
ORIGINAL RESEARCH
published: 16 February 2021

doi: 10.3389/fninf.2021.560050

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2021 | Volume 15 | Article 560050

Edited by:

Andrew P. Davison,

UMR9197 Institut des Neurosciences

Paris Saclay (Neuro-PSI), France

Reviewed by:

Eric K. Neumann,

Independent Researcher, Boston, MA,

United States

Doga Demirel,

Florida Polytechnic University,

United States

*Correspondence:

Natallia Kokash

natallia.kokash@gmail.com

Received: 07 May 2020

Accepted: 06 January 2021

Published: 16 February 2021

Citation:

Kokash N and de Bono B (2021)

Knowledge Representation for

Multi-Scale Physiology Route

Modeling.

Front. Neuroinform. 15:560050.

doi: 10.3389/fninf.2021.560050

Knowledge Representation for
Multi-Scale Physiology Route
Modeling

Natallia Kokash 1* and Bernard de Bono 2

1 Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia, 2 Auckland Bioengineering Institute, University

of Auckland, Auckland, New Zealand

We present a framework for the topological and semantic assembly of multiscale

physiology route maps. The framework, called ApiNATOMY, consists of a knowledge

representation (KR) model and a set of knowledge management (KM) tools. Using

examples of ApiNATOMY route maps, we present a KR format that is suitable for

the analysis and visualization by KM tools. The conceptual KR model provides a

simple method for physiology experts to capture process interactions among anatomical

entities. In this paper, we outline the KR model, modeling format, and the KM procedures

to translate concise abstraction-based specifications into fully instantiated models of

physiology processes.

Keywords: physiology, multi-scale model, knowledge management, anatomy, connectivity, ontology

1. INTRODUCTION

Physiology process models take into account the anatomical routes of communication that are
necessary for mechanisms to occur. For example, process models study mechanisms in which:

- an increase in atrial pressure gives rise to an increase in glomerular filtration rate;
- stomach filling is followed by colon emptying;
- low oxygen partial pressure in the alveolus leads to an increased red blood cell count.

ApiNATOMY provides a knowledge representation (KR), and knowledge management (KM)
tools, for the topological and semantic modeling of process routes and associated anatomical
compartments in multiscale physiology. The development of ApiNATOMY is a work-in-
progress and is coupled to integrative efforts by communities in physiology and medicine [e.g.,
SPARC (National Institutes of Health), HuBMAP (Snyder et al., 2019)].

In this context, the requirements collected in previous work (de Bono et al.,
2012, 2017) identified two core sets of KR organizing principles for physiology
processes, namely:

1. A first set of organizing principles for flow processes is drawn from:

(a) Fick’s Law, which emphasizes the dependency of exchange between conduit compartments
on the surface area and permeability of the interface between them;

(b) Poiseuille equation, which links the resistance of a fluid conduit to its length and internal
radius; and

(c) LaPlace’s work, which relates the pressure in the lumen of a
conduit to the tension in the wall based on he internal radius and
wall thickness.

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.560050
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.560050&domain=pdf&date_stamp=2021-02-16
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:natallia.kokash@gmail.com
https://doi.org/10.3389/fninf.2021.560050
https://www.frontiersin.org/articles/10.3389/fninf.2021.560050/full

Kokash and de Bono Multi-Scale Physiology Route Modeling

2. A second set of organizing principles is gained from the
prevalence of tree-like (i.e., branching) patterns in biological
conduit architecture. Such arborizations have evolved to
manage the gradual transition from:

(a) thick-walled root-proximal vessels adapted for high-
pressure high-velocity flow (e.g., aorta, trachea, ureter),
needed for long range propulsion to

(b) high-surface area thin-walled leaf-distal vessels that permit
low-pressure low-velocity flow required for sustainable
exchange (e.g., capillaries, alveoli, nephrons).

Transfers between conduit systems (e.g., material transfer
between blood and urine, or digested food and lymph) take
place across adjacent conduit walls (i.e., transmural) of leaf-
distal vessels.

The first set of principles suggests that describing conduits
that broker flow processes should take into account radius,
length, wall thickness and surface area of these compartments.
The second set suggests that the representation of conduit
arborizations (e.g., arterial tree, biliary tree, neuron), as well
as the transmural transfer between such arborizations, should
explicitly take into account branching patterns and wall-to-wall
interactions between leaf-distal vessels.

Given the above requirements, the ApiNATOMY KR model
should provide ways to model:

- process edges to depict energy and mass transactions, in
particular, transmission, storage, and dissipation (de Bono
et al., 2017);

- structural entities such as molecules, cells or tissue units (i.e.,
in Basic Formal Ontology (BFO) (Arp et al., 2015) parlance, an
independent continuant). The construct responsible for this
kind of modeling in the ApiNATOMY’s KR is called lyph.
A lyph can be used as container (i.e., as compartment), as
component (i.e., as regional or constituent part), or as process
participant (i.e., a conduit);

- route maps, or a combination of lyphs and process edges
such that there is a one-to-one mechanistic correspondence
between a process edge and a lyph that conveys, or brokers,
the transaction represented by the edge. A route can, therefore,
represent a chemical reaction brokered by an enzyme, the
diffusive flow of an ion across a membrane, or the advective
flow of fluid down an anatomical conduit. Concatenations
of routes can be assembled to represent complex multiscale
biological models.

Using exemplar route maps for context and illustration, this
paper defines a generic KR model for ApiNATOMY that
addresses representational requirements for routes in multi-scale
physiology modeling. The KR schema for this model provides a
contract between the input data used in route map construction
and the ApiNATOMY KM toolset (Kokash) that validates and
transforms the data into an expanded entity-relationship model.
This model is manipulated by the ApiNATOMY viewer (Kokash),
an open-source web tool that renders physiology models, and
places visual artifacts depicting physiology entities into a force-
directed 3D layout.

The paper is organized as follows: section 2 provides a
high-level description of sample physiology models represented
as route maps in ApiNATOMY. Section 3 introduces the
ApiNATOMY conceptual schema. Section 4 describes model
transformation steps to obtain fully instantiated entity-
relationship object models from the initial template-based
specifications. Section 5 focuses on model display. In section 6,
we discuss the implications of this study.

2. REQUIREMENTS AND USE CASES

The mainstay of the ApiNATOMY is the notion of lyph. The
high-level lyph features described here will be further considered
in the context of the four exemplar ApiNATOMY models
discussed below.

Lyph features are designed to manage knowledge about
compartmental measurements, and related flow processes,
including annotation metadata to reference ontologies, (e.g.,
declaring a lyph object as representing an instance of a biological
structure class) andmereotopological information, such as:

• Borders and their polarity: given that for any lyph, two
longitudinal borders are distinguished by dint of their
proximity to the axis of rotation and two radial borders are
arbitrarily labeled for distinction. In Figure 1, longitudinal
borders are marked as 1 and 3, radial borders as 2 and 4, and
the axis of rotation (in this case, coinciding with longitudinal
border 1) is marked as 5. Lyphs can be annotated with length
and thickness in the form of distributions of one-dimensional
measurements of length along longitudinal and radial borders,
respectively.

• Composition in terms of parts, that include:

– regions as lyphs contained in another lyph, which may
extend to layers (the lyph in Figure 1 has three layers):
regions that run longitudinally from one radial border to
another;

– constituent materials, which are aggregates, including other
lyphs, constituting the fabric of a lyph.

• Configuration: conduits for flow take one of three topological
configurations: the Bag, which indicates a terminus for flow
of material in its innermost layer; the Tube, which indicates
continuation of flow of material in its innermost layer; and
the Cyst, a complete envelopment of material within its
innermost layer.

• Assemblies:

– Axial assembly takes place along the axis of rotation by
sharing radial borders. It allows lyphs to join into more
complex constructions such as arborizations.

– Arborization assemblies are axial assemblies imbued with
branching probabilities which, in combination with length
and thickness distributions, make for a parameterizable
model for different kinds of anatomical trees.

– Coalescent assembly, illustrated in Figure 2, occurs
orthogonal to the axis of rotation by sharing longitudinal

Frontiers in Neuroinformatics | www.frontiersin.org 2 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

FIGURE 1 | Definition of lyph: borders and axis of rotation.

FIGURE 2 | Coalescent assembly.

borders. It allows for conduits to link transmurally by
sharing the outermost layer of their wall.

Application of lyph assemblies is discussed below.

Exemplar 1: Figure 3 shows a schematic mock-up of an
ApiNATOMY physiology route. The model features neural
circuits tracking arteries and airways in the neck. In this
model, four arborized conduit systems are represented as
axial assemblies: cardiovascular (red, conveying flow of
blood), airway (green, flow of air), central nervous (grey,
cerebrospinal fluid), and neurons (shown as simple lines
that represent the flow of neuronal cytosol).

Each arborization system is modeled as a linear
concatenation of process edges, each edge conveyed
by a lyph that has, as its innermost layer, a representation
of the fluid flowing through that system (e.g., blood). The
other layers of the conveying lyph represent the wall of the
conduit.

Placing, or nesting, one lyph in another lyph provides
the means to represent compartments as regions within
compartments that house them (e.g., the Carotid Body,
CB, brown square, shown housed by the Common Carotid
Artery, CCA, a 2-layered red rectangle. Note the CB is
placed in the outer layer, i.e., in the wall of the CCA).
In situations where one arborized system is to be threaded
along another arborized system, as in the case of threading

neuron trees along the Central Nervous System (CNS)
tree, the KM tools provide the means to automate the
placement of conveying lyphs of one system (e.g., the lyphs
representing segments of neurons) as regions of conveying
lyphs of another system (e.g., the outer layer of the central
nervous lyphs between the Diencephalon and T1 levels in
the arborization).

Exemplar 2: The model shown in Figure 4 represents the
compartmental layout relevant to communication between
leaf-distal vessels. One of the lyph layers, labeled “Alveolar
Fluid Coat,” has cells (known as Leukocytes) as one of its
material constituents. The secondmaterial constituent is the
ion Calcium (not shown in Figure 4).

The two leaf-distal vessels in this model belong to two
distinct arborizations. The process edge concatenation
labeled A represents air flow in the airway arborization,
where edge An is brokered by a 4-layer conveying lyph
labeled “Alveolar Duct.” Concatenation B represents blood
flow in the cardiovascular arborization, where edge Bn
is brokered by 3-layer conveying lyph “Alveolar Duct
Capillary.” The two conveying lyphs both have Basement
Membrane as their outermost layer. This allows the two
lyphs to engage on a 6-layer connecting coalescence by
having the Basement Membrane layer in common.

A 2-layer lyph of type Cyst represents the Leukocyte
cell, and another 2-layer cyst models the Sarcoplasmic
Reticulum compartment in the innermost layer of the
Leukocyte cell. The route conveying Calcium material
between the innermost layer of the Sarcoplasmic Reticulum
and the outside of the Leukocyte is brokered by two axial
assemblies: one representing the SERCA calcium pump, and
the other the ORAI1 calcium channel.

Exemplar 3: The Basal Ganglia (BG) are a group of subcortical
nuclei at the base of the forebrain and above the
midbrain. Figure 5 shows the schematic representation
of BG interconnections. In this figure, the neuron that
courses through the GPe consists of two arborizations, such
that leaf-distal coalescences with other neurons represent
synapses in the Putamen and GPi.

Exemplar 4: Figure 6 shows a mock-up of an arborization
representing the structure of a urinary system from Urethra
to Nephron. In human, this model branches to create one
Bladder, two Ureters, about 24 Minor Calyces and circa 2
million Nephrons. Inmore extensive ApiNATOMYmodels,
the Nephron engages in multiple coalescences with Blood
Vessel leaf-distal lyphs.

We will use the aforementioned mock-ups to validate the
usability of the ApiNATOMY KM.

3. MODEL DEFINITION

In constructing route models, the ApiNATOMY KM tools work
with input data specified by users. This data should conform

Frontiers in Neuroinformatics | www.frontiersin.org 3 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

FIGURE 3 | Neural circuits tracking arteries and airways in the neck.

to the framework’s conceptual schema that provides a contract
between the user-defined data and the input format expected by
the model viewer.

The ApiNATOMY KR class hierarchy (mapped out in
Figure 7) defines concepts necessary to build the physiology
process graph. The basic elements of such a graph are nodes
(vertices) and links (edges), modeled by Node and Link
classes. Other two key concepts, Lyph and Material, define
composition of physiology compartments. The Coalescense class
models coalescing assemblies. The Region class helps to outline
model context. The notion of Group is used to split the
model into logically-meaningful parts while Graph handles the
representation of the model as a whole.

External resources are employed to annotate ApiNATOMY
objects with relevant terms and definitions from existing
ontologies, clinical and research databases. Abstract classes such
as Resource, VisualResource, Shape, and GroupTemplate help us
to generalize common properties. The latter class serves as a
superclass for specifying properties of various generated groups
(subgraphs) to model arborizations (Tree class), process edge
paths (Chain class), embedded processes (Channel class) and

specialized formations (e.g., Villus class). Finally, auxiliary classes
encapsulate recurring properties of involved concepts, i.e., the
Border class is responsible for handling content on the borders of
lyphs and regions. Properties of these classes reflect the meaning
of the associated physiological elements (connections, processes
or material composition) and provide constraints and visual
parameters that help us to assemble them into structurally correct
models of physiology.

Since ApiNATOMY is as an experimental framework with
evolving requirements, the ApiNATOMY toolset should be able
to accommodate eventual changes in the conceptual model. For
example, we can expect that a more specialized resource type
is introduced to define a recurring element in some field of
study or a new relationship among existing concepts is added
to enable a certain type of process analysis. Hence, we looked
for a declarative notation to describe and document (various
versions) of a conceptual model which would also be suitable for
code generation to minimize the manual effort of adapting the
implementation to the updated requirements.

We chose JSON Schema specification (IETFWorking Group)
to define the ApiNATOMY conceptual model and further

Frontiers in Neuroinformatics | www.frontiersin.org 4 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

FIGURE 4 | Leukocyte calcium handling in alveolar fluid.

extended it to provide necessary information for code generation.
The schema standard allows us to define abstract data types
which are useful for auto-generated documentation, quality
assurance of the client data, and automated testing. We
also rely on the JSON schema to automatically produce a
hierarchy of JavaScript classes for in-memory manipulation of
physiology graphs. Each class manages the properties defined by
the schema.

We created a minor JSON schema extension to link fields
of related resources in bi-directional relationships. For example,
given a sample class hierarchy in Listing 1 and an organ system
model shown in Listing 2, we can recognize related properties
and auto-complete relevant object definitions with missing fields
as in Listing 3:

• Property composes of the class Tissue is linked via the relatedTo
field of the extended schema to the property composedOf of the
class Organ.

• Given an organ entry and, more specifically, its composedOf
field, we can link the tissues it references, i.e., Retina, to the
organ which it makes up, i.e., Eye, via its field composes.

• Similarly, Iris becomes partOf Eye since parts
and partOf fields are defined as related in the
class Organ.

Listing 1 | Class definitions in extended JSON schema

"Entity": {

"properties": {

"id": {"type": "string"},

"name": {"type": "string"}}

},

"Tissue":{

"allOf": [{"$ref": "#/definitions/Entity"}],

"properties": {

"composes": {"type": "array",

"items": {"$ref": "#/definitions/Organ"},

"relatedTo": "composedOf"}}

}

},

"Organ": {

"allOf": [{"$ref": "#/definitions/Entity"}],

"properties": {

"composedOf": {"type": "array",

"items": {"$ref": "#/definitions/Tissue",

"relatedTo": "partOf"}},

"parts": {"type": "array",

"items": {"$ref": "#/definitions/Organ"},

"relatedTo": "partOf"}},

"partOf": {"type": "array",

"items": {"$ref": "#/definitions/Organ"},

"relatedTo": "parts"}}

}

},

"OrganSystem": {

Frontiers in Neuroinformatics | www.frontiersin.org 5 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

FIGURE 5 | Basal Ganglia mock-up.

FIGURE 6 | Urinary Omega Tree mock-up.

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

FIGURE 7 | ApiNATOMY data model overview.

"allOf": [{"$ref": "#/definitions/Entity"}],

"properties": {

"organs": {"type": "array",

"items": {"$ref": "#/definitions/Organ"}}

}

Listing 2 | Input data: an organ system

{"id": "VS", "name": "Visual System",

"organs": [

{"id": "E", "name": "Eye", "parts": ["I"],

"composedOf": [{"id": "R", "name": "Retina"}]

},

{"id": "I", "name": "Iris"}]

}

Listing 3 | Enhanced organ definitions automatically derived from the partial input

data

"organs": [

{"id": "E", "name": "Eye", "parts": ["I"],

"composedOf": [{"id": "R", "name": "Retina",

"composes": ["E"]}]}

{"id": "I", "name": "Iris", "partOf": ["E"]}

]

Thus, a user is free to choose how to insert linked data without
the need to duplicate it.

3.1. Resources, Visual Resources, and
Externals
The ApiNATOMY modeling classes have a common ancestor,
an abstract class Resource, which defines properties present in
all objects of the model. Other classes inherit from the Resource
signature properties id, name, and class.

Resources in ApiNATOMY are defined by semantic properties
which establish their physiological meaning and visualization
properties which instruct the viewer tool about the desired
look and layout of the model graph. To simplify visualization
parameter setting, we providemeans to assign values to subsets of
entities in the model. Each object may contain a property assign
with two fields: path, which contains a JSONPath (Gössner)
expression, and value object, which contains a JSON object to

FIGURE 8 | JSONPath-based assignment of resource properties. (A)

Assigned color to a group. (B) Color interpolation scheme.

merge with resources in the set defined by the query in the path.
For example, the code in Listing 4 assigns color to all lyphs in a
group.

The model also allows interpolation over a range of values
for certain properties, in particular, users can apply color
interpolating schemes and gradual distance offsets. This is done
with the help of the resource’s property interpolate. If the
JSONPath query returns a one dimensional array, the schema
is applied to its elements. If the query produces a higher-
dimensional array, the schema is applied to all one-dimensional
splices of the array. The fragment in Listing 4 colors three layers
of every lyph in a group using the shades of blue, starting from
the opposite side of the color array with 25% offset (to exclude
very light or very dark shades).

Listing 4 | Example of assign and interpolate statements

"assign": {

"path": "$.lyphs[*]",

"value": {"color": "#CCC"}

},

"interpolate": {

"path": "$.lyphs[*].layers",

"color": {"scheme": "interpolateBlues",

"offset": 0.25, "length": 3, "reversed": true}

}

Figure 8 visualizes the effects of the aforementioned
statements applied to the CNS lyphs.

The property external of each resource can be used to annotate
this resource with external data. The External class provides fields
uri and type to keep universal resource identifiers and classify the
references, respectively. Among the common data sources we use

Frontiers in Neuroinformatics | www.frontiersin.org 7 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

in ApiNATOMY models at different scales are the Foundational
Model of Anatomy (FMA) (Rosse and Mejino, 2008), Uber-
anatomy ontology (UBERON) (Mungall et al., 2012), Gene
Ontology (GO) (Gaudet et al., 2017), Cell Ontology (CL) (Diehl
et al., 2016), Chemical Entities of Biological Interest (ChEBI)
ontology (deMatos et al., 2010), and PubMed database of medical
publications (National Center for Biotechnology Information).

The VisualResource class enlists properties common for all
visual resources. Among the basic properties of this class is color.
Relationship fields clones and cloneOf may link resources which
represent the same semantic concept but must appear in two or
more places of the process graph.

3.2. Materials and Lyphs
Material and Lyph are two key concepts in the ApiNATOMY
framework. Material is more suitable for modeling chemical
elements or substances as an aggregate whole while Lyph
defines topological organization (i.e., layers of tissue material
constituting a body conduit vessel) or elements with an emphasis
on a shape. The same substance sometimes can be modeled both
as amaterial and as a lyph. Listing 5models blood both as regional
and constituent parts of the “Right Ventricle” heart chamber
model.

Listing 5 | Defining materials and lyphs

"materials": [

{"id": "m1", "name": "Blood",

"external": ["FMA:9670"]}

],

"lyphs": [

{"id": "l1", "name": "Blood"},

{"id": "l2", "name": "Endocardium"},

{"id": "l3", "name": "Myocardium"},

{"id": "l4", "name": "Right Ventricle",

"external": ["FMA:7098"],

"materials": ["m1"],

"layers": ["l1", "l2", "l3"]}

]

Technically, lyph is subtype of material with spatial
constraints. Both materials and lyphs can contain othermaterials
or be included into hosting material via a related property
materialIn. A material can also be transported by a channel
(special type of a process) when its property transportedBy is set
up.

3.3. Shapes, Borders, Lyphs, and Regions
A shape is an abstract concept that defines properties and
relationships shared by the ApINATOMY resources for modeling
physiology compartments, namely, lyphs, and regions. The
property internalNodes accumulates nodes positioned on a shape.
Such nodes are projected to the shape’s surface and positioned
to stay within boundaries of the shape (e.g., by attracting to
its center). The property internalLyphs is used to define the
inner content of a shape, i.e., neurons within the neural system
parts. The related property, internalIn, indicates a shape (lyph
or region) the given node or lyph belongs to. The hostedLyphs
property is similar to the internalLyphs but uses a different layout
method: hosted lyphs get projected on the container lyph plane
and forced to stay within its boundaries.

FIGURE 9 | Lyph’s border.

An important part of the shape abstraction is its border (see
Figure 9). The shape’s border is a resource with its own identifier,
name, and external annotations. It refers to the hosting shape via
its property host while the shape can access it via its border field.
We auto-generate borders for lyphs and regions in the model and
merge inline objects defining border content within the hosting
shape with the generated resources.

The lyph’s border is closely related to its topology. The topology
value TUBE represents a conduit with two open ends. The values
of BAG- and BAG+ represent a conduit with one closed end,
where − and + represent the polarity of the closed border.
Finally, the topology value CYST represents a conduit with both
closed ends.

In the model viewer, lyphs are depicted as 2d rectangles either
with straight or rounded corners, where the straight corners
correspond to open-ended radial borders and rounded corners
represent the close-ended radial borders (see Figure 10A). The
lyph’s axis of rotation is normally aligned with the edge conveyed
by a lyph or, in the case of layer lyphs, with its hosting lyph.
All borders can be accessed via the lyph border property borders
which expects an array of four objects. Listing 6 shows an excerpt
from the BG model (see section 5 for more details) which defines
a lyph with content (node) on its second radial border. If a lyph
border conveys processes or contains nodes as in this case, we
associate a Link resource with the lyph’s border segment.

Listing 6 | Lyph’s border content

"lyphs": [

{"id": "gpi", "name": "GPi", "border":

{"borders": [{}, {}, {},

{"hostedNodes": ["axonal_node3"]}]}

},...

]

The topological organization of a lyph is defined by its layers.
A layer is a lyph that represents a tissue within another tissue and
rotates around the axis of its hosting lyph, to which it refers via its
layerIn field. By default, all layers get the equal display area within
the main lyph. The percentage of the display area a layer occupies
can be regulated via its layerWidth parameter.

Frontiers in Neuroinformatics | www.frontiersin.org 8 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

FIGURE 10 | (A, B) Lyph topology types: TUBE, BAG, and CYST.

Often a model requires many lyphs with the same layer
structure. To simplify the definition of such lyphs, we introduced
a notion of the lyph template. A lyph with a Boolean property
isTemplate set to true serves as a prototype for all lyphs defined
as its subtypes. Equivalently, lyphs inherit their layers and other
transferable properties from their supertype. The hierarchy of
lyph derivation via subtyping or supertyping relationships can
be traced with the help of the relationship graph introduced in
section 4.

The center of the lyph’s 1st longitudinal border is placed to the
center of the link it conveys. When lyph is a layer in another lyph,
its axis of rotation depends on the hosting lyph. Some additional
properties exist to set the angle of rotation of a 2d lyph around its
axis.

The lyph’s dimensions depend on the length of the conveyed
link and can be controlled via the scale parameter. The ultimate
visual dimensions of a lyph object are provided by its width
and height properties while thickness and length refer to the
anatomical dimensions of the physiological resource it models (a
range of values in negative powers of 10, e.g., [10−6..10−4]).

The Boolean property create3d indicates whether the editor
should generate a 3d object for the given lyph. The 3d view
gives the most accurate representation of a lyph but makes it
difficult to analyze its inner content. Figure 10 shows 2d and 3d
visualizations of lyph topological types.

Lyphs also contain properties linking them to composite
assemblies, e.g., inCoalescences refers to coalescence assemblies
that include a given lyph, channels lists channel assemblies
housed by the current lyph, bundles, and bundlesTrees establishes
relationships with links and trees passing through the lyph.

Regions are flat auxiliary shapes which provide context to
the model. Region internal content is similar to the content of
a lyph. Regions are static and their positions are given in 2d
coordinates. The border of the region can include any number
of segments (links), unlike lyphs which always have four sides.
Examples of models with regions are available in our project’s test
directory (Kokash).

3.4. Nodes and Links
In the ApiNATOMY graph, nodes (vertices) connect links
(edges) which are conveyed by lyphs (edge labels). Each node
refers to the links it joins via its fields sourceOf and targetOf.

The positions of nodes in the ApiNATOMY models in most
cases cannot be explicitly set by model authors due to the
absence of such data. Hence, to produce an intuitively clear
uncluttered graph visualization, we rely on our custom model
rendering algorithm. The algorithm is based on the force-
directed layout in which some node positions are constrained by
entity relationships.

Node definition provides parameters to control its appearance
and/or position in the force-directed environment. The radius
of the sphere representing the node in the model visualization
is computed based on the value of the node’s val property. A
number of properties such as charge and collide allow users to
tune the forces applied to a specific node. Node positions can be
controlled via the layout property. The value of each coordinate
is expected to be in the range [−100..100] and represents the
percentage of the length from the center of coordinates to the
end of the plot along the respective axis. The actual coordinates
are then computed depending on a selected scaling factor.
Coordinates of nodes marked fixed are rigidly set to match the
layout values. For other types of nodes, the layout only defines
the position the node is attracted to while its actual position (x,
y, z) may be influenced by other factors, i.e., global forces in the
graph, link rigidity, positions of other nodes, and so on.

It is important to retain the containment and spacial adjacency
relationships among resources. Several properties are used to
position nodes on a link, within a lyph or on its surface. It is also
possible to define the position of a node based on the positions of
other nodes. For example, to place a node on a link, we associate
the link with the node via the node’s property hostedBy. The
property offset can be used to indicate the offset in percentage
from the start of the link. For example, the node definition in
Listing 7 instructs the tool to position the node nLR at the quarter
of the length of the link LR.

Listing 7 | Node on a link

"nodes": [

{"id": "nLR", "hostedBy": "LR", "offset": 0.25},...

]

An alternative way to get the same result is to include the node
to the hostedNodes property of the link.

Links connect graph nodes and perform a number of
functions in the ApiNATOMY framework, most notably, they
model process flow and serve as rotational axes to position
and scale conveying lyphs. By default, all links are drawn as
straight lines, this corresponds to the geometry property with

Frontiers in Neuroinformatics | www.frontiersin.org 9 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

value link. To apply another visualization method, a user
should explicitly set the link’s geometry to a desired value.
For example semicircle produces a spline that resembles
a semicircle, rectangle draws splines resembling a semi-
square connector with rounded corners, spline produces link
connectors which smoothly join preceding and following links,
and path draws graph edges bundled together by the edge
bundling algorithm (Holten and van Wijk, 2009). Auxiliary
invisible links are not displayed in the process graph but
serve as axes for the lyphs they convey. In certain cases, we
automatically create invisible links (e.g., when an internal lyph is
not conveyed by any existing link, when lyph’s border segment
hosts nodes). A link, regardless of its geometry, can be drawn
using dashed or thick lines.

The property length defines the desired distance between the
link’s ends as percentage of the maximal allowed length. The
force pushes the link’s source and target nodes together or apart
according to the desired distance.Collapsible links are links which
appear only if their ends are constrained by the visible entities,
e.g., to connect node on lyph borders. If this is not the case, the
source and target nodes of the collapsible link are attracted to
each other until they collide to look like a single node.

3.5. Coalescence
A coalescence creates a fusion situation where two or more
lyphs are treated as being a single entity. There are two types
of coalescence, both describing material fusion. In both cases,
coalescence can only occur between lyphs that have exactly the
same material composition:

- Connecting coalescence represents a “sideways” connection
between two or more lyphs such that their outermost layer is
shared between them (as shown in Figures 4, 5, 11A).

- Embedding coalescence (Figure 11B) represents placing of a
contained lyph into a container lyph such that the outer layer
of the contained lyph merges into the container lyph as a
means to globally associate measurements, that are local to the
contained lyph, with the container lyph.

The Coalescence class introduces fields topology and lyphs.
These fields are used to specify the type of the coalescence,
CONNECTING or EMBEDDING, and the coalescing lyphs,
respectively. In connecting coalescence, outermost layers of
coalescing lyphs appear to share the same visual object. In
embedded coalescence, the outermost layers of coalescing lyphs
blend with the corresponding layers of the housing lyph.

Although semantically the lyph order in the coalescence
definition is not important, in the viewer, the first lyph is treated
in a special way. While connecting the graphical depictions of
coalescing lyphs, all subsequent lyphs are pushed by the force-
directed layout to approach the master lyph and realign their
outermost layers to match the outermost layer of the first lyph. In
the case of the embedded coalescence, the first lyph is the housing
lyph—it contains the other lyphs in the coalescence.

If a coalescence resource is defined on abstract lyphs (lyph
templates), it is considered abstract and works as a template to
generate coalescences among lyphs that inherit the abstract lyphs.

FIGURE 11 | Visualization of coalescing lyphs. (A) Connecting coalescence.

(B) Embedding coalescence.

3.6. Groups and Graphs
The Group class defines a subset of entities in an ApiNATOMY
model which have a common semantic meaning and/or a distinct
set of visual characteristics. A group includes lists of resources of
any type via the dedicated fields: nodes for resources of typeNode,
links for resources of type Link, and so on. Groups can include
nested subgroups and refer to the resources defined anywhere in
the model. For example, Listing 8 shows a group of blood vessels
that consists of two subgroups: (a) arterial and (b) venous.

Listing 8 | Group composition

"groups": [

{"id": "omega", "name": "Blood vessels",

"groups": ["arterial", "venous"]},

{"id": "arterial", "name": "Arterial",

"nodes": ["nLR00", "nLR01", "nLR02",

"nLR03", "nLR04", "nLR05"],

"links": ["LR00", "LR01", "LR02",

"LR03", "LR04"]},

{"id": "venous", "name": "Venous",

"nodes": ["nLR10", "nLR11", "nLR12", "nLR13",

"nLR14", "nLR15", "nLR16"],

"links": ["LR10", "LR11", "LR12",

"LR13", "LR14", "LR15"]}

]

The model viewer allows users to inspect each group in
isolation or analyze the interaction among selected combinations
of resources without overloading the view with unnecessary
information.

The Graph class describes the top-level group that, in addition
to all the group fields, contains config field and model meta-data
such as created and lastUpdated dates, author and version. The
config is not part of the semantic physiology model but it can be
used to define user preferences regarding the visualization of a

Frontiers in Neuroinformatics | www.frontiersin.org 10 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

given model, e.g., which groups to display by default, whether to
use resource identifiers or names as labels in the graph, etc.

3.7. Group Templates
A group template represents an abstract class to model group
generation patterns. The generated group is accessible from
the template via its property group. Currently, ApiNATOMY
supports five types of group templates requested by the modeling
experts. In this section, we describe two of them: Tree and
Channel.

The Tree group template allows users to specify a root of a tree
via an optional property root. If the root node is not specified,
it is either automatically generated or assigned to coincide with
the source node of a link that represents the first level of the
tree. We define the level of a tree branch as the number of edges
between the target node of the link and the root. A user may
specify the required number of levels in a tree via its property
numLevels. Given the desired number of levels, the model viewer
can generate a group resource to represent the tree. If the property
lyphTemplate is set up, the generated links for each tree level
conveying lyphs which are sub-types of the lyph template.

Alternatively, the tree branches can be specified, partially
or fully, via the property levels which expects an array of
(partial) link definitions corresponding to the tree levels. If this
array contains an empty object, the missing tree level branch
is auto-generated. If instead it points to an existing link, the
corresponding link is joint to become a branch in the tree. If the
source, target, or both ends of the link resource are not specified,
they are auto-generated. Otherwise, it is expected that incident
links (connected tree branches) share a common node; the tool
will issue a warning if this is not the case.

Listing 9 demonstrates how to define trees using both
lyphTemplate and levels properties. A combination of both
approaches may help modelers to reduce an effort while
specifying multi-level trees where the majority of the branches
consist of the same lyphs (i.e., involve the same tissue structures)
while others are characterized by unique features that need to be
modeled individually.

Listing 9 | Tree template examples

"trees": [

{"id" : "AOT", "name" : "Axonal Omega Tree",

"root" : "a", "numLevels" : 5,

"lyphTemplate": "neuronBag"},

{"id" : "UOT", "name" : "Urinary Omega Tree",

"root" : "b",

"levels" : ["lnk1", "lnk2",..., "lnk21"],

"branchingFactors": [1, 1, 2, 1, 1, 1, 3, 3, 20,

8, 9, 8, 9, 1, 1,...]}

]

The generated sub-graphs for tree templates defined above
would look like liner chains of enumerated links.We refer to such
trees as canonical, meaning that they define the basic structure
necessary to generate a branching formation. The branching can
happen at each level of the canonical tree, and the number of
branches per level can be specified in the branchingFactors array.
Furthermore, the property numInstances contains a number
of branching tree instances produced from a canonical tree

TABLE 1 | Omega tree lyph topology.

Lyph template Radial borders Tree Level 1 Levels 2..N-1 Level N

TUBE Both open TUBE TUBE TUBE TUBE

BAG− 1st closed BAG− BAG− TUBE TUBE

BAG+ 2nd closed BAG+ TUBE TUBE BAG+

CYST Both closed CYST BAG− TUBE BAG+

FIGURE 12 | Deriving topology of tree level conveying lyphs from lyph

template. (A) BAG, (B) CYST.

specification. The generated tree instances are available via the
read-only property instances in the generated model.

Generally, lyphs originating from a lyph template inherit its
topology. However, the lyphs conveying the tree edges work as a
single conduit with topological borders at the start and the end
levels (root and leaves) of the tree compliant with the borders
of the lyph template. The topology of lyphs on tree edges is
defined as shown inTable 1. Figure 12 illustrates the difference in
generated trees from lyph templates with the same structure but
different topology: (a) template of type BAG+ results into a tree
with the BAG+ lyph at the last level. (b) template of type CYST
translates into a tree with the lyphs of type BAG- and BAG+ on
the first and last tree levels.

The Channel group template provides fields to define a
complex specialized assembly to model membrane channels
incorporated into given housing lyphs. To create membrane
channel components, a model author has to provide:

- an identifier for a channel (and, optionally, other basic
resource properties);

- identifiers of housing lyphs. A housing lyph is a lyph of at least
three layers representing a cell or an organelle such that the

Frontiers in Neuroinformatics | www.frontiersin.org 11 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

FIGURE 13 | Housed membrane channel.

middle layer of this lyph is a membrane (e.g., Sarcoplasmic
Reticulum);

- the material payload conveyed by the diffusive edge.

Listing 10 shows an example of the channel template definition:
a membrane channel SERCA exchanger housed by lyphs derived
from the lyph template Leukocyte (see Figure 4).

Listing 10 | Example of a channel template

"channels": [{

"id": "mc2", "name": "SERCA",

"external": ["PR:P16615"],

"materials": ["51"], "housingLyphs": ["63"]}

],

"materials": [{

"id": "51", "name": "Calcium ion",

"external": ["CHEBI:29108"]}

],

"lyphs": [{

"id": "63", "name": "Leukocyte",

"external": ["CL_0000738"], "isTemplate": true}

]

The identifiers of the housing lyphs and materials conveyed
by the diffusive edges are specified in the resource properties
housingLyphs and materials, respectively. A lyph refers to the
channel it houses via its property channels.

Given these data, the model generator creates three tube lyphs
representing the three segments of the membrane channel (MC):
internal, membranous and external. Each of the MC segments
consists of three layers: innermost (content), middle (wall), and
outermost (the same material as the lyph that contains it).

The assembly generated given such a template consists of at
least 20 resources: 4 nodes, 3 links, 3 lyphs with 3 layers each, 3
embedding coalescences, and a group encompassing all the above
(see Figure 13). The three MC segments are housed respectively
in the three layers of the housing lyph. We automatically create
constraints to position channel nodes on the borders of the
layers of the housing lyph, so in practice several auxiliary border
resources are created. If the housing lyph is a template, these
resources are replicated for each channel instance housed by a
lyph instance originating from the lyph template.

The third layer of each MC segment undergoes an embedding
coalescence with the layer of the housing lyph. Each of the three
MC segments conveys a diffusive edge such that both nodes of the
edge conveyed by the MC segment in the second (membranous)
layer are shared by the other two diffusive edges. Diffusive edges
are associated with the links conveying the membrane channels

FIGURE 14 | Model generation pipeline.

(the link’s conveyingType is set to DIFFUSIVE) and the material
in the channel object is copied to the conveyingMaterials property
of the link.

4. MODEL GENERATION

ApiNATOMY users describe key elements of a physiological
model, their relationships, and layout constraints in an input
file. These models may be incomplete or incorrect (i.e., contain
typos, undefined references, unexpected values, etc.). We use
the model schema and custom validation rules to discover
potential problems in the input model prior to its visualization.
If no critical errors are found, the model viewer proceeds with
expanding templates, generating missing resources, and drawing
the model graph. Here we describe the key stages of model
generation in order to prepare it for visualization. A number
of resource relationships are established during this process to
enable accessibility of model objects.

The overall model processing pipeline is presented in
Figure 14. The list below explains model transformation actions
at each step:

A: Replace template references. Many resources that domain
experts need for modeling are abstract assemblies of
physiology subsystems (materials, cells, neuron pathways).
It is convenient to specify such resources once and place
them to the context they are used in as many times as
needed. On the other hand, the ApiNATOMYmodel viewer
creates a visual artifact for each unique visual resource (lyph,
node, link) in the model. Hence, we have to replace the
abstract templates with resource instances that inherit the
majority of their characteristics from the templates. The
tool identifies references to materials and lyph templates
in all the fields that are expected to contain lyphs as
building parts, automatically creates lyph instances with
necessary characteristics and replaces abstract references
with instance references. All derived or cloned resources
within this step can be overviewed with the help of the
relationship graph (see Figure 15).

Frontiers in Neuroinformatics | www.frontiersin.org 12 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

B: Process assembly templates. If composite assembly
templates such as trees or channels are present in the
model, we generate corresponding graph structures and
include all created resources (nodes, links, lyphs, etc.) to the
main graph (or a parent group containing nested models).
The procedure replicates lyph templates to all generated
edges (links) and assigns their topology to define overall
boundaries of the conduits. At the end of this stage, the
lyph template is linked to the newly created blank lyphs.

C: Replicate lyph templates. At the next step, we process lyph
templates: all subtypes of a lyph template inherit its layers,
color, size-related properties, namely, scale, height, width,
length, and thickness (unless they are overridden for
the lyphs individually), external annotations, constituent
materials, etc. Visual resources such as layers of lyph
instances originating from lyph template layers are linked
together via the cloneOf property.

D: Create object graph. After auto-creating resources
originating from group and lyph templates, the model’s
graph structure is almost ready to be visualized. Hence,
we create ApiNATOMY model objects and replace string
identifiers with the corresponding object references. Lyph
and region borders are auto-created and merged with
user-defined border content. Missing links and nodes for
internal lyphs are auto-created. Finally, we perform group
inclusion analysis and include nested group resources into
parent groups.

E: Auto-generate missing resources. As the result of the
previous step, we obtain a complete map of all model
resources regardless of where they were defined, i.e., all
references can be resolved. If the tool detected IDs without
corresponding resource definitions, such objects are auto-
generated. A user can detect which resources were created
by checking their property generated (it will be set to true)
for such objects) and/or inspecting the logs.

F: Add bidirectional relationships. In a bidirectional
relationship, each entity has a relationship field or
property that refers to the other entity. To be able to fully
connect related resources, we rely on the model schema to
supplement resource definitions with missing fields.

G: Customize selected resources. At the final stage, we perform
model customization via the JSONPath queries in assign and
interpolate properties. This is done in two steps. First, we
create dynamic relationships by replacing IDs in the fields
with object references (only IDs of known objects should
be used in the dynamic assign expressions, unresolved IDs
will be ignored). Second, we complete model customization
by assigning qualitative properties to resources selected by
JSONPath queries for every resource in the model with the
assign or interpolate properties.

A number of critical and non-critical errors can be detected
during the model generation process. The viewer has been
designed to be fault-tolerant, so it attempts to display the (correct

part of the) model and exposes the log messages with all detected
errors and warnings for user inspection. The generated model
and the resource map (a list of all resources in the model, both
user-defined and auto-generated) in the JSON format can be
exported and integrated with external knowledge bases.

The implementation of the model generation steps listed
above is completely abstracted from the semantic meaning of the
resource classes. The implication of this is that the ApiNATOMY
model viewer can easily evolve—one can define new types of
resources or introduce new relationships simply by adding the
corresponding definition to the model schema, and, if needed,
write code to draw a visual object representing the new concept.

The relationship graph (see Figure 15) is an auxiliary structure
that allows users to trace the resource derivation process
described above and inspect the relationships among the key
resources in the model. For example, this structure can be used to
find lyphs that sub-type a given abstract lyph or include a given
material. All resources in the relationship graph are represented
by graph nodes (visualized using colored shapes according to
the type of the resource) while their relationships correspond to
the graph links (visualized using colored lines where each color
stands for a certain type of the relationship). The view will further
evolve to become an interactive instrument for model validation,
with the ability to explore various relationships among selected
resources.

5. DISPLAY LAYOUT

The Basal Ganglia (BG) resource graph (illustrated in Figure 5)
includes four fields: nodes, links, lyphs, and trees (see Listing 11).
The context lyphs, Putamen, GPe, and GPi, are modeled as
internal lyphs of the BG lyph. This implies that they are
positioned on a grid within their container lyph, and the
corresponding parameter, internalLyphColumns is set to indicate
that the grid contains three columns. The number of rows in
such a grid depends on the number of internal lyphs within
the container. Other space allocation methods for internal lyphs
may be employed. In particular, spatial constraint-preserving
template-based treemaps (Kokash et al., 2014) appear to be
particularly useful to draw internal lyphs of various size with
adjacency constraints. For brevity, we skip the definition of three
lyphs modeling layers of a neuron and show definition of only
one BG’s internal lyph, GPi. The links to convey internal lyphs as
well as their source and target nodes are auto-generated.

Listing 11 | JSON specification of Basal Ganglia

"nodes": [

{"id": "a",

"layout": {"x": -100, "y": 100, "z": 0}},

{"id": "b",

"layout": {"x": 100, "y": 100, "z": 0}}

],

"links": [

{"id": "main", "source": "a", "target": "b",

"length": 100, "geometry": "invisible",

"conveyingLyph": "bg"},

{"id": "hl-lnk", "source": "n1", "target": "n2",

"conveyingLyph": "hillock"}

],

"lyphs": [

Frontiers in Neuroinformatics | www.frontiersin.org 13 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

FIGURE 15 | Relationship graph.

{"id": "bg", "name": "Basal Ganglia",

"color : "#d1d2d4", "internalLyphColumns": 3,

"internalLyphs": ["putamen", "gpe", "gpi"]},

{"id": "gpi", "name": "GPi", "color": "#939598",

"height": 30,

"border": {"borders": [{}, {}, {},

{"hostedNodes": ["axonal_node3"]}

]},

"hostedLyphs": ["axonal_lyph4",

"axonal_lyph5"]}},

{"id": "neuronBag", "isTemplate": true,

"topology": "BAG", "color": "#ccc",

"scale": {"width": 80, "height": 80},

"layers": ["cytosol", "plasma", "fluid"]},

{"id": "hillock", "name": "Hillock",

"supertype": "neuronBag", "topology": "TUBE"}

],

"trees": [

{"id": "dendrite", "name": "Dendrite omega tree",

"root": "n1", "numLevels": 1,

"lyphTemplate": "neuronBag"},

{"id": "axonal", "name": "Axonal omega tree",

"root": "n2", "numLevels": 5,

"lyphTemplate": "neuronBag"}

]

The trees property is an array with two objects defining
the dendrite 1-level tree and the axonal 5-level trees. The tree
root nodes are named n1 and n2, these names are explicitly
given while defining the conveying link for the axon hillock. By
referencing them in the tree model, we indicate that the roots of
the axonal and dendrite trees coincide with the ends of the
hillock.

All auto-generated ApiNATOMY resources are assigned
identifiers which can be used to integrate such resources to the
rest of the model. It is useful to know that identifies for auto-
generated tree parts are formed using the following patterns:

1. $tree.id_node$index,
2. $tree.id_lnk$index
3. $tree.id_lyph$index,

where $tree.id is the identifier of the tree, and $index refers to a
tree level. Keeping in mind these patterns, we can position the
axonal tree node (axonal_node3) on the 2nd radial border
and project two axonal tree level lyphs (axonal_lyph4 and
axonal_lyph5) to the surface of the GPi lyph via the border’s
property hostedNodes and the lyph’s property hostedLyphs.

The lyphTemplate field refers to an abstract lyph neuronBag
which defines the structure of lyphs conveyed by the trees. Due
to this setting, all generated lyphs conveyed by tree edges inherit
3 layers each and occupy the square area with a side length equal
to 80% of their axis length. Note that the hillock lyph also
derives its structure from the neuronBag template, as indicated
by its property supertype. The lyphs conveyed by the tree edges
are seen as a single conduit with topological borders at the start
and the end levels (root and leaves) compliant with the borders
of the lyph template. In the BG model, the lyph template is of
type BAG, hence, the conveying lyphs at the end levels are also of
the type BAG. The topology of the hillock is explicitly defined as
TUBE to override the inherited topology from the template.

With the conceptual model and the associated post-processing
pipeline presented in this paper we were able to produce an
elaborate rendering from a minimalist definition. The generated
visual layouts in 2d and 3d are shown in Figure 16. The input
model of the BG defined by our physiology expert consists of
15 JSON objects with 3–6 properties each. The generated model
used for the visualization consists of 132 JSON objects with 10–20
fields each.

Listing 12 shows an excerpt of the Urinary Tree (UoT) model
specification. For space reasons, we omit most of the objects
defining visual resources. The listing emphasizes the use of nested
groups to encompass the subsystems within the main graph
and annotate them with suitable ontology terms: “nephron”
and “loop of Henle” groups are linked to the corresponding
UBERON (Mungall et al., 2012) terms. Nested groups enable
complex model assemblies from existing ApiNATOMY models.

Frontiers in Neuroinformatics | www.frontiersin.org 14 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

FIGURE 16 | Generated ApiNATOMY visualization of BG. (A) 2d, (B) 3d.

They can also be toggled on and off in the model viewer to allow
users focusing on a certain part of the model.

For illustration purposes, we define the assign property to
customize the appearance of nodes: with the help of this
statement, the color of all nodes in the model is set to red. The
corresponding visual renderings of the UOT canonical tree in 2d
and 3d are shown in Figure 17. Figure 18, a snapshot of the UOT
instance with branching in levels 3 and 7, shows a small subset of
the 108 visual elements of the fully branched urinary tree.

Listing 12 | JSON specification of Urinary Omega Tree

"lyphs": [

{"id": "IU", "name": "Intravesical urethra",

"external": ["UBERON:0000057"],

"topology": "TUBE",

"layers": ["URN", "Mcs", "Ms1"],

"length": {"min": 2, "max": 2},

"thickness": {"min": 3, "max": 3}},..

],

"materials": [

{"id": "URN", "name": "Urine",

"external": ["UBERON:0001088"],

"color": "#f9ed32"},...

],...

"groups": [

{"id": "nephron", "name": "Nephron",

"external": ["UBERON:0001285"],

"nodes": ["uot-m", "uot-n", "uot-o", "uot-p",

"uot-q", "uot-r", "uot-s", "uot-t",

"uot-u", "uot-v"],

"links": ["uot-lnk13", "uot-lnk14", "uot-lnk15",

"uot-lnk16", "uot-lnk17", "uot-lnk18",

"uot-lnk19", "uot-lnk20", "uot-lnk21"],

"lyphs": ["DCT", "TAL", "DST", "ATL", "DTL",

"PST", "PCT", "PBC", "VBC"]},

FIGURE 17 | Generated ApiNATOMY visualization of UOT. (A) 2d, (B) 3d.

FIGURE 18 | Fragment of an UOT instance.

{"id": "henle", "name": "Loop of Henle",

"external": ["UBERON:0001288"],

"nodes": ["uot-n", "uot-o", "uot-p", "uot-q",

"uot-r"],

"links": ["uot-lnk14", "uot-lnk15", "uot-lnk16",

"uot-lnk17"],

"lyphs": ["TAL", "DST", "ATL", "DTL"]}

],

"assign": [

{"path": "$.nodes[*]",

"value": {"color": "red"}}]

6. DISCUSSION

The ApiNATOMY methodology offers a ubiquitous approach
to multi-scale route modeling by offering abstractions and
structural patterns for process description in biomedicine. The
purpose of the presented ApiNATOMY KR model is to improve
cross-scale data integration, navigation, and mapping.

The biomedical community has recognized the need for
technical integration of existing resources into multi-scale
interoperability platforms. Such platforms (Eissing et al., 2011;
Sarwar et al., 2019) enable modeling and analysis of physiological
phenomena, information discovery, simulation of disease

Frontiers in Neuroinformatics | www.frontiersin.org 15 February 2021 | Volume 15 | Article 560050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

progression in virtual organisms and their responses to stimuli.
An in-depth review of approaches on multiscale modeling of
biological systems, quantitative biomedical engineeringmethods,
and current challenges in the field can be found in Walpole
et al. (2013). Various perspectives and views on physiological
systems modeling, simulation, and control are also discussed
in Michmizos and Nikita (2012).

The aforementioned tools mainly focus on mathematical
aspects of modeling while semantic and visual aspects are
considered secondary. In contrast, ApiNATOMYprovidesmeans
to define elaborate structural (tissue composition, assemblies,
arborizations) and interaction patterns (coalescing assemblies,
adjacency, connectivity) as well as to automatically generate
visual schematics which conform to the specified constraints.

On the KM side, our work is closely linked to biological
ontologies (Lambrix et al., 2007) and biological KM (Antezana
et al., 2009). Ontologies are widely employed in systemsmedicine
and systems biology to define the basic terms and relations
and provide the basis for interoperability between systems as
well as for search, integration and exchange of biomedical data.
Dedicated domain-agnostic languages for specifying ontologies
such as OWL Web Ontology Language (OWL) (and related
languages like the Resource Description Framework Schema,
RDF) became widely used (Bodenreider and Stevens, 2006). In
this context, there is ongoing work on translating ApiNATOMY
schema into RDF and OWL to enable integration of generated
physiology models with SciCrunch (Grethe et al., 2014).

Directly describing input models of physiology routes in the
ontological formats seems very in-practical and time-consuming.
User-friendly versions of OWL such as Manchester syntax (W3C
Working Group) make the textual inspection and editing of
ontologies easier and could potentially be used by advanced
modelers to specify physiology models. However, on the one
hand, these languages focus on the level of detail not needed
in our application. On the other hand, they are rather complex,
not widely known, and require specialized expertise. Finally, we
would need to translate such specifications into suitable format
for data exchange and in-browser visualization.

For the latter reason, we opted for JSON as a format for user-
level model definition. It is a generic data format that itself only
defines how data is stored on a very basic level, it is simple
and requires minimum overhead in processing. Among other
essential technologies widely used in web applications are three
data formats built on JSON: GraphQL (GraphQL Foundation),
JSON-LD (W3C JSON-LD Working Group) [(JSON for Linking
Data), and JSON Schema (IETF Working Group)]. GraphQL is
a data query language that uses JSON both for data requests
and responses. Using GraphQL, one can shape a form of JSON
request, expecting to get data back in the exact same format.
GraphQL is an alternative for a RESTful API and is used largely
for data fetching in web applications. JSON-LD adds meaning to
JSON documents. Using this data format, one can enrich the data
in JSON documents with metadata reflecting the semantics of the
content.

Graphical visualization remains an important enabler in
many practical tasks related to bio-medical modeling. Numerous
visualizationmethods for ontologies have been developed (Dudás̆
et al., 2018). Most of these approaches are designed to display

given structures and navigate the knowledge graphs, paying little
attention to the process of acquisition and management of the
data. Consequently, graphical modeling tools are rarely used for
large-scale knowledge base populating or re-factoring. We tackle
this issue with provision of the notion of modeling templates
to instantly generate large sub-graphs. Modeling templates can
also be used to encapsulate specialized formats for anatomical
structure generation such as e.g., L-systems (Prusinkiewicz and
Lindenmayer, 1990).

7. CONCLUSIONS

In this paper, we presented the KR model for the ApiNATOMY
framework, a modeling methodology of multi-scale physiology
systems. We described the key modeling classes and illustrated
their use to model and visualize physiology structures.

While there are many well-structured formats to accurately
capture the semantic relationships among organs, cells, proteins,
etc., none of them are working across scale in a way
that enables automated generation of visual route schematics
reflecting entity interaction within a given context. With
ApiNATOMY KR model and KM toolset, we are able to model
and display structural information (e.g., show regional and
constitutional parts of various compartments, define material
composition), satisfy spatial constraints (i.e., position process
edges within compartments or their borders), automatically
generate resources to model complex assemblies (arborizations,
membrane channels), associate resources with various data from
ontological terms to computational models.

The ApiNATOMY KR has been designed to accommodate
frequent changes and updates. Model authors working in certain
areas of physiology may require modeling templates which allow
them to quickly describe recurring patterns in the system under
study. With the use of JSON for model definition and extended
JSON Schema for generating entity-relationship diagrams, we
succeeded to create a working prototype satisfying given system
requirements.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/open-physiology/open-
physiology-viewer.

AUTHOR CONTRIBUTIONS

BB designed a conceptual framework for the topological
and semantic assembly of multiscale physiology route maps.
The framework, called ApiNATOMY, consists of a knowledge
representation (KR) model and a set of knowledge management
(KM) tools. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was conducted under the auspices of the
Stimulating Peripheral Activity to Relieve Conditions

Frontiers in Neuroinformatics | www.frontiersin.org 16 February 2021 | Volume 15 | Article 560050

https://github.com/open-physiology/open-physiology-viewer
https://github.com/open-physiology/open-physiology-viewer
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kokash and de Bono Multi-Scale Physiology Route Modeling

(SPARC) program (RRID:SCR_017041) supported by the
NIH Common fund award numbers 1OT3OD025349
and K-CORE 1OT2OD030541. The content is solely the
responsibility of the authors and does not necessarily
represent the official views of the National Institutes
of Health.

ACKNOWLEDGMENTS

The publication has been prepared with the support of the
RUDNUniversity Program 5-100 and funded by RFBR according
to the research projects No. 12-34-56789 and No. 12-34-56789
(recipient NK, knowledge modeling and software design).

REFERENCES

Antezana, E., Kuiper, M., and Mironov, V. (2009). Biological knowledge
management: the emerging role of the Semantic Web technologies. Brief.
Bioinform. 10, 392–407. doi: 10.1093/bib/bbp024

Arp, R., Smith, B., and Spear, A. (2015). Building Ontologies With Basic Formal

Ontology. Cambridge, MA: MIT Press.
Bodenreider, O., and Stevens, R. (2006). Bio-ontologies: current trends and future

directions. Brief. Bioinform. 7, 256–274. doi: 10.1093/bib/bbl027
de Bono, B., Grenon, P., and Sammut, S. J. (2012). ApiNATOMY: a novel

toolkit for visualizing multiscale anatomy schematics with phenotype-related
information. Hum. Mutat. 33, 837–848. doi: 10.1002/humu.22065

de Bono, B., Safaei, S., Grenon, P., and Hunter, P. J. (2017). Meeting the multiscale
challenge: representing physiology processes over apinatomy circuits using
Bond graphs. Interface Focus 8, 1–13.

de Matos, P., Dekker, A., Ennis, M., Hastings, J., Haug, K., Turner, S.,
and Steinbeck, C. (2010). ChEBI: a chemistry ontology and database. J.

Cheminformatics 2(Suppl.):P6. doi: 10.1186/1758-2946-2-S1-P6
Diehl, A., Meehan, T., Bradford, Y. M., Brush, M. H., Dahdul, W. M.,

Dougall, D. S., et al. (2016). The cell ontology 2016: enhanced content,
modularization, and ontology interoperability. J. Biomed. Semant. 7:44.
doi: 10.1186/s13326-016-0088-7

Dudás̆, M., Lohmann, S., Svátek, V., and Pavlov, D. (2018). Ontology visualization
methods and tools: a survey of the state of the art. Knowl. Eng. Rev. 33:e10.
doi: 10.1017/S0269888918000073

Eissing, T., Kuepfer, L., Becker, C., Block, M. S., and et al. (2011). A computational
systems biology software platform for multiscale modeling and simulation:
integrating whole-body physiology, disease biology, and molecular reaction
networks. Front. Physiol. 2:4. doi: 10.3389/fphys.2011.00004

Gaudet, P., Škunca, N., Hu, J. C., and Dessimoz, C. (2017). Primer on the Gene

Ontology. New York, NY: Springer.
Gössner, S. JSONPath - XPath for JSON. Available online at: https://goessner.net/

articles/JsonPath/ (accessed February 04, 2021).
GraphQL Foundation. GraphQL.
Grethe, J., Bandrowski, A., Davis, B., Christopher, C., Gupta, A., Larson, S.,

et al. (2014). SciCrunch: a cooperative and collaborative data and resource
discovery platform for scientific communities. Front. Neuroinformatics 8:69.
doi: 10.3389/conf.fninf.2014.18.00069

Holten, D., and van Wijk, J. J. (2009). “Force-directed edge bundling for graph
visualization,” in Proceedings of the 11th Eurographics / IEEE - VGTCConference

on Visualization, EuroVis’09 (Wiley-Blackwell), 983–998.
IETF Working Group. JSON Schema.
Kokash, N., de Bono B., and J., K. (2014). “Template-based treemaps to

preserve spatial constraints,” in Proceedings of the International Conference on

Information Visualization Theory and Applications (IVAPP). (SciTePress).

Kokash, N.Open Physiology Viewer Source Code.Available online at: https://github.
com/open-physiology/open-physiology-viewer (accessed February 04, 2021).

Kokash, N. Open Physiology Viewer. Available online at: http://open-physiology-
viewer.surge.shAQQ21 (accessed February 04, 2021).

Lambrix, P., Tan, H., Jakoniene, V., and Strömbäck, L. (2007). Biological Ontologies.
Boston, MA: Springer US.

Michmizos, K., and Nikita, K. (2012). Physiological Systems Modeling, Simulation,

and Control. Hershey, PA: IGI Global.
Mungall, C., Torniai, C., V Gkoutos, G., Lewis, S., and Haendel, M. (2012).

Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13:R5.
doi: 10.1186/gb-2012-13-1-r5

National Center for Biotechnology Information. Pubmed. Available online at:
https://www.ncbi.nlm.nih.gov/pubmed/ (accessed February 04, 2021).

National Institutes of Health. Stimulating Peripheral Activity to Relieve Conditions

(SPARC). Available online at: https://commonfund.nih.gov/sparc (accessed
February 04, 2021).

Prusinkiewicz, P., and Lindenmayer, A. (1990). Graphical Modeling Using L-

Systems. New York, NY: Springer.
Rosse, C., and Mejino, J. (2008). The foundational model of anatomy ontology.

Anat. Ontol. Bioinform. 6, 59–117.
Sarwar, D. M., Kalbasi, R., Gennari, J. H., Carlson, B. E., Neal, M. L., Bono,

B. d., et al. (2019). Model annotation and discovery with the physiome
model repository. BMC Bioinformatics 20:457. doi: 10.1186/s12859-019-
2987-y

Snyder, M. P., Lin, S., Posgai, A., Atkinson, M., Regev, A., Rood, A.,
et al. (2019). Mapping the human body at cellular resolution – the
NIH Common Fund Human BioMolecular Atlas Program. arXiv e-prints.
doi: 10.1038/s41586-019-1629-x

W3C JSON-LDWorking Group. JSON for Linking Data.
W3C Working Group. OWL 2 Web Ontology Language Manchester Syntax, 2nd

Edn.
Walpole, J., Papin, J. A., and Peirce, S. M. (2013). Multiscale computational

models of complex biological systems. Annu. Rev. Biomed. Eng. 15, 137–154.
doi: 10.1146/annurev-bioeng-071811-150104

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Kokash and de Bono. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 17 February 2021 | Volume 15 | Article 560050

https://doi.org/10.1093/bib/bbp024
https://doi.org/10.1093/bib/bbl027
https://doi.org/10.1002/humu.22065
https://doi.org/10.1186/1758-2946-2-S1-P6
https://doi.org/10.1186/s13326-016-0088-7
https://doi.org/10.1017/S0269888918000073
https://doi.org/10.3389/fphys.2011.00004
https://goessner.net/articles/JsonPath/
https://goessner.net/articles/JsonPath/
https://doi.org/10.3389/conf.fninf.2014.18.00069
https://github.com/open-physiology/open-physiology-viewer
https://github.com/open-physiology/open-physiology-viewer
http://open-physiology-viewer.surge.sh
http://open-physiology-viewer.surge.sh
https://doi.org/10.1186/gb-2012-13-1-r5
https://www.ncbi.nlm.nih.gov/pubmed/
https://commonfund.nih.gov/sparc
https://doi.org/10.1186/s12859-019-2987-y
https://doi.org/10.1038/s41586-019-1629-x
https://doi.org/10.1146/annurev-bioeng-071811-150104
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Knowledge Representation for Multi-Scale Physiology Route Modeling
	1. Introduction
	2. Requirements and Use Cases
	3. Model Definition
	3.1. Resources, Visual Resources, and Externals
	3.2. Materials and Lyphs
	3.3. Shapes, Borders, Lyphs, and Regions
	3.4. Nodes and Links
	3.5. Coalescence
	3.6. Groups and Graphs
	3.7. Group Templates

	4. Model Generation
	5. Display Layout
	6. Discussion
	7. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

