. The lowest RMSE was obtained when using the
sample average, neighboring beta values and distances,
ATAC-seq peaks, histone marks, GENCODE annota-
tions, and chromatin states. Although using this set of
features provided the best RMSE, improvements were
within one standard deviation of RMSE using only sam-
ple average and neighboring CpG features. This result
suggests that comparably low RMSE can be achieved
without using additional genomic features, though such

features, if available, may provide modest improvements
in performance.
Using the full set of features, and after applying add-

itional quality control exclusion criteria (Methods), the
average number of CpGs usable for training and testing
per sample was 20 million (range: 14.7 million - 21.2
million), and the average number of missing CpGs able
to be imputed per sample (sequencing depth < 10×) was
2.6 million (range: 750,000–7.7 million).
We compared the performance of BoostMe and ran-

dom forests with DeepCpG for predicting continuous
beta values in WGBS data from adipose NGT (n = 12),
adipose T2D (n = 12), muscle NGT (n = 12), muscle T2D
(n = 12), and pancreatic islet (n = 10) tissue (Fig. 3a). Due
to memory limits, we replicated a previously-described
form of repeated random subsample validation [14] for
both BoostMe and random forests, training on 1,000,000

Fig. 3 BoostMe and random forests outperform DeepCpG for predicting methylation values genome-wide. (a) Root-mean-squared error (RMSE)
of BoostMe, random forests (RF) and DeepCpG for predicting methylation (beta) values in all tissue and disease state combinations examined in
this study. Data points represent performance on individual samples. NGT, normal glucose tolerance; T2D, type 2 diabetes. (b) RMSE of all algo-
rithms by chromatin state
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randomly selected CpGs, validating on a hold-out set of
1,000,000 CpGs, and testing on a hold-out set of
1,000,000 CpGs (Methods). DeepCpG was trained for
each tissue and disease state combination as described
in Angermueller et al. [15], using a total of ~ 10 million
CpGs for training and ~ 5 million for validation. We
evaluated DeepCpG models on a held-out random sam-
ple of 1,000,000 CpGs that also fit the BoostMe criteria
for training and testing. Unlike BoostMe and random
forests, DeepCpG learns features from the DNA se-
quence and neighboring CpGs surrounding the CpG of
interest and does not explicitly use manually constructed
features. We found that both BoostMe and random
forests outperformed DeepCpG, achieving an average
root-mean-squared error (RMSE) of 0.09, area under the
receiver operating characteristic curve (AUROC) of 0.99,
area under the precision-recall curve (AUPRC) of 0.99,
and an accuracy of 0.96 (Table 2). This result held true
when training all methods on a smaller sample of
500,000 CpGs (Additional file 1: Table S4). Unlike
previous methods [14, 15], we trained on continuous
beta values rather than binary values because of the
available depth in our WGBS data. We found that this
change improved overall RMSE by at least 0.06 and per-
formed similarly for AUROC, AUPRC, and accuracy
(Additional file 1: Table S5).
To characterize performance patterns in different gen-

omic contexts, we compared the performance of each al-
gorithm within tissue-specific chromatin states (Fig. 3b).
Again, BoostMe and random forests outperformed
DeepCpG in all chromatin states. In addition, all three
algorithms exhibited the same trend across chromatin
states, with the best predictive performance in TSS-
associated states, which were strongly correlated with
low beta values (Additional file 1: Figure S6).
Beta values are bimodally distributed, with the major-

ity of CpGs being either fully methylated or unmethy-
lated; however, there is evidence that intermediate
methylated CpGs are a conserved genomic signature
that is often tissue-specific [19, 20]. Furthermore, given
our finding that regions of higher across tissue-variance
tended to have average beta values in the intermediate
range (Additional file 1: Figure S5), CpGs with inter-
mediate average beta values may be more biologically
significant, and therefore more important to predict

accurately. Therefore, we also benchmarked all algo-
rithms on intermediate beta values, defined as having a
sample average methylation between 0.20 and 0.80 inclu-
sive. We found similar trends in algorithm performance,
with both BoostMe and random forests having an RMSE
of 0.13 and DeepCpG an RMSE of 0.23 (Table 2).
Because CpG methylation is an example of extreme

class imbalance (only ~ 28% of CpGs have intermediate
methylation), we hypothesized that artificially creating a
uniform distribution of beta values in our training set
would improve prediction at CpGs with intermediate
beta values. We tested this by generating a training set
using a biased sampling procedure that drew CpGs from
each beta value decile with a frequency inversely propor-
tional to its size. Contrary to our expectation, we found
that this sampling procedure did not improve signifi-
cantly the performance of BoostMe (Additional file 1:
Figure S7).
We further examined BoostMe error as a function of

distance to the nearest non-missing CpG across chroma-
tin states, both genome-wide (Fig. 4a) and within regions
of higher across-tissue variance (Fig. 4b). Trends in
RMSE across distance strongly paralleled our previous
analysis of pairwise differences in CpG methylation
within chromatin states (Fig. 2). As expected, the abso-
lute prediction error was lowest for all chromatin states
when there was a non-missing, neighboring CpG within
100 bp of the CpG of interest, which was true for the
majority (~ 87%) of CpGs. The error increased for the
smaller subset of CpGs where the nearest non-missing
neighbor was farther away to varying degrees for each
chromatin state: error in TSS states increased rapidly;
transcribed states (strong transcription, weak transcrip-
tion) remained relatively stable and low; and enhancer
and inactive chromatin states had higher but generally
stable error rates. Similar to the pairwise differences
within regions of high across-tissue variance (Fig. 2b), all
chromatin states in these regions exhibited stably higher
error rates and had similar behaviors. Due to the small
average block size for regions of high across-tissue vari-
ance (~ 533 bp on average), there was a lack of data past
200 bp, which led to larger confidence intervals and less
accurate smoothed line estimates.
Finally, we benchmarked the computational perform-

ance of all algorithms. BoostMe had a training runtime

Table 2 Genome-wide performance of different algorithms on predicting methylation values, averaged across tissues and samples

Algorithm RMSE (all) RMSE (int.) AUROC AUPRC Accuracy Resources Time (hrs)

BoostMe 0.09 ± 0.005 0.13 ± 0.006 0.99 ± 0.002 0.99 ± 0.0005 0.96 ± 0.005 16 CPUs 0.50 ± 0.15

Random Forests 0.09 ± 0.005 0.13 ± 0.006 0.99 ± 0.002 0.99 ± 0.0005 0.96 ± 0.005 16 CPUs 14 ± 2

DeepCpG 0.17 ± 0.007 0.27 ± 0.014 0.94 ± 0.003 0.98 ± 0.002 0.91 ± 0.010 1 GPU 140 ± 30

RMSE, root-mean-squared error; int., intermediate beta values, defined as having a sample average methylation between 0.2 and 0.8; AUROC, area under the receiver
operating characteristic curve; AUPRC, area under the precision-recall curve. Time is the average number of computational hours it took to train on all samples within
a tissue
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that was up to 28× faster than random forests using
identical computational resources and up to 280× faster
than DeepCpG (Table 2). Both BoostMe and random
forests training times outperformed DeepCpG, the latter
of which took multiple days due to the need to train
CpG and DNA modules separately before training the
joint module (Methods).

Imputation reduces WGBS discordance with EPIC at low
sequencing depth
To assess the effect of imputation on the quality of
WGBS data, we first characterized the concordance
of WGBS and EPIC array beta estimates at the same
CpGs in the same samples (Fig. 5a). As reported
previously [33], WGBS and EPIC beta values were

Fig. 4 BoostMe error across chromatin states as a function of distance to the nearest non-missing CpG. Absolute prediction error was measured
as the difference between the predicted and actual methylation (beta) values for (a) a holdout test set of 5 million CpGs and (b) a holdout set of
~ 1.3 million CpGs in high-variance regions that met BoostMe criteria for training and testing. Gray shaded areas indicate confidence intervals for
each smoothed line created using a generalized additive model. Marginal histograms display the distribution of predicted CpGs across chromatin
states within the range of the graph

Fig. 5 Imputation reduces discordance between WGBS and EPIC methylation estimates at low sequencing depth. (a) Root-mean squared
discordance (RMSD) between EPIC and WGBS methylation (beta) estimates at CpGs common between the two platforms. X-axis: depth at
which the CpG was sequenced, binned into intervals of 5× coverage. Y-axis: the beta value of the CpG as measured by the EPIC array,
binned into intervals of 0.05. Yellow color indicates higher discordance. (b) RMSD between EPIC and imputed WGBS values at the same CpGs
as in a. (c) Difference between a and b
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generally well-correlated (r2 = 0.92) (Additional file 1:
Figure S8). However, we found that disagreement
between the two platforms was concentrated at lower
WGBS depth and intermediate beta values, with varying
levels of discordance at high sequencing depth. Neither
EPIC nor WGBS beta values can be considered the true
methylation value of a particular CpG; however, since
discordance between the two estimates was a function of
sequencing depth, we hypothesized that discordance at
low depth is most likely due to WGBS inaccuracy. For
example, say a CpG that has a true methylation value of
85% is measured through both WGBS and EPIC, but is
only covered by 10 WGBS reads. The WGBS estimate will
differ from the true value by at least 5%, since the closest
it can get is either 80% (8 out of 10 reads methylated) or
90%. The EPIC estimate, on the other hand, does not
directly depend on read depth, but on the intensity of two
possible fluorescent signals from probes that hybridize to
the methylated or unmethylated alleles at a particular
CpG. Therefore, assuming any inaccuracies due to
fluorescent measurement are less than 5%, the EPIC
estimate will be closer to the true value of 85% and
generally more accurate for low-coverage CpGs. For high-
coverage CpGs, we hypothesized that WGBS-EPIC dis-
cordance is most likely due to EPIC inaccuracy, perhaps
due to saturation of the fluorescence signal and the pres-
ence of background hybridization to the alternate probe.
We then used BoostMe to impute and replace beta

values common between the two platforms. We found
that the discordance was mitigated (Fig. 5b), particu-
larly at lower WGBS depth and intermediate beta

values (Fig. 5c). Furthermore, we found that discord-
ance mitigation at lower WGBS depth was robust
with respect to the EPIC array probe type examined
(Additional file 1: Figure S9). Discordance at higher
depth was variable and, in some cases, increased after
imputation (Fig. 5c).

BoostMe and random forests identify features important
to general methylation levels
To interrogate differences in the methylation patterns of
the different tissues and disease states, we examined the
top variable importance scores output by random forests
and BoostMe using all features (Fig. 6, Additional file 1:
Figure S10, S11). Both algorithms highly prioritized the
sample average and neighboring CpG features, which
were well-correlated with the beta value of the CpG of
interest.
We found that random forests also ranked highly fea-

tures that were negatively correlated with beta values,
especially those associated with open chromatin and
promoter regions such as H3K4me3, ATAC-Seq peaks,
CpG islands, and the TSS chromatin states (Fig. 6a).
Random forests also identified as important several
TFBSs previously shown to be methylation-sensitive
such as YY1 [34, 35], REST [36, 37], and EP300 [38]. In
concordance with previous results [14], we found that
random forests were biased to rank highly features that
are positively correlated with each other. This trend was
particularly evident in the correlations among the top
TFBSs identified, with all of them having some degree of
overlap with each other (Fig. 6a).

Fig. 6 Random forests exhibit greater bias in favor of positively correlated features compared to BoostMe. Correlation among methylation (beta)
value and top 30 features in descending order for adipose T2D as reported by (a) random forests and (b) BoostMe. Ranking was determined by
aggregating the variable importance scores across 10 runs from all adipose T2D samples
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In contrast, BoostMe did not exhibit the same bias as
random forests in favor of positively correlated features
(Fig. 6b). Since gradient boosting trees are trained se-
quentially, with each subsequent tree designed to reduce
error from the previous tree, BoostMe is less likely to
rank highly features that exhibit strong positive cross-
correlations. Therefore, in addition to highly predictive
features that were negatively correlated with methylation
identified by random forests, such as ATAC-Seq peaks
and H3K4me3, BoostMe also prioritized chromatin
states that were positively correlated with methylation
such as the quiescent/low signal and weak transcription
chromatin states. Compared with random forests,
BoostMe did not report as many methylation-associated
TFBSs to be highly predictive, likely because of their
high positive correlations with each other and with other
features indicative of open chromatin, such as ATAC-
Seq peaks and H3K4me3.
To further determine whether BoostMe or random

forests could identify features that were important to
specific tissues, we trained both algorithms using only
TFBSs in tissue-specific regions of open chromatin as
determined by ATAC-seq peaks. We found that the
rankings were generally the same across tissues for both
algorithms (Additional file 1: Tables S6, S7).

Discussion
Here we introduce BoostMe, a method for imputing
low-quality DNA methylation (beta) values within
whole-genome bisulfite sequencing (WGBS) data.
BoostMe is based on XGBoost, a computationally
efficient gradient boosting algorithm [18]. Importantly,
BoostMe leverages information from at least three sam-
ples and both trains and predicts on continuous beta
values. This framework allows BoostMe to outperform
existing imputation methodology, including DeepCpG
[14], a deep neural network method, in both speed and
accuracy across tissues and genomic contexts. BoostMe
also achieves lower RMSE than DeepCpG for intermedi-
ately methylated CpGs, which we found to be enriched
in regions of high across-tissue methylation variance.
Furthermore, using matched EPIC and WGBS data from
the same samples, we have shown that BoostMe imput-
ation reduces discordance between the two platforms,
particularly at low WGBS depth. Overall, our results
support the use of BoostMe as a preprocessing step to
improve WGBS quality when multiple samples are
available.
A notable limitation of BoostMe is its interpretability.

Although it was previously reported that random forests
identified TFBSs associated with methylation in whole
blood [14], we found that neither BoostMe nor random
forests identified noteworthy differences in variable im-
portance scores between different tissues. On the other

hand, DeepCpG, a deep neural network method, was
able to identify differences in transcription factor motifs
associated with prediction among the different tissues.
For example, DeepCpG identified motifs of TFs import-
ant to a tissue type, such as EBF1 in adipose, ASCL2 in
muscle, and FOXA1 in pancreatic islets, which have all
been reported to be involved in regulating differentiation
and development in their respective cell types [39–43].
Thus, despite its relatively poor performance, DeepCpG
may be superior for identifying tissue-specific differ-
ences. No algorithm examined in this work readily iden-
tified differences between NGT and T2D.
Similar to previous methodology [14, 15], BoostMe re-

lies on the locally correlated structure of neighboring
CpGs to identify sample-specific differences. Although
using neighboring information leads to an overall more
accurate prediction for all algorithms examined in this
work, the accuracy of this approach may not be robust
for a subset of CpGs. To determine the local similarity
of CpG methylation within WGBS and its effect on algo-
rithm performance, we first calculated pairwise differ-
ences between beta values across chromatin states,
finding that enhancer states generally had the largest dif-
ferences, while TSS and transcribed states had the low-
est. In concordance with this result, we found that all
algorithms performed worst in active and weak enhancer
chromatin states and best in TSS and transcribed states.
Performance was also slightly worse in regions of high
across-tissue variance, where pairwise differences were
generally larger.
To further characterize the relationship between

informative neighboring CpGs and algorithm perform-
ance, we examined BoostMe error as a function of
distance to the nearest non-missing CpG. Notably, the
nearest non-missing beta values upstream and down-
stream were the second and third-most informative
features for BoostMe after the sample average. We found
that error was lowest when the CpG of interest had a
non-missing neighbor within 100 bp. This result paral-
lels a previous study [44], which reported that methyla-
tion haplotype blocks, defined as areas of consecutive
CpGs with r2 > 0.5, measure just 95 bp long on average.
Although the majority (~ 87%) of CpGs did have a
non-missing neighbor within 100 bp, the decreased
performance for the remaining subset of CpGs may
be a significant shortcoming of BoostMe and all
neighbor-dependent imputation methods in general.
An important question of interest is whether BoostMe

is able to predict whole-genome methylation values
using methylation information from the EPIC array. The
EPIC array consists of a sparse subset of ~ 3% of CpGs
in the genome (with mean spacing of 1.5 kb;
Additional file 1: Figure S2) and is much cheaper to use
than WGBS. However, only ~ 12% of WGBS CpGs are
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within 100 bp of an EPIC CpG. Given the limitations in
accuracy described above, additional work must be done
to develop improved imputation methodology that can
identify sample-specific differences for prediction
without depending heavily on informative neighboring
CpGs, perhaps through incorporation of long-range
interactions and other high-dimensional genomic and
epigenomic features not considered in this work. Such
methodology could potentially facilitate whole-genome
imputation from a sparse subset of CpGs, with accur-
acy independent of neighboring CpG distance. Fur-
thermore, the experience with BoostMe imputation
described here could be applied usefully to the future
design of a tissue-specific methylation array, with
array features optimally chosen from reference WGBS
data from that tissue, allowing genome-wide imput-
ation of unmeasured CpGs.

Conclusions
We characterized WGBS and EPIC data from 58 sam-
ples of human adipose, skeletal muscle, and pancreatic
islets. We found high rates of missing methylation (beta)
values spread across chromatin states in the WGBS data.
To address this missingness, we developed BoostMe, a
method for imputing beta values using WGBS data from
at least three samples based on a gradient boosting algo-
rithm called XGBoost. We found that our method out-
performs random forests and DeepCpG, a previous deep
neural network approach to imputing missing beta
values. To assess the effect of imputation on the quality
of WGBS, we compared the concordance of WGBS and
EPIC beta values before and after imputation. We found
that concordance between the two platforms increased
after imputation, particularly at low WGBS depth. To in-
terrogate the limitations of neighboring CpG-dependent
methylation imputation, we characterized general pat-
terns of neighboring CpG similarity and measured im-
putation performance as a function of distance to the
nearest CpG. We found that BoostMe performance de-
creased when distance to the nearest CpG was higher,
and that performance was generally worse in regions
with more variability in CpG distances, such as enhancer
chromatin states. To evaluate the ability of imputation
methods to identify biologically-relevant features, we
examined the variable importance scores output by
BoostMe and random forests. Both algorithms identified
features that were highly correlated with general
methylation levels, such as indicators of open chromatin,
but did not identify notable differences among tissue
types. Overall, our findings support the use of BoostMe
as a preprocessing step for WGBS analysis and inform
the development of future methylation imputation
methodology.

Methods
Sample collection
Muscle and adipose NGT and T2D samples were col-
lected as previously described [4]. Briefly, we attempted
to contact participants and participants’ relatives from
previous diabetes-related studies [45–48] and also re-
cruited subjects by newspaper advertisements. We ex-
cluded individuals with any diseases or drug treatments
that might confound analyses. We defined glucose toler-
ance categories of NGT and T2D using World Health
Organization (WHO) criteria [49]. Biopsies were per-
formed by 9 experienced and well-trained physicians
from 2009 to 2013 in 3 different study sites (Helsinki,
Kuopio, and Savitaipale). The study was approved by the
coordinating ethics committee of the Hospital District of
Helsinki and Uusimaa. A written informed consent was
obtained from all subjects.
Islet samples were collected as previously described

[31]. Briefly, samples were procured from the Inte-
grated Islet Distribution Program, the National Dis-
ease Research Interchange (NDRI), or ProdoLabs.
Islets were shipped overnight from distribution cen-
ters, prewarmed in shipping media for 1–2 h before
harvest, and cultured in tissue culture-treated flasks.
Genomic DNA was then isolated from islet explant
cultures and used for sequencing.

Whole-genome sequencing
Whole genome sequencing libraries were generated from
50 ng genomic DNA fragmented by Covaris sonication.
DNA end repair achieved using Lucigen DNA Termin-
ator Repair Enzyme Mix. Sequencing adapters were
added according to Illumina PE Sample Prep instruction.
Libraries were size-selected on Invitrogen 4–12% poly-
acrylamide gels excising 200–250 bp fragments. Libraries
were amplified with 10 PCR cycles and purified using
AMPure beads (Beckman).

Whole-genome bisulfite sequencing
Whole-genome bisulfite sequencing was performed using
Epigenome/TruSeq DNA Methylation Kit (Illumina).
Libraries were prepared for each sample using 50 ng of
input DNA by denaturing the DNA at 98 °C for 10 min.
Bisulfite conversion was generated at 64 °C for 2.5 h and
DNA purified using EZ DNA Methylation Gold Kit
(Zymo Research). Bisulfite converted libraries were
generated by random-primed DNA synthesis, 3′ tagging,
and purification using AMPure beads (Beckman). Sample-
specific index sequences were added with 10 cycles of
amplification.
Library quality was assessed using Qubit (Thermo

Fisher Scientific) and Agilent Bioanalyzer. Paired-end
125 bp sequencing was performed on Illumina HiSeq
2500 instruments to 30× genome coverage.
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EPIC array
Genomic DNA was extracted from each tissue using
DNeasy Blood and Tissue Kits (QIAGEN), according to
the manufacturer’s recommendations. 200 ng of genomic
DNA per sample was submitted to the Center for Inher-
ited Disease Research at The Johns Hopkins University,
where they were bisulfite-converted using EZ DNA
methylation Kits (Zymo research), as part of the TruSeq
DNA Methylation protocol (Illumina). DNA methylation
was measured using the Illumina Infinium HD Methyla-
tion Assay with Infinium MethylationEPIC BeadChips
according to manufacturer’s instructions.

WGS data processing
Raw FASTQ files were evaluated with FastQC [50].
Adapter sequences were trimmed using Atropos [51],
and reads with at least one pair shorter than 25 bp were
excluded. Reads were aligned to the reference genome
(GRCh37) using BWA MEM [52], followed by Samblaster
[53] for marking duplicates.

WGS variant calling
SNPs and indels were called separately for all sample
BAM files using GATK HaplotypeCaller [54]. Variants
were filtered using GATK Variant Quality Score Recali-
bration. Quality score cutoffs were chosen by comparing
rates of discordance with SNP array genotypes.

WGBS data processing
Raw FASTQ were pre-processed as above and aligned
using bwa-meth [55]. Methylation values were extracted
using the MethylDackel ‘extract’ command, including
bias correction based on the values recommended by
the ‘mbias’ command, and forward- and reverse-strand
CpGs were merged with a minimum coverage cutoff of
10 (https://github.com/dpryan79/methyldackel). Methy-
lation level data from the X and Y chromosomes were
excluded.

EPIC Array data processing
The EPIC data are part of a much larger, unpublished
study. As such, all samples were processed jointly with
other samples from the larger study. We processed raw
signal idat files using minfi v1.20.2 [56] with the Illumina
normalization method. We analyzed the quality of each
sample looking for outliers across a variety of measures in-
cluding fraction of failed probes (detection p-value > 0.05),
median methylated and un-methylated intensity, control
probe signal (using the returnControlStat function from
shinyMethyl v1.10.0 [57]), distribution of the overall
methylation profile, and principal component analysis.
None of the samples included in this study were flagged
as outliers. In addition, we verified the identity of each
sample by comparing genotypes assayed on the EPIC

array to imputed genotypes using the HRC reference
panel r1.1 [58] and Illumina Omni2.5 array genotypes.
For both the earlier 450k and recent EPIC Illumina

methylation array, previous studies [59–62] have identi-
fied poor quality probes that either do not uniquely map
to the reference genome or contain common genetic
variation. These properties make the signal at these
probes un-reliable. We removed such probes from the
EPIC array. First, we removed cross-reactive probes on
the EPIC chip by mapped non-control probes back to
the entire bisulfite-converted genome, using Novoalign’s
-b4 option, with allowance for up to three mismatches
in the probe alignment (−R120 option). We kept only
unique mapping probes. Second, we removed probes
with a SNP within 10 bp of the 3′ end of the probe,
within the target CpG itself, and finally, in the case of
type I probes, if the variant overlapped the single base
extension site. We used 10 bp as this cutoff is consistent
with previous studies [60]. For SNPs we used common
(MAF ≥ 1%) SNPs, indels, or structural variation in the
phase 3 1000 Genomes European dataset, common
(MAF ≥ 1%) SNPs in the HRC reference panel r1.1, and
SNPs appearing at all our own samples, even at low
frequency, after imputation to the Haplotype Reference
Consortium (HRC) reference panel. As a final step, we
combined our blacklist with a previously published
blacklist [62] for a total of 120,627 probes which were
removed from analysis. In addition, we removed probes
per tissue with a high detection p-value (p-value > 0.05
in ≥ 5% of samples from the larger study). After blacklist
filters, we removed 578 adipose probes, 733 muscle
probes, and 2206 islet probes based on the per sample
filters.

Identification of higher across-tissue variance regions in
WGBS
Using all 58 WGBS samples, we calculated the variance
in beta values for each CpG. We then searched for
blocks of consecutive CpGs that had 1) variance above
the third quartile of variance levels and 2) a non-missing
methylation value in at least 20 samples, a cutoff which
was determined by looking at the distribution of
variance values as a function of missing values
(Additional file 1: Figure S12). This analysis identified
approximately 200,000 blocks of high across-tissue vari-
ance CpGs genome-wide. Blocks contained an average
of eight CpGs, spanned an average of 533 bp, and had
higher relative enrichment in enhancer chromatin states
(Additional file 1: Figure S5).

Feature construction for BoostMe and random forests
We used the same 648 features in the BoostMe and
random forest algorithms (see Additional file 1: Table S3
for a detailed list). Prior to feature construction, we
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applied a further set of exclusion criteria to filter the
CpGs included in training, validation, and testing. Only
autosomal CpGs were used (n = 25,586,776). We over-
lapped WGS data with the WGBS data from all samples
and excluded CpGs for which the CG dinucleotide on
either strand was disturbed by a SNP or indel that was
2 bp long (indels longer than 2 bp were not considered).
We also excluded all CpGs located in ENCODE blacklist
regions [63].

CpG features
Features constructed from the WGBS data included the
nearest non-missing neighboring CpG beta values,
the distances to these CpGs, and the sample average fea-
ture. Neighboring CpG features were taken within the
sample of interest. The sample average feature was cre-
ated by taking the average beta value of all samples
within each tissue at the CpG of interest, not including
the sample being interrogated. Samples in which the
CpG was not sequenced above 10× coverage were ex-
cluded from the calculation. CpGs without a measure-
ment above 10× coverage from at least two additional
samples were also excluded.

Genomic features
We constructed both general and tissue-specific genomic
features. General genomic features were the same across
all tissues and included GC content, recombination rate,
GENCODE annotations, and CpG island (CGI) informa-
tion. GC content data was downloaded from the raw data
used to encode the gc5Base track on hg19 from the UCSC
Genome Browser [64, 65]. DNA recombination rate anno-
tations from HapMap were downloaded from the UCSC
hg19 annotation database (http://hgdownload.soe.ucsc.
edu/goldenPath/hg19/database/). CGI coordinates were
obtained from UCSC browser. CGI shores and
shelves were calculated from CGI coordinates by
taking 2 kb flanking regions. GENCODE v25 tran-
script annotations were downloaded from the GEN-
CODE data portal (ftp://ftp.sanger.ac.uk/pub/gen
code/Gencode_human/release_25).
Tissue-specific genomic features included ATAC-seq,

chromatin states, histone marks, and transcription factor
binding sites (TFBS). These features were all binary, with
0 indicating that the CpG of interest did not overlap that
feature, and 1 indicating overlap. Chromatin state
annotations were obtained from a previously published
13 chromatin state model for 31 diverse tissues that
included islets, skeletal muscle, and adipose [30]. This
model was generated from cell/tissue ChIP-seq data for
H3K27ac, H3K27me3, H3K36me3, H3K4me1, and
H3K4me3, and input from a diverse set of publicly avail-
able data [20, 66–68]. ATAC-seq data was obtained from
previously published studies for islets [31], skeletal

muscle [69], and adipose [70]. TFBS data was obtained
as described in [69], with additional PWMs from [71].
TFBS data was filtered for each tissue by the ATAC-seq
feature to only include hits overlapping an ATAC-seq
peak. We merged hits from multiple motifs of the same
transcription factor to reduce the number of variables
included in the algorithm and optimize computational
efficiency.

BoostMe and random forests implementation
For BoostMe, we used the xgboost package (version 0.6–
4) [18] in R [72] (version 3.3.1). For random forests, we
used the ranger package (version 0.6.0) in R, which facil-
itates random forest training and testing on multiple
CPUs [73]. For both algorithms, we used regression trees
to predict a continuous methylation value between 0
and 1 for CpGs of interest. Algorithms were trained on
individual samples within each tissue and disease state
combination. We trained only on CpGs with at least 10×
coverage and no more than 80× coverage. Random for-
est variable importance was calculated using the mean
decrease in variance at each split as implemented in the
ranger package. BoostMe variable importance was evalu-
ated for each variable as the loss reduction after each
split using that variable as implemented in the xgboost
package.
Due to the computational constraints of decision tree

algorithms, we replicated a previously-described form of
repeated random subsampling validation [14] to evaluate
both BoostMe and random forests. Briefly, within each
sample, algorithms were trained on a random sample of
1,000,000 CpGs and validated on a hold-out set of
1,000,000 CpGs. Final performance benchmarking was
done on another held-out test set of 1,000,000 CpGs
(Table 2). This process of random sampling, algorithm
training, and benchmarking was repeated with ten differ-
ent random seeds, and prediction performance was cal-
culated by averaging the performance statistics across
each of the ten algorithms. Hyperparameters tuned for
random forests included the number of trees grown and
number of variables to possibly split on at in each node,
however, similar to previous work [14], we found that
performance was robust to different settings, and thus
did not estimate parameters.
For BoostMe, we used the mlr package (version 2.9) [74]

in R to perform a hyperparameter grid search to tune the
following xgboost package parameters: learning rate (eta),
minimum loss reduction required to make a further parti-
tion on a leaf node of the tree (gamma), maximum depth
of a tree (max_depth), minimum sum of instance weights
needed in a child node (min_child_weight), subsample ratio
of the training instance (subsample), subsample ratio of col-
umns when constructing each tree (colsample_bytree), L2
regularization term (lambda), and L1 regularization term
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(alpha). We found that optimal hyperparameters had
varying combinations for each sample, however, im-
provements in RMSE were only marginally better
than using all default settings for each sample. Add-
itionally, due to the number of hyperparameters avail-
able to tune, an exhaustive search of hyperparameter
space was relatively computationally expensive. There-
fore, we used all default settings as described in the
xgboost package to benchmark BoostMe performance.

DeepCpG implementation
We implemented DeepCpG (version 1.0.4) as described
in [15]. Briefly, for each of the five tissue and T2D status
combinations (adipose NGT, adipose T2D, muscle NGT,
muscle T2D, and islet) the data was first divided by
chromosome into training (chr. 1, 3, 5, 7, 9, 11, 13, 15),
validation (chr. 16, 17, 18, 19, 20, 21, 22), and test sets,
corresponding to a rough 40–20-40 split. The DNA
module and CpG module were trained on separate NVI-
DIA Tesla K80 GPUs and the performance of each mod-
ule was evaluated individually on the test set. The joint
module was trained with the best-performing DNA and
CpG modules, and its predictions were used for final
benchmarking. In contrast to original single-cell bisulfite
implementation of DeepCpG which was trained and
tested on binary methylation values, we trained and
tested on continuous methylation values to parallel our
implementation of BoostMe and random forests. We
found that this change made no difference in the accur-
acy of the model (Additional file 1: Table S4).
We experimented with six different hyperparameter

combinations for each DNA model, including three
architectures (CnnL2h128, CnnL2h256, CnnL3h256)
and two dropout rates (0, 0.2). We then selected the
best-performing combination based on AUC and re-
ported the motifs significantly matching the filters from
the first convolutional layer of that model [75]. Similarly,
we tested both RnnL1 and RnnL2 for the CpG model
for each tissue. For the joint module, we tested
JointL1h512, JointL2h512, and JointL3h512. The best-
performing joint model was selected to evaluate RMSE,
AUROC, AUPRC, and accuracy for each tissue. We used
a default learning rate of 0.001 for all models. Similar to
random forests and BoostMe, performance was generally
robust with respect to different architectures. For a
detailed explanation of all model architectures, see
http://deepcpg.readthedocs.io/.
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Additional file 1: Figure S1. Distribution of WGBS missingness across
chromatin states, not normalized for total number of CpGs in that chromatin
state. Figure S2. Distribution of distance from a WGBS or EPIC CpG to the

nearest WGBS or EPIC CpG. Figure S3. CpG methylation pairwise differences
as a function of distance genome-wide and in regions of higher across-
tissue variance. Figure S4. CpG methylation pairwise differences for
pancreatic islets as a function of distance genome-wide and in regions
of higher across-tissue variance. Figure S5. Comparison of all CpGs and
CpGs that had higher across-tissue variance. Figure S6. Joyplot showing
distribution of WGBS methylation (beta) values within each chromatin state
for all tissues. Figure S7. Performance at intermediate CpGs does not
improve when using a balanced training distribution. Figure S8. Smooth
scatterplot of beta values of CpGs shared between EPIC and WGBS.
Figure S9. Imputation mitigates discordance between WGBS at EPIC
at low WGBS depth regardless of EPIC probe type. Figure S10. Correlation
among the top 30 features ranked by BoostMe. Figure S11. Correlation
among the top 30 features ranked by random forests. Figure S12. Distribution
of across-sample CpG variance values vs. number of missing values for each
CpG. Table S1. Summary of the data used in this work. Table S2.
Previously reported imputation metrics and those reported in this work.
Table S3. All features included in BoostMe and random forests and their
source. Table S4. Genome-wide performance of algorithms, trained on
500,000 CpGs, for predicting methylation values. Table S5. RMSE performance
of BoostMe and random forests improves when training on continuous
values. Table S6. Top 100 transcription factors ranked in descending order as
reported by BoostMe, trained only using TFBS features. Table S7. Top 100
transcription factors ranked in descending order as reported by random
forests trained only using TFBS features. (PDF 5703 kb)
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