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Abstract

The innate immune system recognizes virus infection and evokes antiviral responses which include producing type I
interferons (IFNs). The induction of IFN provides a crucial mechanism of antiviral defense by upregulating interferon-
stimulated genes (ISGs) that restrict viral replication. ISGs inhibit the replication of many viruses by acting at different steps of
their viral cycle. Specifically, IFN treatment prior to in vitro human immunodeficiency virus (HIV) infection stops or significantly
delays HIV-1 production indicating that potent inhibitory factors are generated. We report that HIV-1 infection of primary
human macrophages decreases tumor necrosis factor receptor-associated factor 6 (TRAF6) and virus-induced signaling
adaptor (VISA) expression, which are both components of the IFN signaling pathway controlling viral replication. Knocking
down the expression of TRAF6 in macrophages increased HIV-1 replication and augmented the expression of IRF7 but not IRF3.
Suppressing VISA had no impact on viral replication. Overexpression of IRF7 resulted in enhanced viral replication while
knocking down IRF7 expression in macrophages significantly reduced viral output. These findings are the first demonstration
that TRAF6 can regulate HIV-1 production and furthermore that expression of IRF7 promotes HIV-1 replication.
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Introduction

Infection by RNA viruses, such as HIV-1, initiates antiviral

innate immune responses by inducing type I IFNs [1,2]. The

treatment of primary human macrophages in vitro with type I IFN

prior to HIV-1 infection inhibits virus replication, indicating that

potent inhibitory factors are present [3,4]. However, pre-treatment

is not a viable clinical option and, ultimately, innate immune

responses in vivo fail to completely protect the human host even

though genes integral to host defense are expressed. This may be

due to the deregulation by HIV-1 of the signaling events necessary

for induction of an appropriate innate immune response mediated

by IFN or that HIV-1 replication outpaces these defenses. Type I

IFNs display diverse biological effects that restrict virus replication

by upregulating the expression of numerous genes (ISGs) [5–13].

For example, eukaryotic translation initiation factor 2-alpha kinase

(EIF2AK2, also known as PKR), oligoadenylate synthetase 1 (OAS1)

and interferon-stimulated gene 15 (ISG15) are known to be anti-HIV

ISGs [14–16]. However, HIV-1 circumvents the protective effects

of IFN and may even upregulate certain ISGs to its benefit [17].

Recently, Smith and collaborators identified ISGs expressed in

inguinal lymph nodes that were positively associated with HIV-1

viral replication [18]. Moreover, it has been shown that the level of

Type I IFN correlates with AIDS pathogenesis [19].

Production of IFN is induced by two major receptor systems for

detecting RNA viruses: the toll-like receptors (TLRs) and

cytoplasmic retinoic acid-inducible gene I (RIG-I)-like helicases

(RLHs) [20,21]. The adaptor molecule TRAF6 has been shown to

be involved in the TLR signaling pathway and activates IRF7,

IRF3 and nuclear factor kappa B (NFkB) [22,23]. Furthermore,

the RLH signaling pathway involves RNA helicase RIG-I and

melanoma differentiation associated protein-5 (MDA5) [24,25]

that interact with VISA through a caspase recruitment domain

(CARD/CARD) interaction [26–29]. VISA induces I-kappaB

kinase (IKKe and TANK binding kinase 1 (TBK1) which are

responsible for the activation of IFN-regulatory factors (IRF3 and

IRF7) through phosphorylation and consequently the production

of type 1 IFN [30,31]. IFN production is cell type and stimuli

specific and our aim was to ascertain the phenotype in the process

of HIV-1 infection of primary human macrophages.

The goal of this study was to identify factors belonging to the

interferon pathway that are altered during HIV-1 infection which

contribute to the modulation of viral replication. We identified

genes involved in the IFN signaling pathway that were impacted

by HIV-1 infection of human primary macrophages. Our model is

highly relevant to HIV-1 infection since macrophages are among

the first cell types infected during transmission of HIV-1. In

addition, macrophages infection by SIV is similar to that of CD4+
T cells in the acute phase of SIV infection [32]. We demonstrated

that IFNa2 pre-treated macrophages, infected or not with HIV-1,

modulated genes that were involved in the transcriptional

regulation of the IFN pathway. Among them, HIV-1 downreg-
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ulated TRAF6 and VISA gene expression. The downregulation of

TRAF6 in macrophages infected with HIV-1 resulted in enhanced

viral replication. Suppression of TRAF6 resulted in increased

expression of IRF7. Overexpression of IRF7 lead to enhanced

viral expression and suppression of IRF7 resulted in diminished

viral output. The characterization of antiviral innate immunity

genes modulated by HIV-1 infection provides a greater under-

standing of the mechanisms that may be used to combat the virus

and improve antiviral treatments.

Results

Type I IFNa2 inhibits HIV-1 replication in primary
macrophages

Kornbluth and collaborators demonstrated that macrophages

treated 18 hours with 1000 IU/ml of IFNa2 prior to HIV-1 NL4-

3BaLenv strain infection inhibited viral production [3]. To

ascertain the stage at which HIV-1 replication was curtailed in

the IFNa2 pre-treated macrophages, we monitored viral replica-

tion by quantifying TAT spliced message expression by qRT-PCR,

a marker of productive viral transcription distinct from incoming

viral genomic RNA. Treatment of infected cells with a non-

nucleoside reverse transcriptase inhibitor, efavirenz, blocked all

steps of infection after entry and prevented the appearance of TAT

spliced message, demonstrating specificity for new viral production

(data not shown). TAT spliced message could be detected as early as

2 hours post-infection, remained stable until 8 hours, and

increased over time thereafter in macrophages infected with

HIV-1. It is possible that initial TAT spliced detection could be due

to viral nucleic content that’s encapsidated within virions. Still,

kinetic was greatly delayed in IFNa2 pre-treated macrophages

infected with HIV-1, where initial detection was observed at

120 hours and subsequently increased over time (Fig. 1). Similarly,

HIV-1 p24 antigen could be detected in cellular supernatant in

untreated samples at day 7 after infection. For the purpose of this

study, we used the early TAT spliced message detection since the

HIV-1 p24 can only be detected from day 7 in our model.

To determine the effect of HIV-1 on the IFN response and

uncover potential effectors of HIV-1 replication, gene expression

analysis in HIV-infected and non-infected IFNa2-treated macro-

phages was compared. This strategy enabled the identification of

interferon-induced genes that were differentially modulated during

HIV-1 infection.

HIV-1 modulates TRAF6 and VISA gene expression in
IFNa2 pre-treated macrophages

To identify specific genes involved in Type I IFN signaling

modulated by HIV-1 infection, gene expression in IFNa2 pre-

treated macrophages infected or not with HIV-1 was measured at

2, 4, 8, and 24 hours post-infection using high-density oligonu-

cleotide microarrays (U133 Plus 2.0 arrays). Identification of the

most highly modulated genes was ascertained by applying the

short time series analysis framework of Shah and Corbeil with a

linear kernel [33]. The application of linear kernel in conjunction

with the framework results in a configuration that effectively scores

the genes based on averaged differences between consecutive

measurements scaled by their respective means, and this, over all

the time points in the two conditions tested. We then compared

the results obtained to untreated and uninfected control cultures.

The most significantly up or downregulated genes were then

identified as the ones obtaining extreme (respectively high and low)

scores. This analysis demonstrated significant differences in IFNa2

pre-treated macrophages infected with HIV-1 when compared to

the IFNa2 pre-treated macrophages only. Analysis of the top 500

differentially expressed genes (maximum scores of comparison)

between IFNa2 treated macrophages that were either infected or

not with HIV-1 through all time points was performed using

Figure 1. Type I IFNa2 inhibits HIV-1 replication in primary
macrophages. A) Gene expression of TAT spliced at 2, 4, 8, 24, 120 and
168 hours post-infection of macrophages. The macrophages were
incubated in the absence or presence of IFNa2 (1000 UI/ml for
18 hours). The expression level was calculated by qRT-PCR assessments
of triplicates and normalized to the level of 18 S. Results shown are a
representative of 2 independent experiments. A.U. corresponds to
arbitrary units. B) Cell-free culture supernatants were collected at 24, 72,
120 and 168 hours post-infection and analyzed for p24 content. Results
shown represent 2 combined independent experiments.
doi:10.1371/journal.pone.0028125.g001
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Database for Annotation, Visualization and Integrated Discovery

(DAVID) [34]. This analysis identified 32 significant functions.

Table 1 displays the ten most significant functional categories

associated with genes differentially modulated. The same gene can

be related to more than one function and the statistical significance

takes account of this fact. Examination indicated that most of these

functions are related to transcription. Table 2 provides a short list

of known genes associated with IFN response. The expression of

most known genes related to the interferon response, such as OAS1

and 2 (29, 59 oligoadenylate synthetase 1 and 2), MX1 and 2

(myxovirus (influenza virus) resistance 1 and 2) and IRF7 in IFNa2

pre-treated macrophages compared to untreated control were

detected early and throughout the time course. Furthermore,

HIV-1 antiviral factors, such as APOBEC3G, APOBEC3A and

TRIM22, were upregulated in IFNa2 pre-treated macrophages

compared to untreated control. However, most of these IFN-

related genes were unaffected by the presence of HIV-1 after the

IFNa2 treatment.

Our intent was to identify genes related to interferon that were

inhibited by HIV-1. Table 3 shows candidate interferon-related

genes from the top 500 genes that were modulated significantly

when HIV-1 was present. These genes represent potential

regulators of interferon and innate immunity pathways that are

modulated by HIV-1 infection in macrophages. We were

specifically interested in VISA and TRAF6 since these two factors

represent key control points in the regulation of the IRFs pathway,

ISGs production and innate immunity, and expression of these

two genes was reduced when HIV-1 was present. Therefore, we

examined TRAF6 and VISA gene expression over time to assess the

dynamics of their expression. As shown by the oligonucleotide

array analysis, the greatest differences in gene expression for these

two genes occurred at 8 hours post-infection (Fig. 2A). To validate

the modulation of HIV-1 on host gene expression of the IFNa2

pre-treated macrophages, we evaluated independent donors,

under the same conditions as the oligonucleotide array experi-

ment. Altogether we used 15 independent donors to perform the

experiments described (see material and methods section). We

tested the expression of TRAF6 and VISA, using qRT-PCR (Fig.

2B). TRAF6 and VISA gene expression were upregulated in IFNa2

pre-treated macrophages but downregulated after HIV-1 infection

at 8 hours. The downregulation of TRAF6 and VISA after HIV-1

infection of IFNa2 pre-treated macrophages suggested a possible

role for these factors in the regulation of HIV-1 expression.

TRAF6 but not VISA controls the level of expression of
IRF7 and HIV-1 replication

To analyze the impact of TRAF6 and VISA in the context of

HIV-1 infection, we suppressed both genes independently using

siRNA. Gene expression inhibition levels of 65% and 61% were

obtained for TRAF6 and VISA respectively as compared to a non-

targeted siRNA negative control (Fig. 3A). To further decipher the

role of TRAF6 in the IFN antiviral response, we evaluated HIV-1

replication, 24 hours after infection of IFNa2 pre-treated or not

macrophages. HIV-1 replication was significantly upregulated in

macrophages with knockdown expression of TRAF6 as compared

to the control pre-treated macrophages independently of IFN

treatment (Fig. 3B). This is the first report that TRAF6 can

function to limit HIV-1 replication. No significant differences were

detected in macrophages treated with VISA siRNA when

compared to the negative control siRNA irrespective of the

presence of IFN pretreatment (Fig. 3B).

In this transduction pathway, TRAF6 activates IRF3 and IRF7

to promote their transcriptional functions [22,23,30,31]. There-

fore, we evaluated the expression of IRF3 and IRF7 genes in this

context. As shown in figure 3C and D, upregulation of HIV-1

replication in macrophages with knockdown of TRAF6 expression

seen in figure 3B is accompanied by significant overexpression of

IRF7 compared to the HIV-1 infected negative control (Fig 3C).

No significant difference in the expression of IRF7 in HIV-1

infected macrophages with knockdown of VISA expression was

Table 1. Ten most significant functional categories
associated with genes differentially modulated in IFNa2 pre-
treated macrophages infected or not with HIV-1.

Function p-value No. of genes

Phosphoprotein 1,9E-08 126

Alternative splicing 9,1E-05 127

Nucleus 3,3E-04 90

RNA-binding 1,3E-03 19

DNA-binding 2,2E-03 47

Chromosomal rearrangement 3,0E-03 12

Transcription 5,4E-03 46

Transcription regulation 6,6E-03 45

Peroxidase 6,9E-03 4

Cytoskeleton 7,7E-03 14

Functional categories were obtained using the DAVID Bioinformatics tool.
Selection of the ten most significant functional categories out of 32 functions
involved the top 500 genes differentially modulated in IFNa2 pre-treated
macrophages infected or not with HIV-1.
doi:10.1371/journal.pone.0028125.t001

Table 2. Peak expression and time point of known genes
associated in IFN response that were modulated in IFNa2
pre-treated macrophages compared to untreated control.

IFN-related
genes

Reference
Sequence

Peak expression
(Fold induction)

Time
(hours)

APOBEC3A NM_145699 1267 2

APOBEC3G NM_021822 3 2

EIF2AK2 NM_002759 3 4

G1P2 (ISG15) NM_005101 47 2

G1P3 NM_002038 10 24

IFI27 NM_005532 1131 4

IFI44L NM_006820 1182 2

IFIT2 NM_001547 74 2

IFIT3 NM_001549 32 8

IFITM1 NM_003641 707 4

IFITM3 NM_021034 27 8

IRF1 NM_002198 3 8

IRF7 NM_001572 12 2

ISG29 NM_002201 702 2

MX1 NM_002462 197 8

MX2 NM_002463 24 2

OAS1 NM_016816 33 2

OAS2 NM_016817 41 2

OASL NM_003733 446 2

TRIM22 NM_006074 11 2

doi:10.1371/journal.pone.0028125.t002
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observed. Conversely, IRF3 was downregulated in HIV-1 infected

TRAF6 knockdown macrophage, while no significant difference in

the expression of IRF3 in the VISA siRNA treated targets was

found (Fig. 3D). This suggested that VISA was not responsible for

the observed increase in viral replication. It is possible that

alternative effectors can substitute for its function or that its

modulation has no bearing on HIV-1 production.

To validate our finding at the protein expression level, we

performed western blotting for both IRF3 and IRF7. Levels of

these proteins in lysates of TRAF6 knockdown or control siRNA

treated (200 nM) macrophages from three independent donors

were normalized using b-actin. As seen in figure 3E, IRF3 is

downregulated (0.83 fold, corresponding to a 17% reduction) and

IRF7 is upregulated (3.59 fold) in TRAF6 knockdown macro-

phages compared to control siRNA. The protein data confirmed

our gene expression results and suggested that the regulation of

HIV-1 replication by TRAF6 involved IRF7.

IRF7 downregulation decreases HIV-1 replication
To elucidate if IRF7 directly alters HIV-1 replication, we first

evaluated the effect of downregulation of IRF7 expression using

siRNA. Macrophages were transfected with specific siRNAs

targeted against IRF7 or silencer negative control. As shown in

figure 4, transfection of specific IRF7 siRNA (50 nM) significantly

reduced IRF7 mRNA (55% reduction) (Fig. 4A) and protein (42%

reduction) (Fig. 4B) expression. The inhibition of IRF7 resulted in

a comparable downregulation of HIV-1 replication (51%

reduction) (Fig. 4C).

IRF7 overexpression increases HIV-1 replication
To confirm that IRF7 promoted HIV-1 replication, IRF7 was

overexpressed in macrophages followed by infection with HIV-1 at

a multiplicity of infection (MOI) of 0.002. While protein levels

expression were only increased modestly (2 fold) by transfection of

an IRF7 expressing vector (Fig. 5A) HIV-1 replication was

markedly upregulated (14 fold) indicating enhanced viral replica-

tion when IRF7 is present in sufficient quantity (Fig. 5B). This

occurred despite IFNa/b expression in the presence or absence of

IRF7 overexpression (data not shown). This is the first demon-

stration that links IRF7 to an increased HIV-1 replication.

Discussion

Our investigation demonstrated the capability of HIV-1

infection to alter critical early events involved in appropriate

induction of the IFN response. This ability emphasizes the

importance of the IFN signaling pathways in controlling HIV-1

replication and suggests that HIV-1 has evolved mechanisms to

compromise this innate host immune response to favor its

propagation. We present evidence that TRAF6, important for

transcriptional regulation of the interferon pathway, is affected

early in the process of HIV-1 infection of primary human

Table 3. Peak expression and time point of candidate genes associated with IFN response that were modulated in IFNa2 pre-
treated macrophages compared to untreated control and modulated by HIV-1.

IFN-related
genes

Reference
Sequence

Peak expression
IFNa2/CTRL
(Fold induction)

Time
(hours)

Peak expression
IFNa2/HIV infection
(Fold induction)

Time
(hours)

BIRC3 NM_001165 7 2 3,5 2

CCL5 NM_002985 8 2 4 8

CD38 NM_001775 39 4 13 16

CEBPD NM_005195 2 8 1 16

CHI3L1 NM_001276 2 2 1 2

CXCL10 NM_001565 124 2 31 2

CXCL11 NM_005409 118 2 39 8

CXCL9 NM_002416 28 2 9 16

EHF NM_012153 4 8 1 16

HMGA1 NM_145899 2 8 1 24

LILRB2 NM_005874 16 8 8 2

NCOA3 NM_181659 2 2 4 4

OGT NM_181632 5 8 4 2

PIGR NM_002644 3 8 1,5 8

PIP5K2A NM_005028 3 8 1,5 8

SAMHD1 NM_015474 2 8 1 8

TAP2 NM_000544 16 2 8 2

TCF4 NM_003199 2 2 0,7 16

TRAF6 NM_004620 2 8 1 8

TXNIP NM_006472 2 8 1 16

VISA NM_020746 2 8 1 8

Selection of the top 500 most modulated genes when comparing the IFNa2 pre-treated macrophages infected or not with HIV-1. Of these, 55 were related to interferon
as a keyword. From these 55, 21 were upregulated by interferon as compared to untreated control (peak expression and time point) but modulated differentially when
HIV-1 was added. Those genes may represent interferon effectors that are modulated by HIV-1 infection during the interferon response.
doi:10.1371/journal.pone.0028125.t003
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macrophages. Knockdown of the antiviral factor TRAF6 resulted

in a significant augmentation in HIV-1 replication, as assessed by

the expression of TAT spliced message.

TRAF6 has been shown to be important for control of

replication of other viruses. Konno and collaborators reported

that the absence of TRAF6 in TRAF6-/- mouse embryonic

fibroblasts, (MEF cells) resulted in enhanced replication of RNA

viruses such as Newcastle disease virus and encephalomyocarditis

virus [23]. Similarly, TRAF6 has been shown to be critical for

IFNa and b induction in response to vesicular stomatitis virus

infection and intracellular double-stranded RNA, poly (I:C) [35].

All of these studies confirm that TRAF6 is induced as part of the

normal innate immune response against viruses and our findings

indicate it plays a similar role in curtailing HIV-1 replication.

Interestingly, our results also suggest that HIV-1 has devised

strategies to circumvent this inhibition. HIV-1 infection reduced

TRAF6 gene expression with the resulting enhanced viral

replication. Despite being upregulated by interferon and repressed

by HIV-1 infection, VISA, another important mediator of innate

immunity, did not have any impact on HIV-1 replication in our

study. Instead, HIV-1 replication was similar to that of the control.

There may be compensatory mechanisms circumventing the

ablation or reduction of VISA expression during HIV-1 infection.

TRAF6 is implicated in the activation of the transcription

factors IRF3 and IRF7 [22,36]. TRAF6 polyubiquitinates IRF7, a

post-translational modification necessary for the IFN production

as demonstrated in fibroblasts [22,36]. Both transcription factors

are key regulators of IFN production [37–44] and have essential

roles in the activation of antiviral immunity [44–46]. Certain

viruses have evolved mechanisms to overcome their effect such as

the Thogoto virus ML protein that reportedly inhibits the

activation of IRF7 [47]. In addition, vesicular stomatitis virus

was more efficient at infecting fibroblasts when IRF7 was ablated

[48]. In contrast, IRF7 increased human papillomavirus (HPV)

type 8 late promoter activity via direct binding to viral DNA and

IRF3 induced strong HPV8 suppression in primary keratinocytes.

This is consistent with our study where IRF7 promoted HIV-1

replication [49]. The knockdown of TRAF6 induced the

expression of IRF7 but decreased the expression of IRF3 at both

the gene and protein levels.

Overexpression of IRF7 resulted in a significant increase in

HIV-1 replication in primary human macrophages. Moreover,

inhibition of IRF7 brought about a concomitant decrease of viral

output. Our results show that when TRAF6 is reduced, IRF7 is

overproduced and contributes to enhanced viral replication.

Recently, a study by Smith and collaborators identified host genes

expressed in inguinal lymph nodes that were associated determi-

nants of HIV-1 viral load [18]. Moreover, in primate models,

higher levels of type 1 interferon characterize the pathogenic state

[19]. Consistent with our results with IRF7, these analyses reflect

an antiviral host response mediated by the interferon pathway that

is associated with higher viral load rather than inhibition of HIV-1

Figure 2. HIV-1 modulates TRAF6 and VISA expression in IFNa2 pre-treated macrophages. A) Intensity of the expression of the genes of
interest obtained from the oligonucleotide array analysis (U133 Plus 2.0 array) at 2, 4, 8 and 24 hours post-infection of macrophages. Cells were
treated with IFNa2 (1000 UI/ml for 18 hours) with or without HIV-1. B) Validation of the regulation of gene modulation by HIV-1 in IFNa2 pre-treated
macrophages (differentiated with human serum) at 8 hours post-infection. Non-IFNa2 treated and non-HIV infected macrophages were used as
negative control. An * denotes a significant difference (P,01, paired t-test) between IFNa2 pre-treated or not macrophages. The expression level was
calculated by qRT-PCR assessments obtained from four donors and normalized to the level of 18S.
doi:10.1371/journal.pone.0028125.g002
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replication, suggesting that HIV-1 subverts the innate immune

response to its own benefits. IRF7 could contribute to enhanced

HIV-1 replication by several potential, non-exclusive mechanisms.

IRF7 could facilitate Long Terminal Repeat (LTR) driven

expression of the virus and/or favor transcriptional activation of

cellular genes that could contribute to increased viral output.

However, on its own IRF7 is not capable of enhancing the activity

of a LTR-luciferase reporter in primary human macrophages

(Figure S1). Thus, if IRF7 modulates the HIV-1 LTR, it may

require interaction with another protein. In opposition, IRF1, a

positive control in this setting, could readily enhance LTR-driven

replication. Presumably, IRF7 could facilitate the translocation

Figure 3. TRAF6 but not VISA controls the level of expression of IRF7 and HIV replication. Primary human macrophages were subjected to
siRNA knockdown for TRAF6 and VISA. The concentration of siRNA used was 200 nM. A) Percentages of inhibition of TRAF6 and VISA in the presence
of specific siRNA targeting both gene individually [n = 3] compared to a control non-targeted siRNA [n = 3]. Level of expression was measured by qRT-
PCR B) Macrophages were all infected with HIV-1 with and without an IFNa2 pretreatment, and treated with specific siRNA. The level of TAT spliced
message measured 24 hours post-infection in TRAF6 and VISA conditions were compared to the negative control siRNA. C) Level of IRF7 and D) Level
of IRF3 message expression in the absence of IFNa2 when TRAF6 and VISA are repressed by siRNA compared to the negative control siRNA. The qRT-
PCR results were normalized to the level of 18S. An * denotes a significant difference (P,0.05, one sample t-test) compared to the negative control
siRNA. Each symbol in a group represents one independent donor. E) Western blot for IRF3 and IRF7, 24 hours post-infection in macrophages with
TRAF6 suppression compared to siRNA control. The densitometry of the bands was normalized to that of b-actin and shows a decrease in protein
level of IRF3 and an increase of IRF7. The ratio is shown next to the respective panels. Results shown are representative of 3 independent
experiments.
doi:10.1371/journal.pone.0028125.g003

TRAF6 and IRF7 Regulate HIV-1 in Macrophages
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and activity of NFkB resulting in the promotion of HIV-1

replication since NFkB is a potent activator of LTR-driven

expression of the virus. Although demonstrated in Jurkat T cells,

IRF7 could, in a situation analogous to IRF1, interact with

NFkB to promote this LTR-driven transcription [50,51].

Preliminary chromatin immunoprecipitation experiments (ChIP

on chip monitoring 19,000 genes) using HIV-infected primary

macrophages indicate enrichment for the promoter regions of

three genes that stimulate the NFkB pathway, coactivator-

associated arginine methyl transferase 1 (CARM1), B-cell CLL/

lymphoma 10 (BCL10) and solute carrier family 20 member

(SLC20A1) [52–54]. These interesting candidates warrant

Figure 4. IRF7 expression modulates HIV-1 replication in primary macrophages. A) Level of IRF7 gene expression in macrophages treated
with siRNA targeting IRF7 (50 nM) [n = 3] compared to a control non-targeted siRNA [n = 3] resulted in a 55% reduction in IRF7 gene expression. The
qRT-PCR results were normalized to the level of 18 S. B) Western blot for IRF7 protein treated as in panel A shows a decrease of 42% for IRF7 protein.
The densitometry of the bands was normalized to that of b-actin. Results shown are representative of 2 independent experiments. C) Level of TAT
spliced expression following inhibition (51%) by IRF7 as compared to control. The qRT-PCR results were normalized to the level of 18 S. An * denotes a
significant difference (P,0.001, one sample t-test) compared to the negative control siRNA. Each symbol in a group represents one independent
donor.
doi:10.1371/journal.pone.0028125.g004

Figure 5. IRF7 overexpression increases HIV-1 replication in primary macrophages. A) Western blot for IRF7 protein, 24 hours post-
transfection of macrophages overexpressing IRF7 showed a 2 fold increase compared to empty vector control. The densitometry of the bands was
normalized to that of b-actin. The ratio is shown next to the respective panels. Results shown are representative of 2 independent experiments. B) TAT
spliced expression was augmented 14 fold in primary human macrophages overexpressing IRF7 compared to empty vector control. The qRT-PCR
results were normalized to the level of 18 S. An * denotes a significant difference (P,0.05, one sample t-test) compared to the empty vector control.
Each symbol in a group represents one independent donor.
doi:10.1371/journal.pone.0028125.g005
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additional investigation to determine if they promote HIV-1

replication.

Alternatively, the increase in IRF7 expression together with the

reduction in IRF3 expression might favour the formation of IRF7

homodimers instead of IRF3 homodimers or IRF3/IRF7

heterodimers. IRF3 and IRF7 require dimerization among other

post-translational modifications to act as transcription factors. This

shift in the transcription factor complex composition would induce

the activation of a distinct set of genes some of which could

contribute to HIV-1 replication. There is evidence in paramyxo-

virus infection of lymphocyte B-cells that the relative ratio of

IRF3/IRF7 contributed to differential expression of IFNa2-

related genes [55].

In conclusion, we demonstrated that TRAF6 is an important

factor involved in the replication of HIV-1 in primary human

macrophages. HIV-1 infection downregulated TRAF6 expression.

In the absence of TRAF6, IRF7 is overproduced and contributes

to enhanced HIV-1 replication. It is important to elucidate how

HIV-1 interferes with this innate immunity in order to favour its

own replication.

Methods

Cells
Monocytes were recovered from whole blood of healthy human

donors by negative selection with RosetteSepTM human monocyte

enrichment cocktail (Stem Cell Technologies Inc, Vancouver, BC),

according to the manufacturer’s instructions. A total of 15

independent donors were utilized for the experiments described in

this manuscript. Monocytes to be differentiated into macrophages

were plated into T25 flasks in RPMI 1640 supplemented with 10%

human serum (Wisent Inc., Québec, QC) for oligonucleotide array

experiments and subsequent validation by real-time quantitative

RT-PCR (qRT-PCR). qRT-PCR quantification, knockdown

assays and western blot assays used monocytes plated in RPM1

1640 with 10% fetal bovine serum (Invitrogen Canada, Burlington,

ON) and 25 ng/ml of monocyte/macrophage colony-stimulating

factor (M-CSF) (Genscript Corp, Piscataway, NJ) for differentiation

into macrophages. Cell-surface expression of CD14 was character-

ized by using fluorescein isothiocyanate (FITC)-conjugated mAb

(clone MEM-18) (Cedarlane Laboratories Limited, Burlington, ON)

after allowing monocytes to differentiate for 5 days. By this criterion,

the cells were .97% monocytes differentiated macrophages

(MDMs) as assessed by flow-cytometry evaluation by using EPICS

XL (Beckman Coulter, Fullerton, CA) (data not shown).

Production of virus stocks
Virus stocks were produced by the transfection of 293T cells

using the calcium phosphate co-precipitation method [56]. The

infectious molecular clone used in this study was pNL4-3BaLenv.

The pNL4-3BaLenv vector was generated by replacing the env gene

of the T-tropic HIV-1 strain, NL4-3, with that of the macrophage-

tropic HIV-1 BaL strain, thus resulting in an infectious molecular

clone with macrophages-tropic properties [57] (pNL4-3BaLenv was

kindly provided by M. J. Tremblay, Laval University, Québec,

QC). Supernatants from transfected cells were clarified by

filtration through 0.22 micron cellulose acetate syringe filter and

ultracentrifuged. Viruses were purified with the OptiPrep velocity

gradient method (Axis-Shield PoC, Oslo, Norway). This method-

ology precludes having secreted products such as cytokines in the

viral preparations. The 50% tissue culture infectious dose (TCID

50) of HIV-1 stock was calculated by using the nonparametric

methods of Spearman-Kärber [58]. TZM-BL cell line was used to

standardize every viral stock used in this study.

Treatment and infection of macrophages
After allowing monocytes to differentiate for 5 days, purified

primary macrophages were treated 18 hours with 1000 IU/ml of

IFNa2 (PBL Biomedical Laboratories, Piscataway, NJ), which

represents the lowest concentration achieving maximum inhibition

of HIV-1 NL4-3BaLenv strain replication in these cells [3]. Pre-

treated macrophages (18 hours) were infected with the NL4-

3BaLenv strain of HIV-1 at a MOI of 0.002 (physiological dose).

Uninfected and untreated cells were used as controls. Aliquots of

cells (36106 cells) were taken at 2, 4, 8, and 24 hours after

infection, lysed in 1 ml of TRIzol (Invitrogen Canada, Burlington,

ON) and stored at 280uC.

RNA isolation, labeling, and array hybridization
Total RNA from the same donor was isolated for each condition

and time point using the TRIzol method according to the

manufacturer’s instructions (Invitrogen Canada, Burlington, ON)

and then digested with deoxyribonuclease to remove any

contaminating genomic DNA (Turbo DNA-free, Ambion, Applied

Biosystems Canada, Streetsville, ON). RNA quality and quantity

was assessed using an Agilent Technologies 2100 bioanalyzer and

RNA 6000 Nano LabChip kit (Agilent Technologies Canada,

Mississauga, ON). RNA integrity numbers (RIN), which estimate

the integrity of total RNA samples, ranged from intact (RIN 10) to

degraded (RIN 2). RIN were above eight for all samples in our

experiments. Total RNA (100 ng) was converted to complemen-

tary DNA (cDNA), which was amplified and transcribed to

produce biotinylated cRNA using the Two-Cycle cDNA synthesis

kit (Affymetrix, Santa Clara, CA). Fragmented cRNA (15 mg) were

hybridized to Affymetrix Human Genome U133 Plus 2.0 arrays

(Affymetrix, Santa Clara, CA) for 16 h at 45uC with constant

rotation at 60 rpm. The arrays were washed and stained with

streptavidin-phycoerythrin (Molecular Probes, Eugene, OR) and

biotinylated goat anti-streptavidin (Vector Laboratories, Burlin-

game, CA) using the Affymetrix Fluidics Station 450 (protocol

EukGE-WS2v5_450), then read using the Affymetrix GeneChip

Scanner 3000.

Oligonucleotide array gene expression analysis
GeneChip Robust Multi-array Average (GCRMA) was the

procedure used to normalize the data obtained from the

oligonucleotide array analysis [59]. Identification of the most

differentially expressed genes between IFNa2 pre-treated macro-

phages infected or not with HIV-1 was done using the short time

series analysis framework of Shah and Corbeil [33]. This

framework generalizes the Hilbert-Schmidt Independence Crite-

rion (HSIC) based framework of Song and collaborators [60] to

the short time-series setting by utilizing tensor analysis techniques

resulting in a generic analysis tool that allows both identification of

most differentially expressed genes and patterns of interest in gene

behavior (such as upregulation by IFNa2 with subsequent

suppression by HIV-1). We incorporated a linear kernel in the

framework, and obtain a ranking criterion, which is analogous to

the classical mean-difference based criterion for static gene

expression data [33,61]. The criterion is based on averaging the

differences between consecutive measurements scaled by their

respective means, over all the time points. The framework also

allows identification of highly non-monotonic variations in gene

behavior. The most differentially expressed genes were then

extracted using an empirically determined threshold over the

ranking scores. These genes were then analyzed with respect to

their functionalities and ontological classification using the

DAVID analysis software to determine significant functionalities

associated with HIV-1 infection after IFNa2 treatment of the cells
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[34]. Furthermore, the top 500 differentially expressed genes

between IFNa2 macrophages that were either infected with HIV-1

or non-infected were analyzed to determine which genes had an

association with the keyword interferon using Chilibot software

[62].

qRT-PCR examination of gene expression
cDNA from independent donor cultures was generated from

200 ng of total RNA using a random primer hexamer following

the instructions for Superscript II (Invitrogen Canada, Burling-

ton, ON). Primers were designed using Primer Express 2.0

(Applied Biosystems Canada, Streetsville, ON) and their sequenc-

es are presented in Table 4. Amplicons were detected in most

cases using the Amplifluor UniPrimer amplification and detection

system (Chemicon International, Temecula, CA) except for TAT

spliced message, a marker of HIV replication, which was detected

using the TaqMan system (Applied Biosystems Canada, Streets-

ville, ON), which allows for greater sensitivity and can detect

infection as early as 2 hours post-inoculation. Forward primers

used in the Amplifluor UniPrimer system contained an additional

59 Z sequence (ACTGAACCTGACCGTACA) that is not

included in Table 4. Equal amounts of cDNA (20 ng) were run

in triplicate and amplified using the Amplifluor Uniprimer in a

15 ml reaction containing 7.5 ml of 2X Universal PCR Master

Mix (Applied Biosystems Canada, Streetsville, ON), 10 nM of Z-

tailed forward primer, 100 nM of reverse primer, 100 nM of

Amplifluor Uniprimer fluorescein probe (Chemicon Internation-

al, Temecula, CA) and 5 ml of DNA target [63]. Moreover, no-

template controls were used. The mixture was incubated at 50uC
for 2 min, at 95uC for 4 min, then cycled at 95uC for 15 sec and

at 55uC for 40 sec, 55 times using the Applied Biosystems

7900HT Sequence Detection System. The amplifications using

the Taqman system were run in a 15 ml reaction containing

7.5 ml of 2X Universal PCR Master Mix, 200 nM of forward

primer, 200 nM of reverse primer, 250 nM of Taqman probe

and 5 ml of DNA target. The mixture was incubated at 50uC for

2 min, at 95uC for 10 min, then cycled 40 times at 95uC for

15 sec and at 60uC for 1 min. Amplification efficiencies were

validated and normalized to ribosomal 18 S and quantity of

target gene (arbitrary units) was calculated according to a

standard curve. The standard curve consists of different dilution

of a RNA sample that generates data points in the linear portion

of the PCR amplification.

Enzyme-linked immunosorbent assay (ELISA)
Macrophages were infected with HIV-1 at a MOI of 0.002 for

2 hours at 37uC. Next, the virus-cell mixture was washed with PBS

to remove unbound virus. The p24 content was determined using

a sensitive in-house double-antibody sandwich ELISA specific for

the viral p24 protein. In this test, the 183-H12-5C and 31-90-25

antibodies are used in combination to quantify p24 levels. Virus

production was estimated by measuring p24 levels in cell free

culture supernatants.

Knockdown assays
Macrophages from healthy donors were transfected with

pre-designed siRNA SMARTpool for TRAF6 (M-004712-00;

Dharmacon, Lafayette, CO), VISA (L-024237-00; Dharmacon,

Lafayette, CO) or IRF7 (L-011810-00; Dharmacon, Lafayette,

CO) with the Oligofectamine Transfection Reagent according

to the manufacturer’s instructions (Invitrogen Canada, Burling-

ton, ON). SMARTpool technology combines four siRNAs that

target different mRNA regions. Silencer Negative control

siRNAs (AM4635; Ambion, Applied Biosystems Canada,

Streetsville, ON), used as control do not target any human

gene product. The best gene expression inhibition levels of 65%,

61% and 55% were obtained for TRAF6, VISA and IRF7,

respectively, 48 hours post-transfection (see Figure S2 for

TRAF6 results). The transfected macrophages were then

infected with the NL4-3BaLenv strain of HIV-1 at an MOI of

0.002 for 24 hours. In the case of IFNa2 pre-treatment,

30 hours post-transfection the macrophages were treated for

18 hours before the infection.

Protein assays
Immunoblot assays were performed on total cell lysates of

independent donors. Proteins were isolated for each condition

using total extract buffer (Tris-base pH 6.8, SDS 20%, mercap-

toethanol and glycerol). Cell extracts (30 mg per lane) were

resolved by SDS-PAGE on 4–20% gels (BIO-RAD Laboratories

Canada Ltd, Mississauga, ON) and transferred on PVDF

membranes. The indicated antibodies against IRF7 (H-246; Santa

Cruz Biotechnology, Santa Cruz, CA), IRF3 (SL-12.1; BD-

Pharmingen, Oakville, ON), TRAF6 (H-274; Santa Cruz

Biotechnology, Santa Cruz, CA) and b-actin (A-13; SIGMA,

Saint-Louis, MO) were visualized by alkaline phosphatase-based

enhanced chemiluminescence. The densitometry of the bands was

compared after normalization with b-actin.

Overexpression assays
Macrophages (156106 cells) from healthy donors were trans-

fected with 9 mg of pcDNA3-IRF7-myc (Kindly provided by J.

Hiscott, McGill University, Montréal, QC) or pcDNA3 (empty

vector control) with the Lipofectamine Transfection Reagent

according to the manufacturer’s instructions (Invitrogen Canada,

Burlington, ON). We obtained the best gene overexpression after

24 hours of transfection, after which, the transfected macrophages

were infected with the NL4-3BaLenv strain of HIV-1 at a MOI of

0.002 for 24 hours.

Microarray data accession number
Microarray results have been deposited in Gene Expression

Omnibus database under accession number GSE30536.

Table 4. Sequence of Oligonucleotide Primers used in Real-
Time qRT-PCR Gene Expression Analysis.

Primera Nucleotide Sequence

TRAF6-F AAGGGATGCAGGTCACAAATGT

TRAF6-R TTTTCCAGCAGTATTTCATTGTCAA

VISA-F ACTTCATTGCGGCACTGAGG

VISA-R CTTCGTCCGCGAGATCAACT

IRF7-F CGACATCGAGTGCTTCCTTATG

IRF7-R ACTGGGTTCTAGGCGGGC

IRF3-F TCTGATACCCAGGAAGACATTCTG

IRF3-R CAACACCATGTTACCCAGTAACTCAT

TAT Spliced-Fb CCTAAAACTGCTTGTACCAATTGC

TAT Spliced-Rb GGAGGTGGGTTGCTTTGATAGAGA

TAT Spliced-probeb AAAGCCTTAGGCATCTC

aF (forward) primer sequence is in 59-39 orientation, R (reverse) primer sequence
is reverse complemented.

bTAT Spliced was detected using Taqman.
doi:10.1371/journal.pone.0028125.t004
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Statistical analysis
Analysis was performed by paired t-test to compare two

population means in the case of two samples that are correlated

(same donor) or one sample t-test to compare the sample mean to

the population mean (control). P values of less than 0.05 were

considered to be statistically significant.

Ethics statement
Comité d’éthique de la recherche du CHUQ approved the

study and written informed consent was provided by study

participants.

Supporting Information

Figure S1 Transactivation of the HIV-1 LTR by IRF1,
IRF3 and IRF7. Expression vector for IRFs and

pBlue_59_LTR_LUC were co-transfected in primary macrophag-

es. Luciferase activity (RLU) was measured at 24 h post-

transfection. Results are the mean of two separate experiments.

(TIF)

Figure S2 Western blot for TRAF6 24 hours post-
infection of macrophages knockdown with 50, 100, 200
and 500 nM of TRAF6 siRNAs. b-actin was used as a

normalizer for input. 200 nM of siRNA were used since a better

percentage of inhibition in TRAF6 knockdown experiments were

obtained at this concentration with respect to the protein level

(67%).

(TIF)
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