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Abstract: Solvent vapor annealing is as an effective and versatile alternative to thermal annealing
to equilibrate and control the assembly of polymer chains in thin films. Here, we present scientific
and practical aspects of the solvent vapor annealing method, including the discussion of such
factors as non-equilibrium conformational states and chain dynamics in thin films in the presence of
solvent. Homopolymer and block copolymer films have been used in model studies to evaluate the
robustness and the reproducibility of the solvent vapor processing, as well as to assess polymer-solvent
interactions under confinement. Advantages of utilizing a well-controlled solvent vapor environment,
including practically interesting regimes of weakly saturated vapor leading to poorly swollen states,
are discussed. Special focus is given to dual temperature control over the set-up instrumentation and
to the potential of solvo-thermal annealing. The evaluated insights into annealing dynamics derived
from the studies on block copolymer films can be applied to improve the processing of thin films of
crystalline and conjugated polymers as well as polymer composite in confined geometries.
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1. Introduction

Polymer films represent one of the most used classes of soft matter with applications ranging
from functional coatings and sensors to separation membranes and organic electronics. Along with
the chemical composition, the conformations of macromolecular chains determine the properties
of polymer films such as glass transition temperature (Tg) [1,2], electron densities [3], wetting [4,5],
rheology [6], solvent absorption, and swelling dynamics [7,8]. Extensive research has revealed that
characteristics of thin polymer films strongly deviate from the properties these polymers exhibit in
bulk [9]. In particular, as-cast films have been reported to have a substantially reduced effective
viscosity as compared to annealed films [6,10]. The effect was presumably attributed to the reduced
entanglement density caused by the rapid quenching of non-equilibrium chain conformations during
spin coating. Despite partial progress in the understanding, it is becoming increasingly obvious that a
clear comprehension of thin polymer film behavior has not been yet achieved [9,11,12]. Advancing
the understanding and the usage of polymer-based materials requires that film preparation and film
processing reliably and reproducibly bring the system to a desired (quasi) equilibrium state [2,13].
This requirement is especially useful for annealing of high-molecular weight and high χ-parameter
block copolymers.
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To relax the kinetic barriers formed by non-equilibrium states and residual stresses in polymer
films, they are routinely subjected to thermal annealing at temperatures well above Tg. However,
certain polymers with complex compositions possess a narrow temperature gap between Tg and the
decomposition temperature, thus equilibrium conformations are not achievable within acceptable
annealing times. Also, the segmental dynamics of polymer chains in thin films are very much retarded
by the multiple chain contacts with the solid surface, and therefore polymer dynamics in thin films
are only moderately accelerated with increasing temperature [14]. Therefore, processing of polymer
films under solvent vapor atmosphere, i.e., solvent vapor annealing, is considered to be a promising
alternative to the methods currently prevailing in technological fabrication thermal annealing.

A challenging research problem concerns the influence of confinement on the solvent absorption
and on the related chain mobility in swollen films [15]. A possible reason for qualitatively differing
results is the phenomenological complexity of diffusion and equilibrium uptake of small molecules by
the confined polymer matrix. Along with the substrate effects, the conformational states of polymer
chains imposed by confined geometry and film preparation affect the physical properties and the
behavior of thin polymer films.

In this respect, intensive efforts are currently devoted to the issue of controlled swelling and
guidance of block copolymer self-assembly in confined geometries towards targeted structures
and functions [16–27]. The research on thin block copolymer films has significantly advanced the
understanding of the mechanisms behind the solvent vapor annealing owing to the possibility
to visualize the development of microphase-separated structures during processing. The gained
knowledge governed the design of instrumental set-ups, which reproducibly provide time- and
process-effective annealing [21,28–38]. Exposure of block copolymer films to solvent vapors serves
multiple purposes, including establishing surface/interface preferentiality towards particular blocks [39–
46], increasing polymer chain mobility by decreasing effective Tg [47], as well as reducing interactions
of the polymer chains with the substrate [48–50]. Also, addition of solvents typically induces changes of
domain spacings [18,51–56] or of the morphological behavior by altering χeff parameters [41,57–60] and
relative volume fractions of the blocks in the case of selective solvents [18,26,61–64]. The concentration
of the solvent in the film defines the swollen thickness and thus can also affect the microdomain
formation [25,33,65–70]. Solvent vapor annealing is now routinely used to guide the structure
formation into targeted patterns [21,25–27]. Moreover, high sensitivity of the microphase separation
to the concentration of the solvent in a swollen film allows for the evaluation of the effect of the
nano-structuring of polymer films on the solvent uptake [46,71–73] as well as the assessment of the
reproducibility of the annealing conditions [66].

Instrumentation of solvent vapor annealing set-up has developed from a simple sealed container
with a vial with solvent inside (static annealing) [16,32], a chamber with additional input and output
tubes to control the deswelling rate [74], to a dynamic annealing channel system with external vessels and
an automated flow of carrier gas (nitrogen) to produce a controlled solvent vapor atmosphere [28,29,41].
Recently, the systems with a feedback loop, which can automatically maintain a constant degree of
swelling, were reported by Jin et al. [19]. The annealing system with pneumatic valves that can precisely
control the annealing time in millisecond range was designed by Nelson et al. [28]. These studies
delivered significant input into developing the solvent vapor annealing procedure up to reproducibility
levels required for industrial technological processing. Several papers have reported applications
other than ambient solvent vapor annealing [30,37,75–79]. In particular, warm solvent vapor annealing
of polystyrene-b-polyvinyl pyridine block copolymer at solvent temperatures as high as 60 ◦C has
been shown to reduce the annealing time from hours to several minutes [75]. The importance of the
temperature control, particularly the possibility to adjust the temperatures of the substrate and of the
vapor independently, is recognized in the field of thin functional films, and systematic qualitative
studies on this issue may expand the applications of these methods [20,27,80–82].

In this paper, we assess experimental factors that affect the reproducibility and the stability of the
solvent vapor atmosphere during annealing. All annealing experiments are performed with in-situ
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measurements of the swollen film thickness, which is the most important information to verify the
stability of the processing conditions. The paper is organized as follows. We first introduce the
technical features of the annealing system such as design, type of volumetric flow, and material of the
annealing chamber. Then, temperature-controlled swelling of polymer films (solvo-thermal annealing)
is introduced on a quantitative basis. Finally, the swelling behaviors of homopolymers polystyrene
(PS), poly (2-vinyl pyridine) (P2VP), and the block copolymer polystyrene-b-poly(2-vinyl pyridine)
(PS-PVP) are analyzed to evaluate the solvent selectivity to the block copolymer components.

2. Materials and Methods

2.1. Materials

Polystyrene-b-poly(2-vinyl pyridine) (denoted here as PS-PVP) diblock copolymer with a total
molecular weight of Mn = 390 kg/mol and a volume fraction of polystyrene block of 0.48 was synthesized
by sequential living anionic polymerization [83]. Molecular weight and volume composition were
characterized by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR),
respectively. The degree of polymerization ~3609 and the interaction parameter χPS-P2VP ~ 0.178 at
room temperature [84] resulted in a high segregation strength of χN ≈ 640. A characteristic spacing
in bulk of ~117 nm was assessed by small angle X-ray scattering (SAXS) (at European Synchrotron
Radiation Facility, Grenoble, France) by measuring solvent-cast µ-thick PS-PVP films. PS with a
molecular weight of Mn = 184 kg/mol was purchased from PSS Polymer Standards Service GmbH
and used as received. P2VP with a molecular weight of Mn = 105 kg/mol was synthesized by anionic
polymerization. Toluene and chloroform were both purchased from Sigma-Aldrich Corporation (St.
Louis, MO, USA) and used without further purification. P-type Si wafers (Crys Tec GmbH, Berlin,
Germany) with ~2 nm thick SiOx layers were cut in ca 1 × 1 cm2 pieces and stored in toluene. Before
usage, silicon substrates were additionally cleaned by CO2 snow-jet gun and then treated with air
plasma at 60 W for 1 min.

2.2. Preparation of the Films

Solutions of PS-PVP in toluene were filtered through a Teflon (PTFE) membrane with a pore
diameter of 200 nm. Toluene is a selective solvent toward P2VP block, which results in a micellar
morphology of the block copolymer in solution and in as-spin-coated films. Then, 40 nm thick PS-PVP
films were prepared by spin-coating of 1 wt % polymer solution at a rotational velocity of 2500 rpm
on freshly cleaned silicon substrates. Experiments on the swelling of films with varied film thickness
are beyond the scope of this study, since they require a proper evaluation of the effect of the residual
solvent [85,86].

2.3. Characterization of the Films

Swelling behavior of polymer films was monitored by in situ spectroscopic ellipsometry (Omt
Imaging, mm30 series, Ulm, Germany). Optical data were collected within a spectral range of 450–800
nm at an incidence angle of 70◦ using software VisuEl 3.8 from Omt. Film thicknesses were evaluated
using Cauchy model and Scout Software (Omt, Ulm, Germany). Scanning force microscopy (SFM) was
done using Icon Dimension (Bruker, Billerica, MA, USA) in TappingMode®using tips from OTESPA
with spring constant k = 42 N/m. The images were analyzed using software Nanoscope Analysis 1.50
(Bruker). Optical microscopy studies were performed using Axioplan 2 Imaging microscope from
Zeiss (Oberkochen, Germany).

2.4. Description of the Annealing Set-up

Figure 1a presents the designation of the components of the annealing system. Nitrogen, as
the carrier gas, passes through two flow controllers MKS 647C (MKS Instruments GmbH, Munich,
Germany) connected to the channel with a flow of pure nitrogen (Channel 1) and to the channel that
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delivers solvent vapor (Channel 2) into the chamber. Flow controllers define the total flow through a
channel (a maximum value of 100 sccm), as well as the partial vapor pressure in the chamber p/p0. The
latter is adjusted by mixing the flows through Channel 1 and Channel 2. We note that the values of
p/p0 evaluated in this study are higher than the actual vapor pressure in the chamber because of the
flow conditions. An exact way is to measure the partial pressure of the solvent with mass spectrometry
at the chamber outlet, which was utilized by Shelton et al [87].
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Figure 1. (a) The sketch of the annealing system; the tubing and the vessels with solvent in the
blue-marked area immersed in the thermostated bath [66]. (b,c) Sketches and photos of the two
annealing chambers made from (b) steel and (c) Teflon (PTFE). Both chambers contain (i) transparent
top windows for the macroscopic observations of the film surface and side windows (not shown in the
sketches) for in situ monitoring of the thickness, (ii) inlet and outlet connections for the tubing, and (iii)
water-filled tubing in the bottom for adjusting the temperature of the substrate.

A part of the stainless steel tubing is immersed in the thermostat bath Lauda E 100 (Lauda Dr.
Wobser GmbH&CO.KG, Lauda-Königshofen, Germany) for controlling the temperature of the vapor
(Tv) (blue-marked area in Figure 1a), and a part of the tubing is exposed to the laboratory atmosphere,
which presents a potential drawback of the system due to possible heat transport between thermostated
vapor and the environment. Channel 3 is designed for the studies of the annealing in the mixed solvent
vapors [26]. The second thermostat (Lauda RE 204) controls the temperature of the substrate with the
polymer film on top (Ts). The quenching of the films is achieved by closing Chanel 2 and purging dry
nitrogen through the chamber, so that the film thickness drops down more than 95% to its initial value
in a dry state within less than a minute (Figure 2). The stability of the annealing system in this dynamic
set-up is provided by a constant flow through the chamber, which can compensate the possible leakage
of the system. Moreover, such a set-up has the additional possibility to create overpressure in the
chamber, i.e., to saturate the film with the solvent beyond the equilibrium adsorption level at normal
conditions, thus creating new morphological structures [72].
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Figure 2. (a–c) Examples of the swelling curves during continuous annealing process. Thickness of
swollen films was monitored by in situ ellipsometry. Inset in (a) illustrates the initial fast regime of the
solvent uptake. Inset in (b) is an optical image of Polystyrene-b-poly(2-vinyl pyridine) (PS-PVP) film
showing characteristic terracing upon condensation of the solvent on the film surface in the course
of annealing.

Two annealing chambers were used in the studies, one from stainless steel and one from Teflon
(PTFE). Their descriptions are presented in Figure 1b,c. For the monitoring of the swollen film thickness
with spectroscopic ellipsometry, the chambers are equipped with optical windows to allow the incident
and the reflected light beam at an angle of 70◦. Both chambers have inner heating tubing at the bottom
connected to the thermostat to maintain the temperature of the substrate Ts independently from that
of the vapor Tv. To avoid possible condensation of the solvent on the film surface, the temperature of
the substrate should be maintained at least 1 ◦C higher than the vapor. The thermal conductivity of
PTFE is ~0.245 W/m·K, and that of stainless steel is ~14–15 W/m·K. Fast thermal conductivity of the
material may increase the sensitivity of the inner environment to the temperature outside the chamber.
Apart from the materials, the chambers differ in the total volume and in the position of the inlets and
outlets for the tubing. The volumes of steel and Teflon chambers are ~60 mL and 1.2 mL, respectively.

2.5. In-Situ Monitoring of the Film Thickness

In order to gain a deeper understanding of the process of the solvent uptake by thin polymer films,
it is indispensable to have precise control over the procedure parameters, such as the temperature of
the substrate and of the solvent vapor, the values of the total and the partial vapor pressures, and film
thickness during swelling. Even dynamic characteristics of the annealing procedure such as the total
gas flow through the chamber, the volume and the geometry of the chamber, the rate of the build-up
pressure, and the velocity of the final quench all crucially affect the swelling and hence the efficiency
and the reproducibility of the annealing procedure.

A crucial condition to have control over the swelling process is to monitor the development
of the swollen thickness in time. This is typically done using ellipsometry [34,71], as in the set-up
reported here, or optical reflectometry measurements [30]. Additional valuable information on the
microphase separated structures of block copolymers and their dimensions in thin films is gained
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when real-time grazing incidence small angle X-ray scattering (GISAXS) is utilized in combination
with controlled solvent annealing [18,88]. Figure 2 presents several examples of captured swelling
curves, each containing important information about the process/system stability. A typical swelling
curve of thin film of a linear coil polymer consists of a fast build-up stage (inset in Figure 2a) and a
steady-state swelling, which should be maintained on a constant level during the whole annealing
process. We note that the swelling curves of glassy networks look principally different, showing a slow
continuous growth of the solvent uptake [71]. Also, the deswelling of the films of linear polymers
upon quench proceeds fast and with almost no hysteresis (Figure 2a). Irregularities in the measured
swollen film thickness such as strong fluctuation (Figure 2b) or constant decrease of the swelling
thickness in the course of annealing (Figure 2c) require specific attention to the particular measurement.
For example, thickness instability can be a result of condensation of the solvent on the film surface.
The apparently uncontrolled jumps in the swelling are probably related (in this case) to unreliable
fitting of the ellipsometric data. In block copolymer films, the results of such an artifact can be seen as
a non-typical pattern of the formed terraces on the film surface (inset in Figure 2b) [34]. The reasons
for the type of swelling behavior as in Figure 2c can be attributed to a decreasing level of the solvent in
the vial (see Figure 1a), to changes in the temperature of the environment upon long term processing,
or to the leakage in the system.

The time-period and conditions for effective annealing of homopolymer films are not feasible to
evaluate. In the case of wrongly chosen parameters, rupture of the film due to dewetting may occur.
Dewetting is a dynamic process that completes the dynamics of chain equilibration and is significantly
accelerated in the presence of a solvent in the film. In contrast to the films of homopolymers, the
visualization of the evolved translational and morphological order of block copolymer microdomains
allows for deriving direct conclusions on the efficiency of the annealing, i.e., on the closeness of the
system to the thermodynamic equilibrium as well as on the chain conformations [48,66]. At the same
time, spontaneous roughening of the free surface (macroscopic terrace formation) of multilayer-thick
block copolymer films can be followed in time as a measure of the chain dynamics [41,66,89] or even as
a measure of the interfacial interactions with the substrate [90,91].

3. Results and Discussion

3.1. Choice of the Solvent and of the Swelling Conditions

The physical properties of the employed solvent have to be taken into account when deciding
on the annealing conditions. Temperature dependence of the saturated pressures of toluene and
chloroform (shown in Figure S1, Supporting Information) suggests that, at 25 ◦C, the saturated pressure
of chloroform is about seven times higher than that of toluene (26.22 and 3.79 kPa, respectively).

Figure 3 presents swelling kinetics of PS-PVP films in chloroform and toluene vapors upon
stepwise increase of the partial vapor pressure at constant temperatures Tv and Ts. In chloroform
vapor (Figure 3a), the film achieves an equilibrium thickness and steady-state swelling within ~10 min
at each partial vapor pressure, which is faster than in toluene vapors (Figure 3b). Figure 3c summarizes
the swelling data at saturation for PS-PVP films presented in Figure 3a,b. The solvent fraction (1 − Φp)
in the swollen films at 70% p/p0 is two times higher for chloroform (37% for chloroform versus 19% for
toluene), which reflects both lower toluene vapor pressure and its poor solvent quality toward P2VP
block. We note that quantitative evaluations of the solvent concentration in block copolymer films and
the related degree of segregation are extremely important for the efficiency of the annealing process.
On one hand, low solvent concentration requires longer annealing times. On the other hand, in the
case of a high degree of swelling and a low molecular weight of a block copolymer, the condition above
order-disorder transition (ODT) could be achieved, thus the removal of the solvent would result in a
dynamic quench from a disordered state. In this case, the microphase separated pattern is represented
as disordered structures, irrespective of the duration of the annealing [34]. Such directional quench has
been shown to be a promising route to induce vertical orientation of microdomains [49,92,93]; however,
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the procedure requires deeper understanding and optimization with regards to the reproducibility and
defects annihilation. In this respect, equilibration of structures under controlled solvent uptake, which
provides intermediate or strong segregation regimes, offers a number of advantages in fabrication of
ordered patterns, such as low line edge roughness of the resulting structures [75,94], fine control over
non-bulk morphologies [95,96], and minimization of the risks of dewetting [66,97].
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Figure 3. Swelling kinetics of PS-PVP ~40 nm thick films in (a) chloroform and (b) toluene vapor
under stepwise increase of the partial vapor pressure by mixing the flows of Channel 1 and Channel 2
(Figure 1). Tv and Ts were kept constant at 19 and 20 ◦C, respectively. (c) Polymer volume fraction of
PS-PVP films in chloroform (black square) and in toluene (red triangle) versus partial vapor pressure of
the respective solvent.

3.2. Effect of the Temperature Variation on the Swelling Behavior of Polymer Films

There are two principle methods to adjust the concentration of the solvent vapors in the chamber:
(a) by mixing the flows from Channels 1 and 2 under constant temperature of the substrate Ts and
the vapor Tv, and (b) by tuning the temperature of the vapor/substrate at constant flows, which is
denoted as solvo-thermal annealing. While the first approach is more robust with regards to possible
fluctuations of the environmental temperature and creates a permanent flow within the chamber, the
second approach is promising in view of a stronger influence on the segmental chain dynamics, as is
described below. In the case of the temperature control, the pressure of the solvent vapor in the vessels
can be calculated according to the Clausius-Clapeyron equation:

ln(p/p0) = −∆Hvap/R·(1/T − 1/T0) (1)

where R is the ideal gas constant, ∆Hvap is the evaporation enthalpy, and p0 and p indicate the saturated
pressure of the solvent at temperatures T0 and T, correspondingly. Therefore, the pressure of solvent at
a given experimental condition (Ts and Tv) can be calculated.

To demonstrate the importance of control over the temperature of the vapor, we present the
results of the swelling of thin block copolymer films obtained at a constant temperature of the substrate
of Ts = 20 ◦C and a temperature of vapors Tv of 14 and of 19 ◦C (Figure 4). In both cases, the
solvent concentration in the vapors was additionally controlled by mixing the flows of Channel 1
and Channel 2 (Figure 1). These results clearly indicate that, without environmental control over the
solvent vapor, the reproducibility and the stability of the annealing conditions suffer from temperature
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fluctuations. The higher solvent content in PS-PVP films at Tv =19 ◦C can be expectedly attributed to
the strong temperature dependence of the chloroform vapor pressure (Figure S1). The artifacts caused
by temperature fluctuations are more pronounced for solvents with strong temperature dependence of
the vapor pressure, such as chloroform [34].
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Figure 4. (a) Polymer volume fraction Φp of PS-PVP films (indicated as SV) with a dry thickness of ~40
nm upon stepwise increase of p/p0 of chloroform at indicated temperature sets Tv/Ts. Φp is calculated
from the measurements of the dry and the swollen film thicknesses as hdry/hsw. (b) Degree of swelling
D of 40 nm thick PS-PVP films annealed at 100 sccm flow of 100% p/p0 of chloroform after 5 min
and after 200 min of processing under Ts = 20 ◦C and Tv = 14 or 19 ◦C, as indicated. Scanning force
microscopy (SFM) height images of the surface morphology in PS-PVP films after 5 min (c,e), 45 min
(d), and after 200 min (f) of annealing at indicated temperatures. The scan area is 3 × 3 µm2.

The reproducibility of the swelling conditions under varied temperature of the vapor is assessed
in Figure 4b. Displayed is the averaged degree of swelling D (hsw/hdry, i.e., the reverse of Φp) for 40
nm PS-PVP films after short time processing (5 min) and annealing for 200 min. We emphasize two
observations. First, the degree of swelling, which built up in 5 min, was very close to that after the end
of the processing, confirming the high degree of stability of the environmental conditions. Second,
the swelling experiments were repeated within several months and showed high reproducibility. At
the same time, a slightly larger error bar for the Tv14 ◦C/Ts20 ◦C set indicated that environmental
conditions at Tv =14 ◦C, which were far from the room temperature (RT), were more difficult to
reproduce, since even a slight deviation in the RT had a large effect on the thermal transfer between
the tubing system and the media. The reproducibility issue in an annealing device with a different
type of temperature-regulated vapor pressure was assessed by Ogieglo et al. [7]. SFM images in
Figure 4 illustrate the development of the morphology of high molecular weight block copolymer
PS-PVP during annealing and serve to evaluate the progress of the equilibration process as well as
chain dynamics in the swollen films. In both cases, the initial spherical morphology transferred within
the first 5 min into dot-like patterns. Longer annealing led to the development of mesh-like (Figure 4d)
and striped patterns (Figure 4f). An improved translational order of the microdomains in the latter case
was attributed to a larger swollen film thickness rather than to a reduced viscosity of the solution. At
this point, we described the developed pattern as an “indicator” of the chain dynamics in the processed
films. A more detailed structure interpretation is discussed below in Figure 6. Effects of the annealing
chamber on the solvent uptake are presented in Figure S2 (Supporting Information).

We further studied the approach of independent variations of Tv and Ts with regards to the
response of the system to the applied conditions. Figure 5 presents the evolution of the degree of
swelling of ~40 nm thick PS-PVP films upon changes of Tv or Ts. The measurements were performed
under 50% p/p0 of chloroform (Figure 5a) and under 100% p/p0 of toluene (Figure 5b) in order to
compensate the intrinsic differences in the temperature dependence of the respective solvents (Figure
S1, Supporting Information). In both experiments, the following scheme was used: at point A, A’, the
system was set to temperature conditions Tv/Ts of 20 ◦C/30 ◦C. In the following steps B, B’ and C, C’,
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the temperatures of the vapor were increased to 25 and 29 ◦C, respectively. The temperature data
were read from the data panel of the respective thermostat. At point D, D’, the temperature of the
substrate was raised to 35 ◦C and then to 40 ◦C at point E, E’. For the experiment in toluene vapor, the
temperature of the vapor was increased further to 34 ◦C at point F’ (Figure 5b), while it kept constant
at 29 ◦C in the experiment in chloroform vapor (Figure 5a). In the final step G, G’, the temperature
of the vapor was increased to 39 ◦C. These experiments had two purposes: (i) to evaluate the rate of
response of the instrumentation to the change of the temperature conditions (read from thermostats),
and (ii) to compare the rate of physical change of the system, i.e., the dynamics of the sample response,
to the changed environmental conditions. As seen in Figure 5, the changes in the temperature and
in the respective response of the polymer film toward changed environmental conditions were quite
synchronic, confirming high sensitivity of the solvent uptake to the temperature conditions, except for
the highest studied temperature range. Below is a detailed discussion of the swelling behavior.
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Figure 5. Swelling kinetics (left hand axis: black curves) of ~40 nm thick PS-PVP films (a) under
chloroform vapor with partial vapor pressure of 50%, and (b) under toluene vapor with p/p0 of 100%
at stepwise increasing of Tv and Ts (right hand axis: green curves and red curves, correspondingly).
Temperature set Tv/Ts are the following: (A,A’)—20 ◦C/30 ◦C, (B,B’) —25 ◦C/30 ◦C, (C,C’) —29 ◦C/30
◦C, (D,D’) —29 ◦C/35 ◦C, E—29 ◦C/40 ◦C, E’—34 ◦C/40 ◦C, F’—34 ◦C/35 ◦C, (G,G’) —39 ◦C/40 ◦C.

At point A (Figure 5a), Ts and Tv were set to 30 and 20 ◦C, respectively. The equilibrium swelling
at 50% p/p0 of chloroform was achieved within 10 min and remained stable until (at point B) Tv

was increased to 25 ◦C. The swelling built up first in a two-step mode: a fast stage when ~98% of
the equilibrium degree of swelling was achieved and a slow mode when the steady-state swelling
was not yet achieved after 25 min. The slow continuous increase in the swollen thickness could
be associated with the retarded build-up of the vapor pressure in the chamber as well as with the
structural rearrangements in the block copolymer film [46]. At point C, the temperature of the vapor
was further increased up to 29 ◦C, still being 1 ◦C lower than that of the substrate. However, no
clear response of the polymer film could be measured. We believe that Ts was high enough to cause
condensation of the vapor inside the tubes, which were exposed to the colder laboratory environment.
This artifact may have resulted in effectively slow increase of the vapor pressure in the chamber.
At point D, the temperature of the substrate Ts was increased to 35 ◦C. This environmental change
was expectedly accompanied by the drop in the degree of swelling from 1.25 to 1.18. At point E,
the substrate temperature Ts was further increased up to 40 ◦C with Tv being constant, and the film
responded synchronically with the environmental changes (Ts) again by decrease in the solvent uptake.
At point G, Tv was increased up to 39 ◦C, which was much higher than room temperature, thus the
system was immediately destabilized due to the condensation of the solvent in the tubing and at the
film surface. These conditions defined an upper temperature set for a given set-up and solvent to
perform thermally controlled annealing.

The choice of the solvo-thermal annealing conditions depends on the nature of the solvent. Along
with chloroform, toluene is widely used in annealing processes, especially in a mixture with aliphatic
solvents to equilibrate styrenic block copolymers with high χ parameter, such as polystyrene-b-poly
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dimethylsiloxane [29,36]. The swelling behavior in toluene vapors (Figure 5b) upon stepwise increase
of Ts (A’, B’, C’) was qualitatively similar to that in the vapors of chloroform, including the absence of
the response of the film to the increase of the environmental temperature up to 29 ◦C (point C’). Also,
increase of Ts (D’, E’) caused a fast drop down of the degree of swelling from 1.33 to 1.20 and then
from 1.20 to 1.14. When Tv was increased at points F’ and G’, the polymer film did not respond to this
environmental change, although the whole set-up seemed to be more resistant to the condensation of
the vapor in the tubing of the system and on the sample. Further improvement of the experimental
set-up for the controlled solvo-thermal annealing requires better isolation of the system parts from the
laboratory environment.

We note that the studies of swelling behavior under elevated substrate temperature are directly
relevant to the development of warm solvent vapor annealing, which has advantages in film processing
that were already qualitatively reported [30,37,75]. The potential of this method is envisaged in
enhanced segmental mobility of the polymer chains at an elevated temperature. This effect should
compensate the decrease in viscosity as a result of the reduced solvent uptake. However, changes of
the polymer-polymer and the polymer-solvent interaction parameters for a particular system upon
varying solvent concentration also have to be taken into account. Our study suggests a methodological
approach to quantitatively assess solvent uptake and chain dynamics at elevated temperature conditions.
Importantly, this approach is applicable to semi-crystalline conjugated polymers as well as to complex
composite materials under confinement.

Shown in Figure 6 are the height SFM images of the surface structures, which developed in 40 nm
thick PS-PVP films upon annealing at varied temperature set Tv/Ts, as indicated. We note that the
studied film thickness was significantly below the lamella period of this block copolymer in bulk (~117
nm). This resulted in significant confinement and frustration of the morphological structures in swollen
films as well as considerably retarded chain dynamics (defect annihilation) during processing. A more
detailed analysis and identification of the frustrated morphologies will be presented elsewhere [98].
Here, we focus on the effect of the temperature of the substrate on the annealing process. Comparison
of the images in Figure 6a,c, i.e., at the substrate temperature Tv = 30 ◦C and varied temperature of the
vapors, indicated the same trend as at Tv = 20◦C (Figure 4d,f)—a transition from a mesh-like pattern
at a lower degree of swelling (higher polymer volume fraction) to a stripe pattern with an increased
degree of swelling. Therefore, the effect of elevated substrate temperature was not feasible to elaborate
at these conditions.
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Figure 6. SFM height images of the surface morphology of 40 nm thick PS-PVP films processed under
indicated temperature sets Tv/Ts. D is the degree of swelling calculated from the measurements of the
swollen and the dry film thicknesses as hsw/hdry. The swelling curves for the films shown in (a), (b),
and (c) are presented in Figure 2 (c), (a), and (b), respectively.

Figure 6b,c compares surface structures in PS-PVP films processed at the same degree of swelling
(~2.55) and different substrate temperatures. At Ts = 20 ◦C, a mesh-like pattern was developed, while
at 10 ◦C higher temperature, the structures during a similar duration of annealing started to evolve
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into a striped pattern, which could be attributed to the formation of more energetically favorable
up-standing lamella [98]. Therefore, these results confirm the potential of solvo-thermal annealing and
offer a tool to optimize the processing of high molecular weight and semi-crystalline polymers as well
as high χ-parameter block copolymers.

3.3. Evaluation of the Polymer-Solvent Interaction Parameter

When swelling experiments are performed in a systematic and reproducible manner, they provide
valuable quantitative information regarding solvent-polymer interactions, i.e., the selectivity of the
solvent toward block copolymer components. Figure 7a presents systematic measurements of the
swollen films of homopolymers PS and P2VP and of block copolymer PS-PVP, all at similar annealing
conditions as a function of the partial vapor pressure of chloroform. As can be seen from the data,
chloroform had a clear selectivity to the P2VP block, since P2VP film adsorbed up to 15% more solvent
than the PS film. Furthermore, as seen in Figure 7b, the solvent uptake by PS-PVP block copolymer
film could be considered as an average of that by PS and P2VP phases, taking into account a symmetric
volume composition of the PS-PVP diblock copolymer. We note that, in earlier studies, chloroform was
considered as an almost neutral solvent to the components of the PS-PVP block copolymer [73].
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Figure 7. Polymer volume fraction Φp of PS-PVP (SV), PS, and poly(2-vinyl pyridine) (P2VP) films
with a dry thickness of ~40 nm upon stepwise increase of p/p0 of chloroform: (a) in swollen PS-PVP
(green squares), PS (blue triangles), and P2VP (red dots) films all at a temperature set Tv/Ts of 14 ◦C/20
◦C; (b) in swollen PS (blue) and P2VP (red) films at Tv/Ts = 14 ◦C/20 ◦C (empty symbols, dashed line)
and at Tv/Ts = 19 ◦C/25 ◦C (solid symbols, solid lines). Φp is calculated from the measurements of the
dry and the swollen film thicknesses as hdry/hsw.

We further assessed the swelling behavior of the homopolymer films under two sets of temperatures
Tv/Ts (Figure 7b). For all studied conditions, the values of polymer volume fraction Φp at the
temperature set Tv/Ts = 19 ◦C/25 ◦C were systematically smaller than those at the lower temperature
of the vapors (Tv/Ts = 14 ◦C/20 ◦C). This observation suggests that the increase in the solvent uptake as
a result of the increased vapor pressure dominated the reduction in solvent sorption by the heated
sample (Figure 5). We note that the selectivity of the chloroform to P2VP block was preserved at both
annealing conditions.

Equation (2) allows for the evaluation of polymer-solvent interaction parameters in polymer
films based on the measurements of Φp at each swelling condition, as was earlier reported by several
groups [41,57,60]:

ln(P/P0) = χP,S Φp
2 + ln(1 − Φp) + (1 − 1/N) Φp, (2)

where N is the total degree of polymerization and χP, S is the Flory-Huggins interaction parameter
between the polymer and the solvent; P/P0 is the normalized partial vapor pressure, P is the partial vapor
pressure of the solvent in the chamber, and P0 is the saturated partial pressure of the corresponding
pure solvent.
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Figure 8a,b presents experimental data points of the polymer volume fraction in swollen PS and
P2VP films versus partial vapor pressure P/P0 of the chloroform under different temperature sets. The
dashed lines represent fits according to Equation (2) keeping χ constant at three selected values. The
partial vapor pressure was normalized with regards to the temperature, as described in Supporting
Information. The range of the solvent-polymer interaction parameter χP,S as a function of the dilution
of the polymer (i.e., versus P/P0) was calculated using Equation (2) and is presented in Figure 8c. For PS
films, the values of χ varied from 0.52 to 0.1 with increasing polymer concentration in the range of Φp

0.4–0.9. These values were in a good agreement with the literature data [99]. PVP films showed similar
evaluation results in the range of χ from −0.53 to 0.39. While lower values of χ confirmed a better
quality of chloroform to the PVP phase as compared to PS phase, the negative values of χ indicated
strong polar attractive interactions between the PVP phase and chloroform.
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Figure 8. Polymer volume fraction Φp in swollen (a) PS and (b) P2VP films with an initial thickness of
~40 nm versus normalized partial vapor pressure P/P0 of chloroform at indicated temperatures. Data
points were measured at Tv/Ts of 19 ◦C/20 ◦C (black squares), 14 ◦C/20 ◦C (blue hollow triangles), and
19 ◦C/25 ◦C (red hollow circles), respectively. Dashed curves are calculated fits according to Equation
(2) with a fixed polymer–solvent interaction parameter χ (a) 0.13 (green), 0.68 (red), and 0.41 (black),
and (b) −0.51 (green), 0.39 (red), and 0.02 (black). (c) Polymer–solvent interaction parameter c as a
function of polymer volume fraction Φp of PS (blue hollow triangles) and P2VP (red hollow circles)
~40 nm thick films in chloroform vapor with step wise increasing partial vapor pressure.

Each curve in Figure 8a,b was calculated using fixed χ values of the lower and the upper borders of
the evaluated range as well as the middle value. The data points for PS in Figure 8a were quite compact,
showing no measurable dependence on the temperature conditions within the studied range, and they
could be well fitted with an averaged value of χ ~ 0.31, except for highly swollen films. Obviously,
our approach of measuring the overall solvent uptake does not provide all the information necessary
to gain an improved understanding of the interplay between kinetic and thermodynamic effects that
impact the swelling behavior of polymer chains under confinement. Involving more sophisticated
methods such as as neutron scattering would allow detailed insight into possibly uneven solvent
distributions through the film and into analyses of the plasticization of PS in thin swollen films [85].
Here, we demonstrate that the highly controlled annealing approach allows retrieval of qualitative



Polymers 2019, 11, 1312 13 of 18

differences in the swelling behavior between two studied homopolymers. As seen in Figure 8b, the data
points for PVP films looked more process-dependent compared to PS films. At high polymer volume
fractions above 0.6, the polymer-solvent interactions seemed to be governed by polar interactions,
irrespective of the studied temperature range. With increasing solvent concentration, the type of
interaction changed, suggesting that the solvent selectivity towards PVP phase decreased. We note that
Equation (2) does not take into account specifics of thin films under confinement, such as differences
in the chain conformation in the vicinity of the solid support and the free surface or inhomogeneous
solvent distribution in the film as a result of, e.g., accumulation of polar solvent in the vicinity of the
polar substrate; therefore, the effect of temperature condition on the swelling behavior of thin films can
be weakened on the macroscopic scale.

4. Conclusions

Solvent annealing has been used to improve self-assembly of block copolymer films for more than
20 years, since its application was first reported by Thomas and co-workers in 1998 [100]. Achieving
high precision and reproducibility of the annealing process is still an experimental challenge. In
this study, we demonstrated the effects of environmental and experimental factors on the stability
of the processing conditions. Monitoring the swollen film thickness is a crucial condition to gain
understanding and control over the solvent vapor annealing.

Process parameters such as total vapor flow, dimension and material of the chamber, solvent
property, and temperature were assessed and discussed. We demonstrated that the temperature of
the substrate and the temperature of the vapor are the key factors to controlling the solvent uptake
and the equilibration dynamics in polymer films. Swelling behaviors of homopolymer and block
copolymer films were systematically analyzed to evaluate the solvent selectivity to the block copolymer
components as an example of one of the multiple scientific usages of the method of controlled solvent
vapor annealing. Temperature-controlled swelling of polymer films (solvo-thermal annealing) was
introduced on a quantitative basis. The methodological approach reported herein is applicable to
semi-crystalline conjugated polymers as well as to complex composite materials under confinement.
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