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Abstract: This paper provides an overview of recently developed two dimensional (2D) 

fragment-based QSAR methods as well as other multi-dimensional approaches. In 

particular, we present recent fragment-based QSAR methods such as fragment-similarity-

based QSAR (FS-QSAR), fragment-based QSAR (FB-QSAR), Hologram QSAR 

(HQSAR), and top priority fragment QSAR in addition to 3D- and nD-QSAR methods 

such as comparative molecular field analysis (CoMFA), comparative molecular similarity 

analysis (CoMSIA), Topomer CoMFA, self-organizing molecular field analysis (SOMFA), 

comparative molecular moment analysis (COMMA), autocorrelation of molecular surfaces 

properties (AMSP), weighted holistic invariant molecular (WHIM) descriptor-based QSAR 

(WHIM), grid-independent descriptors (GRIND)-based QSAR, 4D-QSAR, 5D-QSAR and 

6D-QSAR methods. 

Keywords: QSAR; fragment similarity based; fragment-based; 2D-QSAR; 3D-QSAR;  

nD-QSAR 
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1. Introduction 

Quantitative structure-activity relationship (QSAR) is based on the general principle of medicinal 

chemistry that the biological activity of a ligand or compound is related to its molecular structure or 

properties, and structurally similar molecules may have similar biological activities [1]. Such 

molecular structural information is encoded in molecular descriptors and a QSAR model defines 

mathematical relationships between descriptors and biological activities of known ligands to predict 

unknown ligands’ activities. QSAR methods have been applied in several scientific studies including 

chemistry, biology, toxicology and drug discovery to predict and classify biological activities of virtual 

or newly-synthesized compounds [2–6]. QSAR models can also be used in designing new chemical 

entities (NCEs) and are now regarded as essential tools in pharmaceutical industries to identify 

promising hits and generate high quality leads in the early stages of drug discovery [5,7]. In other 

words, QSAR studies can reduce the costly failures of drug candidates by identifying the most 

promising hit compounds and reducing the number of costly experiments. 

In general, QSAR modeling (Figure 1) involves a systematic process with multiple steps, including 

dataset preparation, molecular descriptors selection and generation, mathematical or statistical models 

derivation, model training and validation using a training dataset and model testing on a testing 

dataset. During the first step, or dataset preparation, it is important to pay attention to the quality of 

data to develop a reliable QSAR model. Data should come from the same bioassay protocols and it is 

preferable to collect and use the data generated from a single lab or source in order to avoid data 

inconsistencies and interlaboratory variability. Moreover, the dataset should have a large enough 

number of compounds to ensure statistical stability of a QSAR model and the bioactivity should cover 

a range of values with a good distribution [5]. The second step in QSAR modeling is the selection and 

generation of molecular descriptors for ligands in the dataset. There are many descriptors available and 

only some of them are significantly correlated with the activity. Therefore, selection of appropriate 

descriptors, which best capture the structural variation and information is important to derive a robust 

QSAR model. Several methods such as evolutionary algorithms (for example, genetic algorithm) and 

machine learning techniques (for example, forward selection) can be used for 

descriptor/variable/feature selection. After molecular descriptors are defined and generated for all 

ligands in the dataset, the next step is to decide a suitable statistical or mathematical model to find the 

relationship between such descriptors and biological activities. For instance, linear approaches such as 

multiple linear regression (MLR) or partial least square (PLS) and non-linear methods such as neural 

networks or support vector machine can be used as correlation or mapping functions. Once a model is 

chosen, it is then trained on a training dataset which contains a subset of randomly selected compounds 

from a known dataset, leaving the remaining to be used as testing compounds. During the model 

training, validation methods such as leave-one-out cross-validation (LOOCV) are often performed to 

ensure the statistical stability of the QSAR model. The training process is repeated until a satisfactory 

training performance is achieved. Finally, a testing process is performed in which the trained model is 

used to predict activity values of those compounds in the testing set.  
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Figure 1. A general scheme of a QSAR model development which includes systematic 

training and testing processes. 
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A wide range of QSAR methodologies have been invented since the concept was first introduced by 

Free, Wilson, Hansch, and Fujita [8,9] in 1964. Traditional 2D-QSAR methods such as Free-Wilson 

and Hansch-Fujita models use 2D molecular substituents or fragments and their physicochemical 

properties to perform quantitative predictions. Since then, QSAR has experienced a fast development 

and the first novel 3D-QSAR method called comparative molecular field analysis (CoMFA) was 

introduced by Cramer et al. in 1988. The CoMFA method brought a foundation for the development of 

other 3D-QSAR methods such as CoMSIA, SOMFA, CoMMA as well as multidimensional  

(nD)-QSAR methods such as 4D-QSAR, 5D-QSAR, etc., to tackle known 3D-QSAR problems such as 
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subjective molecular alignment and bioactive conformation problems. In recent years, fragment-based 

methods have attracted some attention because predicting molecular properties and activities based on 

molecular fragments is simple, fast and robust. In this review, we present recently available  

fragment-based QSAR methods and multidimensional (nD)-QSAR methods developed over the past 

few decades. 

2. Fragment-Based 2D-QSAR Methods 

Over the years, improved methods—that are based on such traditional QSAR methods—have been 

introduced. 2D methods allow modeling of a wide variety of ligands or compounds including cases 

where 3D crystal receptor or target structures are not available [7].  

2.1. Hologram-QSAR (HQSAR) 

One earlier example of a fragment-based method is HQSAR (Hologram QSAR) from Tripos 

[10,11]. Given a method based on 2D molecular fragments, HQSAR does not require molecular 

alignment and therefore allows for automated analyses of large data sets without manual intervention. 

The first step in the HQSAR method is to generate molecular holograms which contain counts of 

molecular fragments and can be related to 2D fingerprints. As depicted in Figure 2, the input dataset 

contains 2D structures of compounds and they are split into all possible linear and branched fragments. 

Then each unique fragment is assigned to a specific large positive integer by using a cyclic redundancy 

check (CRC) algorithm. All fragments generated are then hashed into array (hologram) bins in the 

range from 1 to L (total length of hologram). Bin occupancies represent counts of fragments in each 

bin. In other words, they are structural descriptors, which contain topological and compositional 

molecular information. During the second step, such fragment counts or hologram bins are correlated 

to corresponding biological activities (dependent variables) in a form of mathematical equation. Leave-

one-out cross-validation (LOOCV) is performed to identify an optimal number of explanatory 

variables or components which yields an optimal model. Then by using standard partial least square 

(PLS) analysis, a following mathematical regression equation is derived to correlate hologram bin 

values or components with corresponding biological activities: 





L

j

jiji CxconstBA
1

       (1) 

where BAi is the biological activity of the i
th

 compound, xij is the occupancy value of the molecular 

hologram of the i
th

 compound at position or bin j, Cj is the coefficient for the bin j derived from the 

PLS analysis, and L is the length of the hologram. 

One drawback of HQSAR is a phenomenon called a fragment collision problem which happens 

during the hashing process of fragments. Although hashing reduces the length of the hologram, it 

causes bins to have different fragments in the same bin. The hologram length, a user-definable 

parameter, controls the number of bins in the hologram and alteration of hologram length can causes 

the pattern of bin occupancies to change. The program provides 12 default lengths which have been 
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found to give good predictive models on different datasets. Each of these default lengths provides a 

unique set of fragment collisions [11].  

Several HQSAR models for different ligand datasets including cases where the 3D crystal structure 

of receptor targets or proteins are unavailable have been developed in recent years [12–15]. For 

example, HQSAR was used to study a set of 9-substituted-9-deazaguanine analogs which inhibit the 

human purine nucleoside phosphorylase (PNP) enzyme. HQSAR was used to identify structural 

features with poor and favorable contributions towards molecular interactions in the active site [12]. In 

addition, HQSAR has been used in virtual screening to identify hits [16–18]. For instance, Salum et al. 

studied a set of 180 indole derivatives having potent anticancer activity. They developed several 

HQSAR models and compared them to determine optimal cutoff values in virtual screening  

procedures [7]. 

Figure 2. Hologram-QSAR (HQSAR) model development, which includes molecular 

hologram generation and partial least square analysis to derive a final predictive  

HQSAR equation.  
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2.2. Fragment-Based QSAR (FB-QSAR) 

Recently, Du et al. [19] introduced a 2D-QSAR method based on molecular fragments. The method 

uses a mixed Hansch-Fujita [9] linear free energy equation and Free-Wilson [8] equation. In particular, 

molecular fragments are first generated from ligands and the total binding free energy o

iG  between 

ligand i and the receptor is considered as the sum of contributions ∆gi,α from all fragments: 
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where ∆gi,α is the free energy contribution of fragment Fi,α and bα is a weight coefficient for each 

fragment. The binding free energy of a fragment, ∆gi,α, is described by a set of physical and chemical 

properties of the fragment: 





L

l

lili pag
1

,,,       (3) 

where pi,α,l is the l-th property of fragment Fi,α in molecule mi and al is the coefficient of l-th property 

of the fragment.  

In their studies, a total of 48 neuraminidase (NA) inhibitor analogs were used to train and test the 

model. Ten physicochemical properties were calculated for each substituent. Using an iterative double 

least square (IDLS) procedure, two sets of coefficients, one for fragments (bα from Equation 2) and 

another for physicochemical properties (al from Equation 3), in the linear equation were solved 

alternately and iteratively until the model met the convergence criterion. After 176 iterations, the 

model converged and both sets of coefficients were solved. Such converged coefficients were used for 

the test calculation and the correlation coefficient (r) was 0.9525 (or r
2
 = 0.91). They also tested on 

Free-Wilson and Hansch-Fujita models, which achieved r values of 0.2488 (r
2
 = 0.06) and  

0.9373 (r
2
 = 0.88), respectively. The quantitative results proved the IDLS procedure enhanced the 

predictive power, and, given a novel method, more applications are necessary to fully explore its 

predictive potential. 

2.3. Fragment-Similarity Based QSAR (FS-QSAR)  

More recently, a fragment-similarity based QSAR (FS-QSAR) method [20] was developed to solve 

the major limitation of the original Free-Wilson method by introducing the fragment-similarity concept 

in the linear regression equation. Such a similarity concept was applied for the first time to improve the 

traditional Free-Wilson equation instead of using physicochemical properties which often produce 

non-unique solutions. In this approach, the fragment similarity calculation was carried out by the 

similarity. It used the lowest or highest eigen values calculated from BCUT-matrices [21,22], which 

contained partial charges of individual atoms and their atomic connection information in each 

individual fragments. The updated equation of the FS-QSAR is as follows: 

MSF
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N = the total number of substituent positions.  

Pj = the total number of possible substituents at the j
th

 substituent position.  

max = the max function picks the maximum score among similarity scores. 

Fjk = the k
th 

fragment (a known fragment in the training set) at the j
th 

substituent position.  

Fjg = a given fragment (the fragment from a testing/unknown compound) at the j
th

 substituent position. 

Sim[Fjk, Fjg] = the fragment similarity function compares Fjg to Fjk and calculates a similarity score. 
MSF

jA  = the coefficient of the most similar fragment (MSF) at the j
th

 substituent position. 
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The similarity function used in Equation (4) is defined as: 

)()(
),(

jgjk

jgjk

FEVFEV
eFFSim


    (5) 

where EV(Fjk) = lowest or highest eigen value of BCUT matrix of a fragment (Fjk). 

The algorithm was developed and then tested on different datasets including 83 COX2 analogs and 

85 triaryl bis-sulfone analogs. For statistical modeling, the model was repeatedly tested on five 

different testing sets which were generated by random selection of compounds. The average squared 

correlation coefficient, r
2
, over five testing sets was 0.62 for COX2 analogs and 0.68 for bis-sulfone 

analogs. For comparison, the original Free-Wilson method was also tested, achieving the average r
2
 

values of 0.46 for COX2 dataset and 0.42 for bis-sulfone dataset. Moreover, for better comparison the 

BCUT-similarity function was replaced by Tanimoto coefficient (Tc) method, the traditional 2D 

molecular similarity function, and the average r
2
 was 0.62 for both COX2 and bis-sulfone analogs. The 

FS-QSAR method was proved to have an effective predictive power compared to the traditional  

2D-QSAR method since it solved the major limitation of the original Free-Wilson method by 

introducing the similarity concept into the regression equation. However, the predictive accuracy of 

FS-QSAR may not be as high as other higher dimension QSAR methods, but the method provides an 

objective, unique and reproducible 2D-QSAR model. 

2.4. Top Priority Fragment QSAR  

Casalegno et al. [23] introduced a fragment-based QSAR approach to predict pesticide aquatic 

toxicity to the rainbow trout. The method prioritizes fragments’ contributions to toxicity with the 

assumption that one fragment among others present in a compound is mainly responsible for the 

toxicity. They used 282 carefully selected pesticides which were partitioned into 240 training and 42 

testing molecules. In the first stage, all 282 molecules were broken into small substructures or atomic 

centered units (ACUs). Then, a numerical criterion based on the training set toxicity data was applied 

to assign one fragment or top-priority fragment (TPF), made up of one or more ACUs, to each training 

molecule. Once the TPFs were extracted, a ‘priority matrix’ was used to extract all priority 

relationships. A priority matrix contains information among training TPFs and can be used to find out 

which TPF has a priority to be assigned to a testing molecule. In the last stage, testing molecules were 

submitted to check for the presence of TPFs and information from the priority matrix was used to 

identify the ones(s) with highest priority, and final prediction was made based on average fragment 

toxicity. The final r
2
 for the training set was 0.85 and 0.75 for the test set proving the model’s 

effectiveness. 

2.5. Other Fragment-Related QSAR Studies 

In recent years, some new fragment-based QSAR methods have been discovered as well as 

applications to biological interests. Zhokhova et al. [24] introduced a method which uses fragmental 

descriptors with labeled atoms and applied it to their QSAR/QSPR (quantitative structure-property 

relationship) studies. In their approach, the fast stepwise multiple linear regression (FSMLR) and 

three-layer artificial neural network (ANN) methods implemented in the NASAWIN program [25] 



Int. J. Mol. Sci. 2010, 11             

 

3853 

were used to generate fragmental descriptors with labeled atoms and to construct QSAR/QSPR 

models. Andrade et al. [26] used HQSAR and other 2D-QSAR programs to study a series of 

hydrazides as antituberculosis agents. They used DRAGON 5.4 [27], BuildQSAR [28], PIROUETTE 

[29] programs for generation and selection of 2D molecular descriptors. Tsygankova et al. [30] also 

did the QSAR studies of barbituric acid derivatives using 2D fragments as descriptors with different 

regression approaches such as step-by-step regression to construct correlation equations.  

3. 3D-QSAR 

The 3D-QSAR methods have been developed to improve the prediction accuracies of 2D methods. 

3D methods are computationally more complex and demanding than 2D approaches. In general, there 

are two families of 3D-QSAR methods: alignment-dependent methods and alignment-independent 

methods. Both families need experimentally or computationally derived bioactive conformations of 

ligands as templates for studies. Such 3D conformers are one of the most important factors to produce 

reliable 3D-QSAR models and are also the major drawbacks of 3D methods. Examples of both 

families are discussed below. 

3.1. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices 

Analysis (CoMSIA) 

One of well-known methods is a three dimensional QSAR method called CoMFA developed by 

Cramer et al. [31]. It is a method to describe 3D structure-activity relationship quantitatively by 

considering 3D structures, and steric and electrostatic fields of ligands which are superimposed to 

generate such molecular fields. In other words, CoMFA is an alignment-dependent method in which 

molecular field interaction energy terms are correlated with biological activities/responses using 

multivariate statistical analyses. Figure 3 illustrates a general CoMFA modeling process where active 

molecules are first placed in a 3D grid. Using a probe atom, steric and electrostatic energies are 

measured at each grid point for each molecule. Partial least square (PLS) analysis is then performed to 

correlate such field energy terms to activity values and make predictions. Such features and 

calculations make CoMFA an improved and different method from other traditional QSAR 

approaches. 

Another 3D QSAR method named CoMSIA by Klebe et al. is similar to CoMFA in terms of using a 

probe atom along grid points. However, additional molecular fields have been implemented in the 

CoMSIA approach. In particular, electrostatic, steric, hydrophobic, hydrogen bond acceptor (HBA), 

and hydrogen bond donor (HBD) properties are generated using a Gaussian distance function [32]. 

Using such a Guassian-type potential function instead of Lennard-Jones and Coulombic functions 

provides accurate information at grid points for calculating molecular fields [33]. 

However, the major drawback of both methods is that all molecules have to be aligned and such 

alignment can affect the final CoMFA/CoMSIA model and predictions. A good alignment is necessary 

and quality of such alignment can be subjective, time-consuming [34] and CoMFA/CoMSIA models 

are sometimes non-reproducible [33]. Nevertheless, several CoMFA/CoMSIA models have been 

developed for many drug design and molecular modeling studies [6,35–39] 
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Figure 3. A general CoMFA workflow. 
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3.2. Topomer CoMFA  

Recently, Cramer et al. introduced a new QSAR method named the Topomer CoMFA [40] which is 

a rapid fragment-based 3D-QSAR method to predict significant R-groups, which can optimize the 

biological activities as well as optimized structural changes for lead scaffold hopping. It uses the 

compound library collection as a source of molecular fragments to identify such substituents or  

R-groups. The Topomer CoMFA method, unlike CoMFA, does not require the subjective alignment of 

3D ligand conformers and uses automated alignment rules. A topomer describes both a conformation 

and orientation of a molecular fragment and it is generated based on 2D structure without any relation 

to a receptor site or other ligands [34,40]. After such topomers are generated, CoMFA analysis is then 

carried out where electrostatic and steric fields are calculated using a probe atom around the 3D grid. 

Subsequently, partial least square (PLS) with leave-one-out cross-validation is performed to generate a 

predictive model. 15 3D-QSAR analyses retrieved from the literature yielded an average q
2
 of 0.520 

compared to literature average q
2
 of 0.636 [40]. Topomer CoMFA has the potential to optimize 

biological activities of ligands via fragments and has been used in lead-optimization and R-groups 

virtual screening studies [34,40] 

3.3. Self-Organizing Molecular Field Analysis (SOMFA) 

Robinson et al. [41] introduced another alignment-dependent 3D-QSAR method called SOMFA, 

which is based on both molecular shape and electrostatic potentials. Briefly, 3D grids are created as in 

other 3D-QSAR methods and for each grid point, molecular shape and electrostatic potential values 

are calculated. Shape values are binary meaning 1 for being inside the van der Waals envelope and 0 

outside. The key step is that the electrostatic potential value at each grid point is multiplied by the 

mean centered activity for that molecule as a weighing factor which causes the most active and least 

active molecules to have higher values than other common and less interesting molecules which are 

closer to the mean activity. The SOMFA grid value at a given x,y,z is defined as: 

Activity_Centered_Mean)z,y,x(opertyPrSOMFA
Set_Training

i
iz,y,x    (6) 

Using such a property master grid, an estimate of the activity of the i
th

 molecule as defined by a 

certain property can be derived as: 


x y z

z,y,xii,property
SOMFA)z,y,x(opertyPrSOMFA    (7) 

In the final stage, correlations between calculated SOMFA property values (
i,property

SOMFA ) and 

biological activities are derived via multiple linear regression and a final predictive model is produced. 

Robinson et al. tested the model using two datasets: 31 steroid compounds and 35 sulfonamides. The 

corresponding correlation coefficient values (r
2
) of 0.5776 (r = 0.76) and 0.5329 (r = 0.73) were 

achieved, respectively. Compared to other methods such as CoMFA [31], MS-WHIM [42] and few 

others on steroid dataset, SOMFA had the lowest standard deviation of errors of prediction (SDEP), 

which is the root-mean-square error of the predictions. In short, SOMFA is similar to CoMFA in terms 

of using grids and necessity of molecular alignment but is not as statistically rigorous as CoMFA [1], 
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as the SOMFA model is conceptually simple without heavy statistical elements such as partial least 

square (PLS). 

3.4. Alignment-Free 3D-QSAR Methods 

In the last few decades, other 3D-QSAR methods which do not rely on alignments were introduced. 

Some examples include autocorrelation of molecular surfaces properties (AMSP) [43], comparative 

molecular moment analysis (CoMMA) [44], WHIM (Weighted Holistic Invariant Molecular) method 

[45,46], Molecular surface (MS)-WHIM [42], and GRIND [47].  

3.4.1. Autocorrelation of Molecular Surfaces Properties (AMSP) 

Wagener et al. introduced the AMSP method to map the physical properties of ligands to a van der 

Waals surface and individual atoms, respectively. It uses a 3D descriptor based on spatial 

autocorrelation of molecular properties at distinct points on the molecular surface. The points are 

randomly distributed to have a continuous surface and the autocorrelation coefficient is obtained by 

summing the products of property values at various pairs of points at particular distances. For a series 

of distance intervals (dlower, dupper), a vector of autocorrelation coefficients is obtained as follows: 

 
ij

upperijlowerjiupperlower dddpp
L

ddA )(
1

),(    (8) 

where pi is the molecular property value at point i, pj is the molecular property value at point j and L is 

the total number of distances in the interval [43]. 

Therefore, the vector contains a compressed expression of the distribution of a property on the 

molecular surface. After autocorrelation vectors were obtained, a multilayer neural network was then 

trained using such vectors to derive a predictive model of biological activity of 31 steroid compounds. 

The correlation coefficient value, r, of 0.82 (r
2
 = 0.6724) was achieved with a cross-validated r

2
 of 

0.63. In summary, the advantages of such autocorrelation vectors are the facts that they are shown to 

be invariant to translation and rotation since only spatial distances are used and have condensed 

description of molecular surface. However, original information cannot be reconstructed from such 

condensed vectors and the pharmacophore nature of a ligand may not be clear or interpretable [43]. 

3.4.2. Comparative Molecular Moment Analysis (CoMMA) 

Silverman et al. [44] introduced the CoMMA method, which calculates the zeroth-, first-, and 

second-order spatial moments of the charge (such as quadrupolar moments) and the mass distribution 

(such as moments of inertia). Such molecular moment descriptors may be classified in three different 

categories: descriptors relating solely to molecular shape, descriptors relating only to molecular charge 

and descriptors relating to both shape and charge. The authors calculated 13 such descriptors and used 

them in partial least square analysis to generate predictive QSAR models for 31 steroid compounds. A 

range of statistical performance was obtained depending on different partial charge calculation 

methods used to derive electrostatic moments. Cross-validated r
2
 values ranging from 0.412 to 0.828 

were obtained using electrostatic moment descriptors calculated from Gasteiger charges or Guassian 

molecular orbital ab initio methods. The results showed that using quantum chemistry calculation-
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based moments produced better predictive models than using only Gasteiger charge-based moments. 

Despite CoMMA’s comparable statistical performances to CoMFA’s, there are some limitations which 

may account for the limited number of published CoMMA applications. One reason is that the value of 

these descriptors, which measures the displacement between the center of mass and center of dipole 

with respect to the principal inertial axes, equals infinity for symmetric molecules whose dipole 

moment is zero [5].  

3.4.3. Weighted Holistic Invariant Molecular (WHIM) Descriptor-Based QSAR 

WHIM descriptors contain 3D molecular information such as molecular size, shape, symmetry and 

distribution of molecular surface point coordinates [45,46]. Molecular surface (MS)-WHIM is a 

WHIM-based 3D descriptor derived directly from molecular surface properties [42]. For WHIM 

descriptors, two types of matrices are defined: a molecular matrix containing cartesian coordinates of 

the n atoms and diagonal matrices containing the weights which are physicochemical properties 

associated with the n atoms of the molecule [42]. Each element of the diagonal matrix is defined as: 

  










 n

1i
i

n

1i
kikjiji

jk

w

qqqqw
s     (9) 

where n is the number of atoms, wi is the weight of ith atom, qij is the j
th

 coordinate of the i
th

 atom and 

j
q is the average of the j

th
 coordinates [45]. 

In this expression, atoms can be weighted by mass, van der Waals volume, atomic electronegativity, 

electrotopological index of Kier and Hall, atomic polarizability and molecular electrostatic  

potential [33]. Elements in each diagonal matrix are subjected to principal component analysis (PCA) 

to obtain the scoring matrix, which is used to calculate PCA eigen values and eigen value proportion. 

Such values and proportions are then correlated with the molecular size and shape, respectively. One 

major advantage of the WHIM approach is that it provides a 3D QSAR descriptor which is invariant to 

translation and rotation of 3D molecular structures. In MS-WHIM, properties associated with the 

molecular surface points are used as different weighting schemes to compute statistical parameters. In 

particular, the unitary value and molecular electrostatic potential (MEP) are computed at each point of 

the Connolly molecular surface [48], and they are considered as weights. The unitary value contains 

information about the molecular surface shape and MEP provides the electrostatic information about 

the electron density distribution [42]. Although the WHIM approach is not sensitive to molecular 

orientation, MS-WHIM descriptor values are affected by the facts that the Connolly surface points are 

dependent on the 3D orientation of the molecule and indices for different weighting schemes are 

sensitive to surface point density [42]. The authors tested both WHIM and  

MS-WHIM on 31 steroid compounds and achieved the SDEP (standard deviation error of prediction) 

values of 1.750 and 0.742, respectively while CoMFA’s SDEP was 0.837. The results suggested that  

MS-WHIM prediction performance was comparable to CoMFA’s. SDEP was defined as follows: 
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     (10) 

WHIM/MS-WHIM descriptors are invariant to 3D molecular orientation but both methods, like 

other 3D-QSAR methods, rely on ligand conformation, which may be subjective if ligand-receptor  

co-crystal structures are not known for the target of interest. 

3.4.4. Grid-Independent Descriptors (GRIND)-Based QSAR 

In an attempt to provide alignment-free descriptors which are easy to understand and interpret, 

Pastor et al. introduced grid-independent descriptors [47]. The method utilizes specific probes such as 

the O probe (carbonyl oxygen) and N1 probe (amide nitrogen) to calculate molecular interaction fields 

(MIFs) at grid points. At each node of the grid, the energy between the probe and target ligand (E) is 

calculated as: 

ljhbes
EEEE         (11) 

where Ees is the electrostatic energy, Ehb is the hydrogen-bonding energy, and Elj is the Lennard-Jones 

potential energy [49]. 

In this method, electrostatic interactions, hydrophobic interactions, hydrogen bond acceptor and 

hydrogen bond donor fields are considered to get a set of positions which defines a ‘virtual receptor 

site’ (VRS). VRS regions are then encoded into GRIND via an auto- and cross-correlation transform 

so that those regions are no longer dependent upon their positions in the 3D space. In other words, 

autocorrelation descriptors of the fields are calculated and only the highest products of molecular 

interaction energies are stored while others are discarded. This difference is responsible for the 

‘reversibility’ of GRIND and the descriptors can be back-projected in 3D space using another related 

program called ALMOND [50]. The statistical performance of GRIND is comparable to other 

methods, but the advantage is that it is alignment-free and easy to interpret. However, bioactive 

conformations of ligands are valuable information to derive the virtual receptor site (VRS) and 

limitations on such information may affect final predictive models like other 3D methods. 

3.5. Multi-Dimensional (nD) QSAR Methods 

Multi-dimensional (nD) QSAR methods are essentially extensions of 3D-QSAR methods. These 

methods incorporate additional physical characteristics or properties (or a new dimension) to tackle the 

drawbacks of 3D-QSAR methods. One example is 4D-QSAR by Hopfinger et al. [51] which samples 

molecular conformations and alignments during the generation of a QSAR model. While incorporating 

some CoMFA features, it introduces the fourth dimension, which is the conformational Boltzmann 

sampling, and enables the method to be used as a receptor-independent (RI) method as well as 

receptor-dependent (RD) method in which the geometry of the receptor is known. It should be noted 

that their 4D-QSAR method does not solve the alignment problem but it allows a rapid evaluation of 

individual trial alignments [51]. Such 4D-QSAR implementation can be found in XMAP program 

[51,52]. Recently, it has been shown that 5D- and 6D-QSAR can be used for multiple representations 

of the receptor as well as its solvation states [53–55]. In the reported 5D-QSAR method, Vedani et al. 
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introduced a multiple representation of induced-fit hypotheses, i.e., the adaptation of the receptor 

binding pocket to the individual ligand topology, as the fifth dimension. In other words, they generated 

a family of quasi-atomistic receptor surrogates [56] which are optimized by using a genetic algorithm. 

The binding energy was calculated as: 

fitinducedstrainernalintligand,solvationreceptorligandbinding
EESTEEE 


  (12) 

where Eligand-receptor is the force field energy of the ligand-receptor interaction, Esolvation,ligand is the ligand 

desolvation energy, TS is the change in the ligand entrophy upon receptor binding, Einternal strain is the 

change in ligand internal energy upon receptor binding, and Einduced fit is the energy uptake required for 

adapting the receptor surrogate [54]. 

The 5D-QSAR method was tested on a set of 65 NK-1 receptor antagonists and a set of 131 Ah 

receptor ligands, achieving predictive r
2
 values of 0.837 and 0.832, while 4D-QSAR model resulted in 

0.834 and 0.795, respectively [54]. They concluded that the binding affinities of new molecules were 

predicted more accurately with 5D-QSAR than with other lower dimension models. In the reported 

6D-QSAR model, the simultaneous consideration of different solvation models was introduced by 

mapping parts of the surface area with different solvent properties [55]. 3D, 4D, 5D and 6D models 

were explored as comparison studies and the results showed the 6D-QSAR model produced the best 

predictive r
2
 of 0.885 [55]. Both 5D- and 6D-QSAR methods are implemented in the Quasar and 

VirtualToxLab software [56,57]. 

4. Comparison of 2D or Fragment-Based QSAR versus 3D or nD-QSAR Methods 

In general, the predictive quality of 3D-QSAR methods depends on several factors such as the 

quality of molecular alignments/superimpositions, and information on ligand bioactive conformations. 

Especially molecular superimpositions are subjective and ligand bioactive conformations always 

remain unclear when there is no structural information on the corresponding receptor-ligand 

complexes. Conventional CoMFA results may often be non-reproducible because the model depends 

on the orientation of alignment of molecules, which can be varied and subjective. Although various 

improved methods and other procedures, which were discussed earlier in the paper, have been 

introduced to overcome major limitations of 3D-QSAR methods, i.e., subjective molecular alignment 

and bioactive conformation problems, many of them still require manual interventions and 

superimpositions [58,59]. From this prospect, 2D fragment-based QSAR methods have certain 

advantages over multi-dimensional QSAR methods since fragment-based or 2D-QSAR methods are 

simple and robust and do not require subjective (or time consuming) molecular alignment or putative 

binding conformation or determination of 3D structures. However, the disadvantage is that some of 

2D-QSAR methods such as Hansch-Fujita method may provide non-unique solutions and the overall 

predictive quality may not be as good as some multi-dimensional methods which are computationally 

more complex and demanding. A summary of QSAR methods discussed in the paper is listed in Table 

1. It should be noted that the performance of each QSAR model depends on the choice of dataset and 

different datasets can result in different predictive q
2
 or r

2
 or SDEP values. 
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Table 1. Summary of different QSAR methods and source information. 

Method nD Dataset 

Statistical 

model Performance Reference/Website 

HQSAR 2D 21 Steroids PLS 

q
2
 = 0.71;  

r
2
 = 0.85 [11] 

[11] 

http://www.tripos.com 

FB-QSAR 2D 48 NA analogs  IDLS 

r = 0.95  

(r
2
 = 0.91) [19] [19] 

FS-QSAR 2D 

85 bis-sulfone analogs; 

83 COX2 analogs MLR 

r
2
 = 0.68;  

r
2
 = 0.62 [20] [20] 

TPF-QSAR 2D 282 pesticides 

PM-based 

prediction r
2
 = 0.75 [23] [23] 

CoMFA 3D 

21 Steroids 

54 HIV-1PR inhibitors 

PLS 

 

q
2
 = 0.75; r

2
 = 0.96 [11] 

q
2
 = 0.68; r

2
 = 0.69 [60] 

[31] http://www.tripos.com 

[60] 

CoMSIA 3D 

Thermolysin inhibitors 

54 HIV-1PR inhibitors PLS 

q
2
 = [0.59, 0.64] [32]

 

q
2
 = 0.65; r

2
 = 0.73 [60] 

[61,62] http://www.tripos.com 

[60] 

Topomer 

CoMFA 3D 15 datasets from literature PLS average q
2
 = 0.636 [40] [40] http://www.tripos.com 

SOMFA 3D 

31 steroids; 35 

sulfonamides MLR r
2
 = 0.58; r

2
 = 0.53 [41] [41] 

AMSP 3D 31 steroids MNN q
2
 = 0.63; r

2
 = 0.67 [43] [43] 

CoMMA 3D 31 steroids PLS q
2
 = [0.41, 0.82] [44] [44] 

WHIM 3D 31 steroids PCA SDEP = 1.750 [42] 

[45] 

http://www.vcclab.org/lab/indexhlp/whimdes.html  

MS-WHIM 3D 31 steroids PCA SDEP = 0.742 [42] [42] 

GRIND 3D 

31 steroids 

175 hERG inhibitors 

PLS; PCA 

PLS; SVM 

q
2
 = 0.64; SDEP = 0.26 [47] 

q
2
 = 0.41; r

2
 = 0.57; SDEP = 0.72 [63] 

[47] http://www.moldiscovery.com/soft_grid.php  

[63] 
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Table 1. Cont. 

Method nD Dataset 

Statistical 

model Performance Reference/Website 

4D-QSAR 4D 

20 DHFR inhibitors; 

42 PGF2a analogs;  

40 2-substituted 

dipyridodiazepione 

inhibitors 

33 p38-MAPK inhibitors 

PLS 

GL-PLS 

r
2
 = [0.90, 0.95]; 

r
2
 = [0.73, 0.86];  

r
2
 = [0.67, 0.76] [51]

 

q
2
 = [0.67, 0.85] [64] 

[51] http://www.seascapelearning.com/4DsgiSW/  

[64] 

5D-QSAR 5D 

65 NK-1 antagonists;  

131 Ah ligands MLR 

r
2
 = 0.84;  

r
2
 = 0.83 [54] 

[54] 

http://www.biograf.ch  

6D-QSAR 6D 

106 estrogen  

receptor ligands MLR 

q
2
 = 0.90; 

r
2
 = 0.89 [55] 

[55] 

http://www.biograf.ch  

HQSAR = Hologram QSAR 

FB-QSAR = Fragment-based QSAR 

FS-QSAR = fragment-similarity-based QSAR 

TPF-QSAR = Top priority fragment QSAR 

CoMFA = Comparative molecular field analysis 

CoMSIA = Comparative molecular similarity indices 

analysis   

SOMFA = Self-organizing molecular field analysis 

AMSP = Autocorrelation of molecular surface properties 

CoMMA = Comparative molecular moment analysis 

WHIM = Weighted holistic invariant molcular QSAR 

MS-WHIM = Molecular surface WHIM 

GRIND = Grid independent descriptor 

PLS = Partial least square 

IDLS = Iterative double least square 

PM = Priority matrix 

MNN = Multilayer neural networks 

MLR = Multiple linear regression 

PCA = Principal component analysis 

q
2
 = cross-validated r

2
 

SDEP = standard deviation of errors of prediction 
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5. Conclusion 

We have provided an overview of different QSAR methods and recent development in  

fragment-based approaches using selected studies as an illustration. Since each QSAR method has its 

own advantages and disadvantages, researchers should choose appropriate methods for modeling their 

systems. However, given a wide range of choices, it is a challenging task to pick appropriate models 

for one’s studies. This paper outlines many basic principles of new fragment-based QSAR methods as 

well as other 3D- and nD- QSAR models and illustrates some examples which may be helpful 

references to many researchers. 
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