®

Check for
updates

Accelerated Gaussian Convolution
in a Data Assimilation Scenario

Pasquale De Luca!®)@®, Ardelio Galletti?®, Giulio Giunta®,
and Livia Marcellino?

! Department of Computer Science, University of Salerno, Fisciano, Italy
p.delucal6@studenti.unisa.it
2 Department of Science and Technology, University of Naples Parthenope,
Naples, Italy
{ardelio.galletti,giulio.giunta,livia.marcellino}@uniparthenope.it

Abstract. Machine Learning algorithms try to provide an adequate
forecast for predicting and understanding a multitude of phenomena.
However, due to the chaotic nature of real systems, it is very difficult to
predict data: a small perturbation from initial state can generate serious
errors. Data Assimilation is used to estimate the best initial state of a
system in order to predict carefully the future states. Therefore, an accu-
rate and fast Data Assimilation can be considered a fundamental step for
the entire Machine Learning process. Here, we deal with the Gaussian
convolution operation which is a central step of the Data Assimilation
approach and, in general, in several data analysis procedures. In particu-
lar, we propose a parallel algorithm, based on the use of Recursive Filters
to approximate the Gaussian convolution in a very fast way. Tests and
experiments confirm the efficiency of the proposed implementation.

Keywords: Gaussian convolution * Recursive filters - Parallel
algorithms - GPU

1 Introduction

Data Assimilation (DA) is a prediction-correction method for combining a phys-
ical model with observations. The Data Assimilation and the Machine Learning
(ML) fields are closely related to each other. Machine Learning process is used
to perform a specific task without using explicit instructions and it can be seen
as a subset of the Artificial Intelligence (AI) field, because it creates new meth-
ods and applications for analyze and classify many natural phenomena (see for
example [1]). In general, this process consists in two main phases: the analysis
phase - some collected data are analyzed to detect patterns that help to create
explicit features or parameters; the training phase - data parameter generated
in the previous phase are used to create Machine Learning models.

However, the learning part of the training phase relies on a relevant training
data-set, containing samples of spatio-temporal dependent structures. In many
© Springer Nature Switzerland AG 2020

V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12142, pp. 199-211, 2020.
https://doi.org/10.1007/978-3-030-50433-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50433-5_16&domain=pdf
http://orcid.org/0000-0001-7031-920X
http://orcid.org/0000-0002-5208-6219
http://orcid.org/0000-0003-0101-6154
http://orcid.org/0000-0003-2319-8008
https://doi.org/10.1007/978-3-030-50433-5_16

200 P. De Luca et al.

fields, there is an absence of direct observations of the random variables, and
therefore, learning techniques cannot be readily deployed.

Therefore, a correct training dataset is a basic need to get a right learning.
This is because in order to perform a correct ML approach, often a classifier is
used in the analyze phase. Each classifier is composed by a kernel which aims
to correctly predict the classes by using a higher-dimension feature space to
make data almost linearly separable. In order to compute a fair classification
and accurate prediction a suitable method could be chosen [23].

The variational approach of the Data Assimilation process, characterized by
a cost function minimization, is a good choice for classification. Numerically,
this means to apply an iterative procedure using a covariance matrix defined by
measuring the error between predictions and observed data. Here, we are inter-
ested in those numerical issues. In particular, since the error covariance matrix
presents a Gaussian correlation structure, the Gaussian convolution process plays
a key role in such a problem. Furthermore, it should be noted that, beyond its
fundamental role in the Data Assimilation field, the convolution operation is
always significant in the computational process of most big-data analysis prob-
lems. Hence, a correct Machine Learning process can use it as a basic step in the
analysis phase. Moreover, because of the need to process large amount of data,
parallel approaches and High Performance Computing (HPC) architectures, as
multicore or Graphics Processing Units (GPUs), are mandatory [2-4]. In this
direction, some recent papers deal with parallel data assimilation [5-7] but we
just limit our attention to the basic step represented by a parallel implemen-
tation for the Gaussian Convolution. In particular, we propose an accelerated
procedure to approximate the Gaussian convolution which is based on Recursive
Filters (RFs). In fact, Gaussian RFs have been designed to provide an accurate
and very efficient approximated Gaussian convolution [8-11]. Since the use of
RF's is mainly suitable to overcome a large execution time, when there is a lot of
data to analyze, many parallel implementations have been presented (see survey
n [12]). Here, we propose a novel implementation that exploits the computa-
tional power of the GPUs which are very useful for solving numerical problems
in several application fields [13,14].

More precisely, to manage big size input data, the parallelization strategy is
based on a domain decomposition approach with overlapping, so that all possible
interactions between forecasts and observations are included. In this way, this
computational step becomes a very fast kernel specifically designed for exploiting
the dynamic parallelism [15] approach available on the Compute Unified Device
Architecture (CUDA) [16].

The paper is organized as follows. Section?2 recalls the variational Data
Assimilation problem, and the use of the Recursive Filter to approximate the
discrete Gaussian convolution. In Sect. 3, the underlying domain decomposition
strategy and the GPU-CUDA parallel algorithm are provided. The experiments
in Sect. 4 confirm the efficiency of the proposed implementation in terms of per-
formance. Finally conclusions are drawn in Sect. 5.

Accelerated Gaussian Convolution in a Data Assimilation Scenario 201

2 Gaussian Convolutions in Data Assimilation

In this section, we show how the Gaussian convolution is involved in a Data
Assimilation scenario. In particular, let us consider a three-dimensional varia-
tional data assimilation problem [17]: the objective is to give a best estimate
of x, that is called the analysis or state vector, once a prior estimate vector x?
(background), usually provided by a numerical forecasting model, and a vector
y = H(z) + dy of observations, related to the nonlinear model H, are given. The
unknown x solves the regularized constrained least-squared problem:

min J(2) = min [y ~ @) + 2~ 2],)
where J denotes the objective function to minimize. Here, ||z —||? is a penalty
term and ||y —H(x)||? is a quadratic data-fidelity term which compares measured
data and solution obtained by the nonlinear model H [10]. In this scheme, the

background error 6z = x* — z and the observational error §y = y — H(z) are
assumed to be random variables with zero mean and covariance matrices

B = <6z, 6z’ > and R = <dy, 0y’ >,

respectively. Following description in [9], let the matrix H be a first-order approx-
imation of the Jacobian of H at z® and denote by

d:ny(:cb)

the so-called misfit. Denoting by V the unique symmetric Gaussian matrix such
that V2 = B, and by introducing the variable v = V~!§z, the problem (1) can
be proven to be equivalent to [9,18,19]:
~ 1 1
min J(v) = min i(d ~HVy)'R™(d - HVv) + §’UT”U. (2)

The minimization of the cost function J(v) leads to the linear system:
(I +V¥V)y = VHTR 1d. (3)

Since I+ VWV is symmetric, the linear system (3) that can be handled by means
of the CG method, whose basic operation is the matrix-vector multiplication:

(I+VW¥V)p=p+VIVp.

Here, ¥ = H'R™'H is a diagonal matrix and p denotes the residual at the
current step of the CG algorithm. More precisely, it turns out that such an
operation involves three discrete Gaussian convolutions:

Vp, V(@Vp), VHR). (4)

In conclusion, previous analysis shows that Gaussian convolution becomes a main
kernel for Data Assimilation. From here comes the need to implement accurate

202 P. De Luca et al.

and fast methods to perform it. In fact, in the described context, the matrix
V is neither effectively used nor even assembled, and the matrix-vector multi-
plications in (4) are computed by introducing the so-called Gaussian Recursive
Filters. It has been proved that these tools offer good accuracy and bring down
the computational cost in time and space [20,21].

In particular, in this work we just consider K-iterated first-order Gaussian
RFs and follow the approach and notation used in [8]. Let:

50 = {S§‘O)}jez = (“-HS(—OLS(()O)ngO)"”)

be an input signal and let g denote the Gaussian function with zero mean and
standard deviation o. The Gaussian filter is a filter whose response to the input
59 is given by the discrete Gaussian convolution:

S = (gxs0), = gius”, Viex, (5)
teZ

where g; = g(t). A K-iterated first-order Gaussian recursive filter generates an
output signal s(5) the so-called K-iterate approximation of s(9), whose entries
solve the 2K recurrence relations:

=05 ™ viez, (6)
k k k .
s§):ﬂp§)+a5§+)1, VjeZ. (7)
(k=1,...,K) where values o and 8 = 1 — « are called smoothing coefficients

and verify:

a=14+FE, —E;(Es+2), 8=+E,(E,+2)—E,, (8)

with E, = Ko 2. It has been proved that as K — oo the filter converges to the
Gaussian filter [22]. If we consider a finite size input signal s(°) (i.e. with support
in the grid {0,1,2,..., N — 1}) then the index j has to be used in increasing
order in (6) and decreasing order in (7). Hence, relations (6) and (7) are suitable
called advancing and backing filters, respectively [8]. We highlight that to prime
the algorithm these filters requires to set values pék) and ss\lf)_l. This can be done
using the boundary conditions [24]:

W _ L k- W _ 1w
B 1+«

V2 :1+a0) SN-—1 Pn—1

which are derived to simulate the effect of the neglected entries when using finite
size input signals. Typically a well-known edge effect, i.e. a large perturbation
error, can be seen on the boundary entries of the output. In [8], provided that
the input support is in [0, N — 1], this effect can be mitigated by increasing
the input size including and putting artificial zero entries at the left and right
boundaries of the input. Algorithm 1 describes a K-iterated first-order Gaussian
RF straight implementation.

Accelerated Gaussian Convolution in a Data Assimilation Scenario 203

Algorithm 1. K-iterated first-order RF with boundary conditions

Input: s o K
(K)

Output: s
1: set f,aas in (8); M :=1/(1+ «)

2: set N := size(s(V)

3 fork=1,2,...,K % filter loop

4 compute pék> = Msékfm % left end condition
5: if k=1 then

6: pék) = ﬁsé’%l)

7 end

8 forj=1,...,N—1 % advancing filter
9: p;k) = Bs;kfl) + apg.kjl

10: endfor

11: compute sg\l,c)_l = Mpg\lfll % right end condition
12: for j=N-2,...,0 % backing filter
13: sgk) = 5pj(k> + asglj_)l

14: endfor

15: endfor

3 Parallel Approach and GPU Algorithm

In this section we give a description of our parallel algorithm, and the related
strategy, to implement a fast and accurate version of the K-iterated first-order
Gaussian RF. This approach exploits the main features of the GPU environment.
The main idea relies on several macro steps in order to obtain a reliable and
performing computation. The whole process can be partitioned in three steps.
In the first phase, step 1, in order to perform a fair workload distribution, we
use a Domain Decomposition (DD) approach with overlapping. More specifically,
the strategy consists in splitting the input signal s(®) into t local blocks, one for

each thread:

SgO)Jn, Sg-O),m (0),m (9)

y yeeey Sl -

Here, N denotes the problem size, while:
N
d= {tJ and r = mod(N,t) (10)

are the quotient and the remainder when dividing N by t, respectively. Moreover,
the parameter m denotes the overlapping size. To be specific, each thread j
loads in own local memory the block ngo),m7 whose size is d +2m or d + 1+ 2m
(depending on j). The entries of the j-th local block are formally defined using

the subdivision:

204 P. De Luca et al.

O | S i =0 d 4 2m if j<r
(s.i 7)i: (0) (11)
sjd+r+i_m,i:0,...7d+2m—1 ifj>r

where the input signal entries are set to zero, when not available (350) =0 for
i <0andi>N).

In other words, this partitioning consists in assigning to each thread a part
of the signal, so that two consecutive threads have consecutive signal blocks and
those blocks overlap on the edges by sharing exactly 2m entries. The reason
of overlapping is because, to perform a good approximation of the convolution,
block edge values need to use close values that lie in the neighboring blocks.
We notice that by setting m = 0, i.e. by excluding the overlapping areas, could
create possible perturbation errors and generate a bad accuracy close to the
boundaries of the local output signals.

The step 2 deals with the approximated local Gaussian convolution for each
block. More precisely, each thread j performs the K-iterated first-order Gaussian
RF to 5}0)’m, by applying Algorithm 1, and computes 3§K)’m

The last phase, step 3, is related to collect the local approximated results
by loading them into a global output signal. Therefore, in order to remove the
first and last m entries, a resizing operation is firstly performed for each local
output. More in details, each thread j resizes the local computed signal ngK)’m,

by removing its first and last m entries, and it generates the local output ngK).
Finally, a gathering of local resized outputs into the global output signal is done.

A very important consequence of our strategy is that all previous steps,
which are summarized in the following parallel algorithm, can be computed by

all threads in a fully-parallel way.

Algorithm 2. Parallel K-iterated first-order Gaussian recursive filter based on
domain decomposition with overlapping

Input: s(o), o,m, K, t

Qutput: s

1: FOR ALL THREAD j
2: save in the private memory of thread the extended input signal s}o)’m a

described in step 1 (domain decomposition with overlapping)
(0),m
3

S

3: apply Algorithm 1 to s

to obtain 8§K>»m
4: resize ngK)‘m

to obtain the global output s
5: ENDFOR ALL THREAD j

with parameters o, K as described in step 2,

to recover stK) and copy it in the shared memory in order
(K) as described in step 3

Accelerated Gaussian Convolution in a Data Assimilation Scenario 205

Now, we discuss how the Algorithm?2 is implemented in a CUDA
environment. Firstly, input data are transferred to device global memory. Hence,
in order to guarantee a reliable workload distribution, the described domain
decomposition in step 1 is performed. More in detail, we set for each thread
the local size nj,. = d or nj,c = d + 1, depending on the threads number j and
the value r in (10). This confirms that if the input size value n is not divisible by
t, according to (11) a suitable workload distribution is done. By also considering
the overlapping entries, the block length becomes n;,. + 2m, and each thread
can retrieve from the global array the required amount of data needed for its
local computation.

Moreover, an adequate access to the global memory is performed by means of
a suitable indexing, i.e. every thread loads data from global memory and stores
them in its own local memory in order to perform each operation independently.
Thanks to this operation, any overhead due to the contention and synchroniza-
tion of the global memory is avoided. In the following, the overall GPU parallel
algorithm is shown.

Algorithm 3. GPU parallel implementation

Input: N, input_data[], K

% set overlapping size value m

% compute local size value n_loc

% define the extended local size

length = 2m + n_loc

% define the index of each thread

index = threadIdx.x+(blockDim.x X blockIdx.x)

% define the local chunk interval

chunk_idx = (index X n_loc)+((index+1) X n_loc)

% parallel work: begin

: for each thread do

11: % compute the chunk overlapped from input

12: x_local[index] = input_data[chunk_idx + length]

13: % start the dynamic parallelism region, by setting the threads number using the
iteration number K

14: for each thread in dynamic region do

—
=i

15: % compute forward & backward filter
16: x_local[index]

17: end for

18: %end the dynamic parallelism region
19: % collect local results

20: results[n_loc] = x_local

21: end for

22: % parallel work: end
Output: results] |

Shortly, in Algorithm 3, starting from the input data size N, the iteration
number K and the input signal vector input_data, which are loaded in the global
device memory, the procedure returns the approximated Gaussian convolution

206 P. De Luca et al.

by the signal vector results which is computed in a GPU-parallel way. More in
detail, Algorithm 3 highlights several memory and computation strategies.

To be specific, first operations provide, lines 1-8 to set the local stacks for
each thread by considering the padding pieces related to the overlapping value
m. Hence, according to step 1 each thread performs a preliminary check of the
local chunk by means of the local index chunk_idx. Therefore, if the left and
the right side of the input data are provided, these values are added, otherwise
m values, set to zero, are inserted on the overlapped positions. In lines 9-18 the
computation phase is performed and a dynamic parallelism approach [15] has
been applied, when possible. CUDA allows us to exploit the dynamic parallelism
which is an extension to the CUDA programming model by enabling a CUDA
kernel to configure new thread grids in order to launch new kernels for reducing
the computational time. The aim of dynamic parallelism in our implementation
consists in to the assignment, by each thread corresponding to each input por-
tion, therefore for every CUDA kernel, to K threads by scheduling each thread
in order to perform the forward and the backward filter operations as described
in Algorithm 1, in synchronous way. More in details, K different threads per-
form the operations on each element following a pipeline modality. The usage
of dynamic parallelism is able to obtain very low execution times, despite the
predictable start-up and end-up times. The lines 19-22 are related to gather-
ing of the local results of each thread in the global output. The copy operation
is designed according to avoid memory contention, so that it is memory-safe
because each thread carries out only the n_loc central elements of own local
result by removing the 2m boundary values. This property guarantees a strong
memory consistency.

4 Experimental Results

In this section, several experimental results highlight and confirm the reliability
and the efficiency of the proposed software. Following, the technical specifications
where the GPU-parallel algorithm has been implemented, are shown:

— two CPU Intel Xeon with 6 cores, E5-2609v3, 1.9 GHz, 32GB of RAM, 4
channels 51 Gb/s memory bandwidth

— two NVIDIA GeForce GTX TITAN X, 3072 CUDA cores, 1 GHz Core clock
for core, 12 GB DDR5, 336 GBs as bandwidth.

Thanks to GPUs’ computational power, our algorithm exploits the CUDA frame-
work in order to take best advantage of parallel environment. Our approach
relies on an ad-hoc memory strategy which provides to increase the size of
local stack heap memory for each thread and for each thread blocks’. Exploit-
ing this technique, when a large amount of input data will be loaded, the
memory access time is reduced. Previous operations are executed by using
the following CUDA routine: cudaDeviceSetLimit, by setting as first parame-
ter cudaLimitMallocHeapSize and second cudaLimitStackSize; while as size,
according to hardware architecture, the value 1024 x 1024 x 1024 is fixed.

Accelerated Gaussian Convolution in a Data Assimilation Scenario 207

This trick allows us to allocate the dynamic memory, by using malloc system-
call, directly on the device.

Therefore, in order to increase the performances an additional memory-
based operation has been done. More precisely, this operation relies
on L2 cache obtaining a gain of performance by varying dynamically
the fetch granularity. More in details, after that each thread blocks
computation is completed, we perform a dynamic fetch granularity by
using the CUDA routine cudaDeviceSetLimit and setting as parameters:
cudaLimitMaxL2FetchGranularity and 128*sizeof(int). The value 128 is
related to hardware architecture that can be support this range of data load-
ing. Applying this approach an appreciable increasing of performance has been
obtained by exploiting the memory cache’s property that can recover the most
used data and instructions during the execution. Accordingly, due to the canon-
ical operations of Recursive Filters during their execution, a reduced memory
access time is obtained by increasing the fetch granularity.

In other words, in a classical execution each thread accesses to the global
memory to retrieve the required data for the computation. In this case, according
to the memory hierarchy and the L2 memory strategy, each thread accesses first
in the cache, then in the local stack, and finally in the heap/global memory. With
this procedure a considerable gain in terms of performance has been achieved.
In the following tests we set ¢ = 2 and input signals randomly distributed
(Gaussian or uniform). The choice m = 2.50 = 5 guarantees a good accuracy
level, as shown in [8,20].

Test 1. Here, in order to highlight the performance gain, we set as input: N =
10°, m = 5, K = 10 and the thread number t = 100. Averaged times, related to
10 executions, achieved are:

— 7.24 s, without increasing fetch granularity,
— 6.93s, by varying dynamic fetch granularity.

The first test highlights a small time difference but, if we give a large dataset
input, which requires a large execution time even on GPU, thanks to the
granularity of the dynamic recovery a significant performance gain can be
obtained. Thus, the dynamic operations are closely related to the size of the
input, i.e. according to cache granularity size chosen as parameter into func-
tion cudaDeviceSetLimit, where in this case the maximum value is fixed
to 128 bytes. This experiment provides a comparison among serial and GPU
parallel execution times. More precisely, in Table1l the execution times for
both serial (CPU) and parallel version (GPU) by choosing different input
sizes and the iteration numbers are shown. The input parameters are set as:
Blocks X Threads =10 x 100 and m = 5.

208 P. De Luca et al.

Table 1. Execution times (in seconds), Blocks X Threads =10 x 100, m = 5.

K |N

1x 10* 5x 10% | 1 x 105
10 |GPU| 0.274| 3.243| 10.219
CPU | 5.892129.790 | 403.871
50 |GPU | 0.483| 3.592| 11.883
CPU | 6.293 | 149.592 | 518.560
100 |GPU | 0.596| 4.711| 12.703
CPU | 8.431 172.197 | 650.195
500 |GPU | 0.778| 5.719| 13.177
CPU | 9.324 | 195.150 | 757.912
1000 | GPU | 0.984| 6.135| 14.297
CPU | 129.790 | 223.542 | 875.442

Test 2. This experiment confirms the reliability effects when choosing different
CUDA thread configurations. Here, we emphasize the different input sizes given,
while the iteration number and the overlapping value are set to K = 500 and
m =5, respectively. Indeed, reduction of execution times has been achieved by
decreasing the Blocks number, this holds true for all given input sizes. This
phenomenon is related to a good synchronization applied during the access to
the global memory from each thread, which reduces the access time and conse-
quently the overall execution time. These results are confirmed and verified also
by choosing any possible CUDA configuration in the range 1000-3072 threads
(3072 is the maximum threads number available for our hardware). Table 2 con-
firms the reliability of the parallelization strategy by highlighting the access time

Table 2. Execution times (in seconds), iteration number K = 500. m = 5.

CUDA configuration | N
1 x 10* |5 x 10%|1 x 10°
10 x 100 0.77 5.72 13.17
4 x 250 0.59 5.01 11.88
2 x 512 0.41 4.07 10.91
1 x 1024 0.38 3.76 9.68
20 x 100 0.55 6.24 11.57
8 x 250 0.47 4.92 10.71
4 x 512 0.39 3.67 10.42
2 x 1024 0.31 3.10 8.96
30 x 100 0.21 3.24 6.58
12 x 250 0.17 3.12 5.70
6 x 512 0.14 3.02 4.99
3 x 1024 0.12 2.99 4.07

Accelerated Gaussian Convolution in a Data Assimilation Scenario 209

to the global memory. In particular, the results allow us to find the best CUDA
thread configuration, Blocks X Threads =3 x 1024, obtained in correspondence
of the best execution times.

Test 3. This experiment is referred to the optimal CUDA configuration and aims
to investigate the behaviour of the algorithm by varying both iteration number
value K and the input size V. Figure 1 shows an appreciable gain of performance
and, in particular, a sub-linear increase of execution time with respect to the
problem size (which is linear in N x K), typical for GPUs architectures.

) ~
T T

o
T

Execution times (in seconds)
w S
T T

N
T

S

1 1 1 1 1 1 1
100 250 500 1000 2000 3000 5000 10000
K

Fig. 1. Execution times by varying K and N (Blocks X Threads =3 x 1024, m = 5)

Test 4. Here, we show a further improvement of the performance due to the use
the power of dynamic parallelism approach. Table 3 exhibits the best execution
times achieved by using the dynamic parallelism and choosing an ad-hoc, i.e.
limited by our machine available resources, CUDA configuration. Comparison
with Table 2 (first 4 lines) confirms the improvement for all data sizes. However,
we underline that, because the hardware limits available, if we set a too large
threads number, a big portion of them cannot work and, from a numerical point
of view, the output result becomes completely unreliable. In other words, a fair
CUDA configuration avoids a failed computation. For this reason, we have no
results by using a greater number of threads. Finally, behaviour of results in
Table 3 seems to suggest that an improving of performance should be obtained
by exploiting a machine with higher computational resources.

210

P. De Luca et al.

Table 3. Execution times (in seconds) with dynamic parallelism, iteration number
K =500. m = 5.

5

CUDA configuration | N
1 x 10*|5 x 10* | 1 x 10°
10 x 100 0.28 4.64 10.09
4 x 250 0.21 3.86 9.71
2 x 512 0.19 3.60 8.15
1 x 1024 0.13 3.09 6.92
Conclusions

In this paper, we proposed a GPU-parallel algorithm that provides a fast and
accurate Gaussian convolution, which is a fundamental step in both Data Assim-
ilation and Machine Learning fields. The algorithm relies on the K-iterated first-
order Gaussian Recursive filter. The parallel algorithm is designed by exploiting
dynamic parallelism available in CUDA environment. The experimental results
confirm the reliability and the efficiency of the proposed algorithm.

References

1.

De Luca, P., Fiscale, S., Landolfi, L., Di Mauro, A.: Distributed genomic com-
pression in MapReduce paradigm. In: Montella, R., Ciaramella, A., Fortino, G.,
Guerrieri, A., Liotta, A. (eds.) IDCS 2019. LNCS, vol. 11874, pp. 369-378. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34914-1_35

. De Luca, P., Galletti, A., Giunta, G., Marcellino, L., Raei, M.: Performance analysis

of a multicore implementation for solving a two-dimensional inverse anomalous
diffusion problem. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS,
vol. 11973, pp. 109-121. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-39081-5_11

De Luca, P., Formisano, A.: Haptic data accelerated prediction via multicore
implementation. In: Kohei, A. (ed.) Proceedings of the 2020 Computing Confer-
ence, CompCom. Advances in Intelligent Systems and Computing. Springer, Cham
(2020)

Giunta, G., Montella, R., Mariani, P., Riccio, A.: Modeling and computational
issues for air/water quality problems: a grid computing approach. Nuovo Cimento
C Geophys. Space Phys. C 28, 215 (2005)

Rao, V., Sandu, A.: A time-parallel approach to strong-constraint four-dimensional
variational data assimilation. J. Comput. Phys. 313, 583-593 (2016)

Bousserez, N., Guerrette, J.J., Henze, D.K.: Enhanced parallelization of the incre-
mental 4D-Var data assimilation algorithm using the randomized incremental opti-
mal technique (RIOT). Q. J. R. Meteorol. Soc. 146, 1351-1371 (2020)

Fisher, M., Giirol, S.: Parallelization in the time dimension of four-dimensional
variational data assimilation. Q. J. R. Meteorol. Soc. 143(703), 1136-1147 (2017)
Galletti, A., Giunta, G.: Error analysis for the first-order Gaussian recursive filter
operator. In: 2016 Federated Conference on Computer Science and Information
Systems (FedCSIS), pp.673-378. IEEE (2016). APA

https://doi.org/10.1007/978-3-030-34914-1_35
https://doi.org/10.1007/978-3-030-39081-5_11
https://doi.org/10.1007/978-3-030-39081-5_11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Accelerated Gaussian Convolution in a Data Assimilation Scenario 211

Cuomo, S., Galletti, A., Giunta, G., Marcellino, L.: Numerical effects of the Gaus-
sian recursive filters in solving linear systems in the 3Dvar case study. Numer.
Math. Theory Methods Appl., 520-540 (2017). https://doi.org/10.4208 /nmtma.
2017.m1528

D’Amore, L., Arcucci, R., Marcellino, L., Murli, A.: A parallel three-dimensional
variational data assimilation scheme. In: AIP Conference Proceedings, vol. 1389,
no. 1, pp. 1829-1831. American Institute of Physics, September 2011

De Luca, P., Galletti, A., Marcellino, L.: A Gaussian recursive filter parallel imple-
mentation with overlapping. In: 2019 15th International Conference on Signal-
Image Technology & Internet-Based Systems (SITIS), Sorrento, Italy, pp. 633-640
(2019)

Chaurasia, G., Kelley, J.R., Paris, S., Drettakis, G., Durand, F.: Compiling high
performance recursive filters. In: Proceedings of the 7th Conference on High-
Performance Graphics, pp. 85-94 (2015)

De Luca, P., Galletti, A., Ghehsareh, H.R., Marcellino, L., Raei, M.: A GPU-CUDA
framework for solving a two-dimensional inverse anomalous diffusion problem. In:
Foster, 1., Joubert, G.R., Kucera, L., Nagel, W.E., Peters, F. (eds.) Parallel Com-
puting: Technology Trends, Advances in Parallel Computing, vol. 36, pp. 311-320.
10S Press, Amsterdam (2020). https://doi.org/10.3233/APC200056

Cuomo, S., Michele, P. D.; Galletti, A., Marcellino, L.: A GPU-parallel algorithm
for ECG signal denoising based on the NLM method. In: 2016 30th International
Conference on Advanced Information Networking and Applications Workshops
(WAINA), Crans-Montana, pp. 35-39 (2016)

Jones, S.: Introduction to dynamic parallelism. In: GPU Technology Conference
Presentations, vol. 338, p. 2012, May 2012
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Ghil, M., Malanotte-Rizzoli, P.: Data assimilation in meteorology and oceanogra-
phy. In: Dmowska, R., Saltzman, B. (eds.) Advances in Geophysics, vol. 33, pp.
141-266. Elsevier, New York (1991)

Lorenc, A.C.: Development of an operational variational assimilation scheme. J.
Meteorol. Soc. Jpn 75, 339-346 (1997)

Hayden, C., Purser, R.J.: Recursive filter objective analysis of meteorological field:
applications to NESDIS operational processing. J. Appl. Meteorol. 34, 3—15 (1995)
Cuomo, S., Farina, R., Galletti, A., Marcellino, L.: An error estimate of Gaussian
recursive filter in 3Dvar problem. In: 2014 Federated Conference on Computer
Science and Information Systems, Warsaw, pp. 587-595 (2014). https://doi.org/
10.15439/2014F279

Young, I.T., van Vliet, L.J.: Recursive implementation of the Gaussian filter. Signal
Process. 44, 139-151 (1995)

Wells, W.M.: Efficient synthesis of Gaussian filters by cascaded uniform filters.
IEEE Trans. Pattern Anal. Mach. Intell. 2, 234-239 (1986)

Gilbert, R.C., Richman, M.B., Trafalis, T.B., Leslie, L.M.: Machine learning meth-
ods for data assimilation. In: Computing Intelligence Architecturing Complex Engi-
neering Systems, pp. 105-112 (2010)

Triggs, B., Sdika, M.: Boundary conditions for Young-van Vliet recursive filtering.
IEEE Trans. Signal Process. 54(6 I), 2365-2367 (2006)

https://doi.org/10.4208/nmtma.2017.m1528
https://doi.org/10.4208/nmtma.2017.m1528
https://doi.org/10.3233/APC200056
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.15439/2014F279
https://doi.org/10.15439/2014F279

	Accelerated Gaussian Convolution in a Data Assimilation Scenario
	1 Introduction
	2 Gaussian Convolutions in Data Assimilation
	3 Parallel Approach and GPU Algorithm
	4 Experimental Results
	5 Conclusions
	References

