
metabolites

H

OH

OH

Article

Distinguishing Benign from Malignant Pancreatic
and Periampullary Lesions Using Combined
Use of 1H-NMR Spectroscopy and Gas
Chromatography–Mass Spectrometry

Yarrow J. McConnell 1,2,†, Farshad Farshidfar 1,†, Aalim M. Weljie 3,4, Karen A. Kopciuk 1,5,
Elijah Dixon 1,2, Chad G. Ball 2, Francis R. Sutherland 2, Hans J. Vogel 3 and Oliver F. Bathe 1,2,*

1 Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada;
yarrow.mcconnell@gmail.com (Y.J.M.); farshidf@ucalgary.ca (F.F.);
karen.kopciuk@albertahealthservices.ca (K.A.K.); elijah.dixon@albertahealthservices.ca (E.D.)

2 Department of Surgery, University of Calgary, Calgary, AB T2N 4N2, Canada; ball.chad@gmail.com (C.G.B.);
francis.sutherland@albertahealthservices.ca (F.R.S.)

3 Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N2, Canada;
aalim@upenn.edu (A.M.W.); vogel@ucalgary.ca (H.J.V.)

4 Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
5 Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 4N2, Canada
* Correspondence: bathe@ucalgary.ca; Tel.: +1-403-521-3275; Fax: +1-403-944-3926
† These authors contributed equally to this work.

Academic Editors: Claudiu T. Supuran, Natalie Serkova and Peter Meikle
Received: 13 April 2016; Accepted: 8 January 2017; Published: 13 January 2017

Abstract: Previous work demonstrated that serum metabolomics can distinguish pancreatic cancer
from benign disease. However, in the clinic, non-pancreatic periampullary cancers are difficult
to distinguish from pancreatic cancer. Therefore, to test the clinical utility of this technology, we
determined whether any pancreatic and periampullary adenocarcinoma could be distinguished
from benign masses and biliary strictures. Sera from 157 patients with malignant and benign
pancreatic and periampullary lesions were analyzed using proton nuclear magnetic resonance
(1H-NMR) spectroscopy and gas chromatography–mass spectrometry (GC-MS). Multivariate
projection modeling using SIMCA-P+ software in training datasets (n = 80) was used to generate the
best models to differentiate disease states. Models were validated in test datasets (n = 77). The final
1H-NMR spectroscopy and GC-MS metabolomic profiles consisted of 14 and 18 compounds, with
AUROC values of 0.74 (SE 0.06) and 0.62 (SE 0.08), respectively. The combination of 1H-NMR
spectroscopy and GC-MS metabolites did not substantially improve this performance (AUROC 0.66,
SE 0.08). In patients with adenocarcinoma, glutamate levels were consistently higher, while glutamine
and alanine levels were consistently lower. Pancreatic and periampullary adenocarcinomas can be
distinguished from benign lesions. To further enhance the discriminatory power of metabolomics in
this setting, it will be important to identify the metabolomic changes that characterize each of the
subclasses of this heterogeneous group of cancers.

Keywords: biomarkers; metabolomics; pancreatic cancer; periampullary adenocarcinoma

1. Introduction

Patients with masses and strictures of the pancreas or periampullary structures may present with
jaundice or pain, or lesions can be found incidentally on diagnostic imaging. Once a lesion of the
pancreas and periampullary region is identified, further diagnostic tests are required to determine
whether the lesion is benign or malignant (most commonly adenocarcinoma). Malignant lesions
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warrant early surgical consideration. Benign lesions, such as pancreatitis, benign strictures, and serous
cysts, are ideally treated non-operatively.

Despite an extensive diagnostic workup consisting of cross-sectional imaging, endoscopic
retrograde cholangiopancreatography (ERCP) with brush biopsy, endoscopic ultrasound (EUS) with
fine needle aspiration (FNA), and serum CA19-9, malignant lesions can be diagnosed definitively
only 60%–90% of the time [1–4]. Importantly, there is no sure way to determine whether a lesion
is benign. There are a number of related implications. The extensive diagnostic work (including
invasive tests) may delay treatment for patients who are ultimately proven to have a pancreatic or
periampullary cancer. In addition, a large proportion of patients undergo major surgery without a
definitive diagnosis. This results in a finding of benign pathology in 7%–31% of pancreatic surgical
resection specimens [5–8]. Given that pancreatic surgery is associated with substantial morbidity
and a significant risk of perioperative mortality [9,10], a reduction in the need for such “diagnostic”
resections would be beneficial.

Better non-invasive diagnostic tests that accurately discriminate malignant from benign pancreatic
lesions are clearly needed. Metabolomics, like other ‘omics’ fields, explores the ability of multimarker
panels to differentiate between disease states. Our previous work demonstrated the ability of proton
nuclear magnetic resonance (1H-NMR) spectroscopy to differentiate serum samples from patients
with pancreatic cancer versus benign pancreaticobiliary disease using 22 metabolites and achieving an
internal AUROC of 0.83 [11]. The current study is an extension of that work.

Firstly, we sought a more comprehensive evaluation of the metabolome by testing a larger group
of samples using both 1H-NMR spectroscopy and gas chromatography–mass spectrometry (GC-MS).
GC-MS has the potential to enhance the final metabolomic profile due to its greater sensitivity and
ability to detect different metabolites than 1H-NMR spectroscopy [12]. 1H-NMR spectroscopy and
GC-MS results were analyzed separately as well as in a combined fashion, to evaluate their relative
strength and potential synergism. Secondly, we explored the application of metabolomics in a clinically
relevant cohort of periampullary lesions, providing a more realistic analysis of the performance and
limitations of a single metabolomic profile to distinguish benign from malignant disease. Previous
studies have shown that the metabolomic profile of blood and urine can effectively distinguish benign
disease from pancreatic cancer [11,13–16]. However, when located near the head of the pancreas,
pancreatic cancer is mostly clinically indistinguishable from other periampullary adenocarcinomas.
Therefore, it is unlikely that a test distinguishing benign disease from pancreatic cancer alone would be
clinically useful unless it could also identify non-pancreatic periampullary cancers. To this end, using
the two analytical modalities (1H-NMR spectroscopy and GC-MS), the minimal list of metabolites that
consistently distinguished patients with malignant and benign pancreatic/periampullary lesions was
identified in randomly allocated training sets, then validated in separate test sets.

2. Materials and Methods

2.1. Serum Samples

Venous blood samples were obtained from 157 patients who had a pancreatic or periampullary
lesion on diagnostic imaging. All patients provided written consent consisting of permission
to collect and bank blood and to collect linked demographic and clinical data for the purpose
of supporting ethics-approved research projects. The procedures of the University of Calgary
Hepatopancreaticobiliary/Gastrointestinal Tumor Bank, including consent, were approved by the
Conjoint Health Research Ethics Board at the University of Calgary (Ethics ID E17213). The use of
blood to identify metabolomic and proteomic biomarkers of pancreatic and periampullary tumors was
also approved by the Conjoint Health Research Ethics Board at the University of Calgary (Ethics ID
E20846). All patients had fasted for at least 8 hours at the time of sample collection.

For patients not undergoing surgical resection, samples were collected at a licensed laboratory
collection facility. For patients undergoing surgical resection, samples were collected on the day of
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surgery, prior to any surgical manipulation. Serum samples were collected and stored as previously
described [11].

2.2. Patient Data

Clinical data were collected prospectively as part of the serum banking process. Each patient was
classified as having either a malignant or a benign pancreatic/periampullary lesion based on review of
pathology, diagnostic imaging, and operative and clinic notes. Malignancies included adenocarcinomas
of the pancreas, distal bile duct, ampulla of Vater and duodenum (all residing in the pancreatic and
periampullary regions). In cases where finding the exact origin of an adenocarcinoma was not possible
because the tumour was unresectable (n = 65), the lesion was classified according to the diagnosis
favoured by the consulting surgeon based on the clinical course of the patient. For malignant lesions,
stage classification was assigned according to the American Joint Committee on Cancer (AJCC) Cancer
Staging Manual (7th Edition) [17].

2.3. Metabolomic Analysis

Serum samples for this study were analysed using 1H-NMR spectroscopy and GC-MS according
to previously published protocols [11,18]. For 1H-NMR, a Bruker Avance 600 NMR spectrometer,
operating at 600.22 MHz and equipped with a 5 mm TXI probe at 298 K was used. Spectra were
acquired by using standard Bruker pulse sequence program (pr1d_noesy) in series of 1024 scans.
Then 65,536 data points over the spectral width of 7211 Hz were then Fourier transformed using the
Chenomx NMR Suite 6.1 processor software (Chenomx Inc., Edmonton, AB, Canada).

For GC-MS, each sample was randomly assigned to one of four sequential days for extraction,
and then, with a separate randomization, assigned to one of four sequential days for derivatization
and GC-MS analysis. Briefly, the modified Bligh and Dyer extraction and purification method for
metabolite extraction [19]. For GC-MS analysis an Agilent 7890A chromatograph (Agilent Technologies
Canada Inc., Mississauga, ON, Canada) equipped with an autosampler, was used. This was coupled
with a Waters GCT Premier orthogonal acceleration/time-of-flight (oa-TOF) mass spectrometer (Waters
Corp., Milford, MA, USA). An MS range of 50 to 800 m/z was used for scanning each sample in 31 min.

Metabolites from the 1H-NMR spectroscopy dataset were identified and quantified using
the Human Metabolome Database (HMDB, version 2.5) [20] and Chenomx NMR Suite using the
“Targeted Profiling” approach [21]. Metabolites and features from the GC-MS dataset were identified
using Metabolite Detector software [22] (Version 2.06, Technische Universität Carolo-Wilhelmina zu
Braunschweig, Braunschweig, Germany) and an in-house library based on the GOLM metabolite
database [23]. All metabolite features, whether matched to an identification by Metabolite Detector
or not, were included in the dataset for further analysis. Species matched to an entity in the GOLM
database that does not yet have an associated chemical name were labelled with the word “Match”,
their retention index (RI) value, and the list of m/z values for quantified ions (e.g., “Match: RI 1416.54,
Ions 110 134 184 217 228”); and species not matched to any entity in the GOLM database were labelled
with the word “Unmatched”, their RI value, and the list of m/z values for quantified ions (e.g.,
“Unmatched: RI 2475.33, Ions 73 375 376”).

2.4. Data Pre-Processing

All zero values were considered as missing values and all metabolites or features with >50%
missing values were excluded from further analysis. The resulting 1H-NMR dataset contained
60 metabolites and the GC-MS dataset contained 123 metabolites/features for further analysis. Data
pre-processing was conducted separately for the 1H-NMR spectroscopy and GC-MS datasets using
STATA (version 12.0, StataCorp, College Station, TX, USA) and consisted of: median fold change
normalization [24]; logarithmic transformation; centering; and unit variance scaling [25]. Median fold
change normalization corrects for unwanted inter-sample differences in concentration and quality
of preparation. Logarithmic transformation enhances the performance of the projection models that
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are based on the normality assumption for each metabolite, by making each metabolite’s distribution
approach a normal distribution.

The resulting datasets had 22 metabolites in common (alanine, aspartate, citrate, glucose,
glutamate, glutamine, glycerol, glycine, histidine, hypoxanthine, isoleucine, methionine, ornithine,
phenylalanine, proline, pyroglutamate, serine, threonine, tryptophan, tyrosine, urea, and valine).
For each of these metabolites, the 1H-NMR spectroscopy and GC-MS values was block normalized
and included in a new combined dataset as previously reported [26]. To this was added the remaining
38 non-shared 1H-NMR metabolites and 101 non-shared GC-MS metabolites/features, giving a total of
161 metabolites/features in the combined dataset.

2.5. Multivariate Projection Modeling

Three random allocations of the 157 patient samples to training and test sets were conducted,
in a 50:50 split, with separate stratifications within diagnosis class (malignant vs. benign) for serum
sampling year (≤2008 vs. >2008), GC-MS extraction day (1 or 2 vs. 3 or 4), and GC-MS derivatization
day (1 or 2 vs. 3 or 4).

SIMCA-P+ (Version 12.0, Umetrics, Umea, Sweden) software was used for all multivariate
projection modeling. All modeling procedures were conducted separately for each of the three training
sets, using the 1H-NMR spectroscopy, GC-MS, and combined datasets. Thus, a total of nine training
models were generated (3 datasets x 3 trials). For each model, metabolites were pre-filtered using a
t-test of distributions between malignant and benign lesions (p-value <0.3). Unsupervised principal
component analysis (PCA) was then conducted to look for marked outliers and any latent structures
within each model [27].

For each of the nine training sets, bidirectional orthogonal partial least squares (O2PLS) analysis
was conducted using the following covariates: patient age, gender, lesion location, lesion type, surgical
resection, cancer staging (where applicable), jaundice, diabetes mellitus, bowel cleansing, sampling
year, and sampling location. For analysis of the GC-MS and combined datasets, extraction and
derivatization days were added as covariates. Metabolites contributing more to the modeling of
non-diagnostic covariates than to the modeling of the diagnostic class, were excluded iteratively
until the diagnostic class was the covariate contributing most to the overall model. The resulting
reduced list of metabolites was then submitted to orthogonal partial least squares-discriminant analysis
(OPLS-DA) modeling. Using Variable Importance to Projection (VIP) values and coefficients, the list
of metabolites was iteratively reduced to the absolute minimum required to maintain the strength of
model parameters. For each training set, the resulting focused metabolite list was compiled and model
parameters reported. The internal validity of the generated models was then tested by prediction
of the diagnostic classification in the respective independent test sets, and area under the receiver
operating curve (AUROC) values were calculated.

2.6. Metabolic Pathway Analysis

The focused list of metabolites from each trial was extracted, along with their respective
regression coefficients and VIP values. These lists were combined for the three trials for each dataset.
For metabolites found in the focused list for at least 2/3 of test data sets, average coefficient and VIP
values were calculated. This yielded a focused list of metabolites for 1H-NMR spectroscopy, GC-MS,
and combined datasets, respectively. A list of consistently contributing metabolites across all trials and
datasets was compiled and submitted for topological metabolic pathway analysis using MetaboAnalyst
software (version 2.0, Metabolomics Innovation Centre, Edmonton, AB, Canada) [28,29]. Where a
metabolite was contributing to all three datasets, the average concentration/intensity data from
the combined dataset was used. Otherwise, the concentration/intensity data from the 1H-NMR
spectroscopy or GC-MS dataset was used, as appropriate.
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3. Results

3.1. Demographic and Technical Factors

Lesions in the pancreas and periampullary region consisted of solid masses (n = 111), cystic lesions
(n = 20), and biliary strictures (n = 19); seven were combinations of strictures and masses. Jaundice was
present in 31 patients (19.7%), diabetes was present in 33 patients (21%). There were 35 benign lesions
(22.2%). Of the malignant lesions, 84 (68.9%) were stage II and III cancers. All benign lesions were
resected, 92 of the malignant lesions (75.4%) were resected. There were some differences in the benign
and malignant groups. Average age was 57 ± 13 in the benign group, 66 ± 11 years in the malignant
group (p < 0.0001). Jaundice was present in one patient with benign disease (2.8%), 30 patients with
cancer (24.5%; p = 0.004). Finally, diabetes was present in six patients with benign lesions (17.1%) and
27 of patients with malignancy (22.1%; NS). For each of the three separate randomized allocations to
the 50:50 split, the training group contained 80 patient samples, and the test group contained 77 patient
samples. Clinical and technical factors appeared evenly distributed for each allocation, and training
sets had similar characteristics as validation sets (Table 1).

3.2. Principal Component Analysis

On PCA modeling, no marked latent structures were identified and no sample was a consistent
outlier across allocation trials (Figure 1). The cumulative R2X for the NMR model was 0.31 (based on
four components); for GC-MS it was 0.46 (based on nine components).

3.3. Orthogonal Multivariate Projection Modeling

Table 2 summarizes the results of modeling for the 1H-NMR spectroscopy, GC-MS and combined
datasets, and Figure 2 displays the respective scores plots. These results indicate the ability of
metabolites from these three partitioned datasets to distinguish malignant versus benign lesions in
training sets of 80 patient samples, with independent validation in test sets of 77 patient samples.
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Table 1. Clinical and technical variables for each allocation of training and test sets.

Allocation A Allocation B Allocation C

Training n = 80 Test n = 77 p * Training n = 80 Test n = 77 p Training n = 80 Test n = 77 p *

Age <60 yrs 24 24 0.87 27 21 0.38 22 26 0.40
≥60 yrs 56 53 53 56 58 51

Gender
Male 45 37 0.31 46 36 0.18 40 42 0.57

Female 35 40 34 41 40 35

Lesion Location
Head/Uncinate 52 58 0.31 54 56 0.59 55 55 0.46

Body/Tail 20 15 19 16 20 15

Lesion Type
Mass 58 53 0.37 59 52 0.57 54 57 0.12

Stricture 8 11 7 12 13 6
Cyst 9 11 11 9 12 8

Diagnosis Malignant 61 61 0.61 61 61 0.61 61 61 0.61
Benign 19 16 19 16 19 16

Stage (for
Malignant Lesions

Only)

I 11 8 0.39 5 14 0.24 12 7 0.25
II 27 28 30 25 27 28
III 16 13 18 11 14 15
IV 7 12 8 11 8 11

Surgically
Resected

Yes 48 44 0.72 43 49 0.21 49 43 0.49
No 32 33 37 28 31 34

Jaundice
Yes 13 18 0.26 14 17 0.47 15 16 0.75
No 67 59 66 60 65 61

Diabetes Mellitus
Yes 20 13 0.21 17 16 0.94 18 15 0.64
No 60 64 63 61 62 62

Bowel Cleansing Yes 43 43 1.0 42 44 0.30 47 39 0.46
No 25 25 29 21 24 26

Sampling Year 2006-8 45 44 0.91 45 44 0.91 45 44 0.91
2009-10 35 33 35 33 35 33

Sampling
Location

Laboratory 12 17 0.25 17 12 0.36 11 18 0.12
OR 68 60 63 65 69 59

GC-MS Extraction
Day 1/2 42 38 0.69 42 38 0.69 42 38 0.69
Day 3/4 38 39 38 39 38 39

GC-MS
Derivatization

Day 1/2 40 41 0.68 40 41 0.68 40 41 0.68
Day 3/4 40 36 40 36 40 36

* p values are for Mann-U-Witney testing between subgroups. Italicized variables were used as stratification factors in the randomized allocation process.



Metabolites 2017, 7, 3 7 of 15
Metabolites 2017, 7, 3  7 of 15 

 

 
Figure 1. Principal components analysis (PCA) results. Scatter plots showing scores (t) in first two 
components of PCA models for one training dataset ((A) 1H-NMR; (B) GC-MS; (C) Combined). 
Results from other training sets were similar. Plots coded for patient diagnosis: malignant:  
▲ vs. benign: ♢. 

Figure 1. Principal components analysis (PCA) results. Scatter plots showing scores (t) in first
two components of PCA models for one training dataset ((A) 1H-NMR; (B) GC-MS; (C) Combined).
Results from other training sets were similar. Plots coded for patient diagnosis: malignant: N vs.
benign: ♦.
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Table 2. Results of orthogonal partial least squares discriminant analysis (OPLS-DA).

Dataset Mean of Training Sets (n = 80 each) Mean of Test Sets (n = 77 each)

X R2 Q2 p AUROC SE
1H-NMR 14 0.308 0.184 1.80 × 10−3 0.74 0.06
GC-MS 18 0.312 0.188 8.40 × 10−4 0.62 0.08

Combined * 20 0.478 0.324 6.14 × 10−6 0.66 0.08

* The combined dataset includes metabolite features from both 1H-NMR and GC-MS data, with averaged values
for metabolites detected by both platforms. X: Mean number of unique metabolites/features in the focused
metabolite lists across three randomized allocations of training/test set assignment; R2: goodness of fit; Q2:
predictive ability of model (7-fold internal cross validation); p: p-value for CVANOVA testing; AUROC: area
under the receiver operating curve; SE: standard error.
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Figure 2. Orthogonal partial least squares discriminant analysis (OPLS-DA) results. Scatter plots
showing scores (t) in first (t[1]) and orthogonal (to[1]) components of final OPLS-DA models for
one training dataset (A) 1H-NMR; (B) GC-MS; (C) Combined). Results from other training sets were
similar. Plots coded for patient diagnosis: malignant: N vs. benign: ♦.
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For the 1H-NMR spectroscopy dataset, the focused metabolite lists contained an average of
14 metabolites and the resulting models had the following average parameters: R2Y 0.308, Q2 0.184,
and CV-ANOVA p value 1.8 × 10−3. On independent validation in the test sets, the average AUROC
was 0.74 (SE = 0.06). When the same training sets were tested in the GC-MS dataset, the average
focused metabolite list contained 18 compounds. Average model parameters were R2Y 0.312, Q2

0.188, and CV-ANOVA p value 8.4 × 10−4. On independent validation in the respective test sets,
the mean AUROC was 0.62 (SE = 0.08). For both H-NMR and GC-MS, there is less variability in
the benign samples than in the malignant samples. The malignant group is comprised entirely of
adenocarcinomas, but the tissue of origin is heterogeneous, which may partly contribute to the larger
degree of variability. In addition, the benign group is smaller, so there is limited variability expected in
these circumstances. We do not believe that we have introduced any systematic bias, as we randomized
the sample analysis.

For the combined dataset, focused metabolite lists contained, on average, 20 metabolites and
the resulting models had, on average, R2Y 0.478, Q2 0.324, and CV-ANOVA p value 6.14 × 10−6.
On validation in the respective test sets, the average AUROC was 0.66 (SE = 0.08). When the model
containing only the eight metabolites in common was tested, the AUROC was 0.72 ± 0.05.

Eight metabolites were found to consistently contribute to the malignant/benign profile across
all three datasets (Table 3): higher levels of glutamate, myo-inositol, phenylalanine, and urea were
consistently correlated with malignancy; while higher levels of glutamine, ornithine, proline, and
threonine were consistently correlated with benign disease. An additional 22 metabolites were found
less consistently across the datasets. These metabolites were identified in the modeling for at least
two trials in at least one dataset, or in different trials in different datasets. Of these, nine metabolites
were associated with malignancy and 13 metabolites were associated with benign disease (Table 3).

Whisker plots of the raw data for all 30 consistently contributing metabolites are included
as Supplementary Information. As in our previous clinical studies, the differences in individual
metabolites between disease states are small. However, it is the pattern of multiple co-related
metabolites that differ, as indicated in the above descriptions of OPLS-DA models. Thus, no single
metabolomics feature is particularly informative, but the meta-biomarker comprised of co-relationships
is reflective of disease state.

3.4. Metabolic Pathway Analysis

The predominant differences between malignant and benign patient samples appeared to occur
within amino acid and carbohydrate metabolic pathways (Table 4). The arginine/proline pathway
had the largest impact factor (0.456, p = 0.000085) with consistently higher levels of arginine, creatine,
glutamine, ornithine, and proline seen in the benign samples and consistently higher levels of glutamate
and urea in malignant samples. The alanine/aspartate/glutamate pathway had the next largest impact
factor (0.441, p = 0.00026), reflecting the consistently higher levels of alanine and glutamine in benign
samples versus glutamate and succinate in malignant samples. Galactose levels were higher in
malignant samples and the galactose metabolism pathway had the third largest impact factor (0.224,
p = 0.000086). The list of all statistically impacted pathways is included in Table 4.
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Table 3. Summary list of metabolite features included in final focused models.

Metabolite Datasets Mean Coeff Mean SE (Coeff) Mean VIP Mean SE (VIP) p-Value in NMR p-Value in GC-MS

Higher in
Malignant

Galactose G, C 0.121 0.069 1.123 0.683 - 0.001
Unmatched RI:1007.82 QI: 67, 82, 83 G, C 0.120 0.074 1.337 0.708 - 0.11

Isopropanol N, C 0.114 0.042 1.001 0.382 0.01 -
Phenylalanine N, G, C 0.109 0.057 1.052 0.621 0.004 0.15

Glutamate N, G, C 0.105 0.064 1.127 0.616 0.01 0.01
Mannose N, C 0.102 0.069 1.220 0.410 0.01 -

Trimethylamine-N-oxide N 0.092 0.061 0.867 0.503 0.08 -
Arabitol G, C 0.090 0.047 0.967 0.409 - 0.16
Threitol G, C 0.088 0.080 0.889 0.816 - 0.14

Succinate N, C 0.086 0.115 0.743 0.777 - -
Urea N, G, C 0.074 0.058 0.965 0.604 0.08 0.19

Myo-Inositol N, G, C 0.070 0.061 0.991 0.582 0.04 0.16
Trehalose-alpha G, C 0.059 0.053 0.624 0.572 - 0.21

Higher in
Benign

Match RI:2018.25 QI: 191, 217, 305, 318, 507 G, C −0.029 0.055 0.568 0.680 - 0.79

Tridecanol G −0.060 0.051 0.738 0.613 - 0.28
Azelaic acid G −0.061 0.038 0.814 0.526 - 0.04

Unmatched RI:2475.33 QI: 73, 375, 376 G, C −0.066 0.048 0.791 0.475 - 0.01

Pyroglutamate N −0.068 0.036 0.696 0.306 0.18 -
Isoleucine G −0.069 0.091 0.778 1.069 - 0.05
Tyrosine N, G −0.074 0.058 0.862 0.669 0.21 0.08
Arginine N, C −0.080 0.055 0.721 0.500 0.38 -

Unmatched RI:1913.88 QI: 156, 174, 317 G, C −0.090 0.067 1.092 0.863 - 0.01

Proline N, G, C −0.096 0.063 1.009 0.547 0.03 0.10
Alanine N, C −0.098 0.041 0.853 0.311 0.01 -

Ornithine N, G, C −0.104 0.068 0.997 0.687 0.06 0.07
Creatine N, C −0.107 0.041 0.952 0.267 0.06 -

Glutamine N, G, C −0.115 0.072 1.107 0.686 0.0002 0.0001
Lysine N, C −0.117 0.037 1.289 0.345 0.01 -

Threonine N, G, C −0.137 0.065 1.360 0.538 0.04 0.001

Unmatched RI:1971.99 QI: 185, 247, 275 G, C –0.138 0.069 1.346 0.640 - 0.03

N: 1H-nuclear magnetic resonance spectroscopy, G: gas chromatography mass spectrometry, C: combined dataset, Coeff: regression coefficient for given X variable (metabolite) in the
modeled Y variable (malignant versus benign), positive values associated with malignancy and negative values associated with benign disease; SE: standard error; RI: retention
index, QI: quantification ions; VIP: variable importance to projection expresses overall contribution to the model. Metabolite features in italics were found in the focused lists for all
three datasets.
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Table 4. Topological metabolic pathway analysis.

Metabolic Pathway Total Compounds
in Pathway

Hits in Current
Dataset p Impact

Factor

Arginine and proline metabolism 77 7 8.49 × 10−5 0.456
Alanine, aspartate, and glutamate metabolism 24 4 2.60 × 10−4 0.441
Galactose metabolism 41 3 8.63 × 10−5 0.224
Lysine degradation 47 1 4.09 × 10−3 0.147
D-Glutamine and D-glutamate metabolism 11 2 1.37 × 10−3 0.139
Inositol phosphate metabolism 39 1 3.00 × 10−2 0.137
Phenylalanine metabolism 45 3 6.60 × 10−3 0.119
Aminoacyl-tRNA biosynthesis 75 10 8.90 × 10−7 0.113
Lysine biosynthesis 32 1 4.09 × 10−3 0.100
Glycine, serine and threonine metabolism 48 2 7.07 × 10−4 0.097
Tyrosine metabolism 76 2 2.77 × 10−2 0.047
Taurine and hypotaurine metabolism 20 1 8.27 × 10−3 0.032
Fructose and mannose metabolism 48 1 1.56 × 10−3 0.029
Butanoate metabolism 40 2 6.28 × 10−3 0.018
Valine, leucine, and isoleucine biosynthesis 27 2 9.74 × 10−4 0.013
Glutathione metabolism 38 3 3.35 × 10−3 0.013
Phenylalanine, tyrosine, and tryptophan biosynthesis 27 2 1.05 × 10−2 0.008
Purine metabolism 92 2 5.70 × 10−4 0.008

Produced using MetaboAnalyst software. For each pathway, the total number of known metabolites, along with
the number of those found in the current dataset (“hits”) are reported. The p value is reported for the statistical
comparison of metabolite feature levels between malignant and benign samples. The impact factor expresses
the degree of centrality of the identified changes to the pathway functioning overall.

4. Discussion

Clinically, to make timely treatment decisions, it would be beneficial to have a noninvasive test
that distinguishes a benign from a malignant pancreatic and periampullary mass or stricture. A number
of investigators have demonstrated that the serum metabolomic profile can discriminate pancreatic
cancer from benign pancreatic lesions [11,13–15]. However, in the clinic, it is not always possible to
distinguish pancreatic cancer from other periampullary adenocarcinomas. Therefore, our goal was to
identify the metabolomic features that separated all pancreatic and periampullary adenocarcinomas
from benign masses and strictures using a two-class model. This was considered feasible because
cancers have some common features to their disordered metabolism, such as the Warburg effect.

We determined that focused metabolomic profiles containing as few as 14–18 metabolites
do discriminate between serum samples from patients with malignant versus benign pancreatic/
periampullary lesions. In the training set, these focused metabolomic profiles produced OPLS-DA
models with R2 values of 0.30–0.48, indicating that 30%–48% of the observed variance in metabolite
levels was attributable to the diagnostic classification. These values are in the range expected for
clinical specimens [30], are in keeping with the clustering of samples by diagnostic category seen in
the first and second components of unsupervised PCA, and were sufficient to statistically discriminate
between diagnostic classes as indicated by the CV-ANOVA p-values. In separate validation sets, the
AUROC values of metabolomics models had a level of performance similar to that of the serum tumor
marker CA 19-9, suggesting that the metabolomic profile may have some value [1]. However, the test
performance is insufficient to have a direct impact on clinical decision-making in its present form.

Our metabolomic models did not perform as well as in other studies, including our own. This is
because our comparator groups consisted of disease processes that were more heterogenous than
in other series, which typically consisted of pancreatic adenocarcinoma versus pancreatitis and/or
or normal controls [11,13–15,31–33]. This was by design. Clinically, pancreatic and non-pancreatic
adenocarcinomas are frequently indistinguishable. (It is only after resection that they can be definitively
classified.) Therefore, if one were to apply a metabolomic profile for pancreatic cancer (as described
by previous investigators) to a clinical population, it would underperform because of the inherent
heterogeneity of the metabolomic features of similar lesions. We wanted to see if there was a simple
“adenocarcinoma profile” that might be more applicable. The inferior performance of our model was
not completely surprising, given that pancreatic cancer is associated with diabetes and non-pancreatic
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periampullary adenocarcinomas are not. Our experimental design provides a more realistic estimate
of the performance of a test based on a single two-class metabolomic model. To enhance the
performance of a metabolomics-based blood test for identification of individuals with malignancy,
it will be important to define the metabolomic alterations associated with pancreatic and non-pancreatic
adenocarcinomas separately.

The results of previous studies may also be overly optimistic because external validation sets
were not always reported. In most studies, excellent AUROCS have been reported when metabolomic
models were internally validated [11,15], exaggerating the performance of the metabolomic models.
When external cohorts are used for validation, AUROCs on the validation sets are typically lower than
in internal validation cohorts. For example, Kobayashi et al. compared metabolomic profiles of sera
from pancreatic cancer and chronic pancreatitis analyzed by GC-MS [14]. They described an AUROC
of 0.93 in a training set, and the AUROC in the validation set was only 0.76, which was no better than
CA19-9 (AUROC 0.82) and CEA (AUROC 0.80). This illustrates the critical need for validation sets
wherever possible in this field.

Unexpectedly, combining two complimentary analytical modalities in an attempt to gain a more
comprehensive interrogation of the metabolome did not markedly improve test performance. We
had hypothesized that creating a combined 1H-NMR spectroscopy/GC-MS dataset could harness the
relative strengths of each platform, providing stronger predictions. However, the combined dataset
models performed only slightly better than the GC-MS models and not as well as the 1H-NMR models.
The combined metabolomic model derived from 1H-NMR spectroscopy and GC-MS was limited by
the stability of the latter. 1H-NMR spectroscopy models generally performed better than the GC-MS
models, with a smaller standard error for the AUROC values. In addition, the average standard
error for the metabolite coefficients was 62% higher for GC-MS compared to 1H-NMR spectroscopy,
indicating more variability in the regression modeling of metabolites in the GC-MS model. Finally,
the consistency of metabolites identified across allocation sets was higher for 1H-NMR spectroscopy
than for GC-MS. For 1H-NMR spectroscopy, 58% of metabolites important to the final focused list were
identified in two or more of the allocation sets; only 36% of metabolites in the final list were identified
in two or more of the allocation sets in GC-MS (p = 0.04).

It is possible that alternative approaches will be required to merge data from two analytical
platforms. In the present study, a simple averaging technique was used to combine metabolites
detected by both platforms. Other approaches to combining data are being developed and used, but no
standard approach has yet been established [34,35]. Further work in this field may result in a method
that effectively capitalizes on the relative strengths of multiplatform detection, to produce an even
stronger diagnostic model.

Compared to our previous study using 1H-NMR spectroscopy to distinguish pancreatic cancer
from benign tumors, some of the same changes in metabolites were observed in the present study.
Specifically, in both studies, malignancy was associated with elevated glutamate, phenylalanine,
and mannose; creatine, glutamine, threonine, and lysine were higher in the benign condition.
These metabolites did not vary significantly by sex or any other factor other than disease state.
The fact that these changes were seen in independent studies, despite the heterogeneity of the cancers
included in the present study is encouraging.

The metabolomic profiles identified offer insights into the metabolomic pathways altered in
patients with a pancreatic and periampullary malignancy. The results clearly indicate a tipping of the
balance of amino acid metabolism towards higher glutamate levels in malignant samples and higher
glutamine and alanine levels in benign disease. These observations are consistent with earlier findings
published by our group, which found elevated levels of glutamate in the serum of pancreatic cancer
patients when compared to that of patients with benign pancreatic or biliary disease [11]. It is also
consistent with findings in many cancer model systems that show a switch to glutamine consumption,
and increased glutamate and succinate production, in patients with rapidly proliferating cancer cells,
as part of the “Warburg effect” [36,37].
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Arginine and ornithine are part of the urea cycle and feed the production of putrescine, the
rate-limiting step in protein synthesis. The conversion of arginine to ornithine, by the enzyme
arginase, has been suggested as a major regulator of cell growth [36]. It is therefore interesting
that arginine and ornithine levels were lower in the serum of patients with pancreatic cancer compared
to benign pancreatic lesions. The level of urea, a side product of arginine-to-ornithine conversion,
was slightly higher in patients with pancreatic cancer. Together, these findings are consistent with
altered arginase activity in patients with pancreatic and periampullary adenocarcinomas. In pancreatic
cancer samples tested by the International Cancer Genome Consortium [38], only 1% contained ARG1
mutations, and no ARG2 mutations were seen. Therefore, the mechanism for this observation must be
further elucidated.

The correlation of serum galactose with pancreatic cancer is seen in the GC-MS dataset only,
as NMR did not detect galactose in these conditions. A similar relationship was recently observed
with colorectal cancer patients [18], but further investigation is needed before any putative mechanism
can be proposed.

5. Conclusions

In conclusion, it is possible to distinguish benign and malignant pancreatic/periampullary
masses and biliary strictures using 1H-NMR and GC-MS based on a two-class metabolomic model.
We speculate that even better test performance could be expected if the metabolomic features of various
pancreatic and periampullary cancers were defined, discriminating disease state on a multi-class
model. Current methods of combining the employed analytical modalities do not enhance diagnostic
power. However, if a more comprehensive analysis of the metabolome were done using quantitative
methods (as opposed to semi-quantitative methods) or more sensitive techniques, perhaps targeting
metabolites identified in discovery efforts such as this, one may derive a more robust diagnostic
test. Using an analytic modality with broader coverage and improved separation, such as liquid
chromatography-mass spectrometry, may also augment test performance.
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