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Abstract

Pine wilt disease caused by Bursaphelenchus xylophilus is a major tree disease that threat-

ens pine forests worldwide. To diagnose this disease, we developed battery-powered

remote sensing devices capable of long-range (LoRa) communication and installed them in

pine trees (Pinus densiflora) in Gyeongju and Ulsan, South Korea. Upon analyzing the col-

lected tree sensing signals, which represented stem resistance, we found that the mean

absolute deviation (MAD) of the sensing signals was useful for distinguishing between unin-

fected and infected trees. The MAD of infected trees was greater than that of uninfected

trees from August of the year, and in the two-dimensional plane, consisting of the MAD

value in July and that in October, the infected and uninfected trees were separated by the

first-order boundary line generated using linear discriminant analysis. It was also observed

that wood moisture content and precipitation affected MAD. This is the first study to diag-

nose pine wilt disease using remote sensors attached to trees.

Introduction

Pine wilt disease (PWD) is one of the major plant diseases that, despite years of research and

control efforts, constantly threaten pine forests in Japan, China, Canada, and Europe [1–4].

PWD was first reported in Japan in 1905, and has spread nationwide in Korea since it was first

discovered in Busan in 1988 [1]. PWD is caused by the pine wood nematode, Bursaphelenchus
xylophilus, which is transferred to trees by vector insects such as Monochamus alternatus and

Monochamus saltuarius [1,5]. Once infection begins, the pine trees gradually dry from the top

to the bottom and die [6].

Aerial photography and image analysis technologies are available to diagnose PWD. PWD

or canopy decline due to PWD could be detected in color, false-colour/near-infrared (FCNI),

hyper-spectral or (and) thermal images taken from a drone [7–12]. However, actual drone

operations are limited owing to unsuitable weather conditions in forests, short drone flight

times, and limited payload [13–15]. Real-time monitoring is currently unfeasible using aerial

photographic analysis. Specifically, in forests containing both hardwoods and conifers, the

diagnosis of PWD may be more difficult during fall and winter.

Wireless remote sensing technology is an alternative that can help predict the onset of

PWD. There have been studies in which researchers measured stem water content using
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sensors attached to plants [16–18]. Changes in stem water content are an important symptom

associated with PWD, and there is evidence that stem water content decreases as PWD pro-

gresses [5,19,20]. It is possible that changes in the water content inside pine trees depend on

the cycle of night and day, and changes in the minerals and photosynthetic organic products

that act as electrolytes may affect the internal stem resistance of the trees. Consequently, we

anticipated that there would be a difference in the sensing signal patterns of healthy and

infected trees.

In this study, we (1) developed a battery-powered remote sensing device, (2) attached the

device to wild pine trees in a forest, and measured sensing data of the trees at regular intervals,

(3) collected sensing data from a distance through long-range (LoRa) communication in real

time, and (4) developed a technology to diagnose infected trees by performing statistical analy-

sis of processed sensing signals. We have been collecting data since 2017 from sensing devices

installed in multiple forest areas such as Gyeongju and Ulsan, where PWD occurs regularly

and causes considerable damage to pine forests. For remote sensing, a LoRa network commer-

cially built by SK Telecom (Seoul, South Korea) in 2017 was used to wirelessly collect sensing

data from sensing devices in forest areas in real time. For reference, the lowest monthly rate in

2021 is 350 Korean won (US$ 0.31/month), which is very affordable.

Upon analyzing the collected sensing data, we found that there was a difference in the

changes in the sensing signals of uninfected and infected pine trees, and that the mean absolute

deviation (MAD) could be used to distinguish between the two classes. To the best of our

knowledge, this is the first study in which PWD was diagnosed using remote sensors attached

to trees. It is expected that this technology will be fully utilized for diagnosing plant diseases

and monitoring the physiological growth characteristics of various plants.

Materials and methods

Test sites and trees

Sensing devices were installed in forests in Gyeongju and Ulsan, South Korea, which are areas

that suffer severe damage due to PWD. The number of sensing devices installed in pine trees

in Gyeongju and Ulsan was 75 and 65, respectively (1 sensing device per tree), and sensing

data were collected from October 2018. Five trees in Gyeongju were excluded from the analysis

due to device malfunction, device or tree loss, or device relocation. The sensing device ID,

installation location, and inspection results are summarized in Table 1. The different locations

of the installed sensors were measured using a Samsung Galaxy S9 equipped with a GPS mod-

ule. Due to the mountainous nature of the area, there may have been some errors in the accu-

racy of the measured longitudes and latitudes.

Pine wilt disease infection examination

To inspect the infection of the pine wood nematode (B. xylophilus) in trees, wood chips were

collected using a drill from July to September 2019 in Gyeongju, and in January 2020 in Ulsan.

The wood chips were soaked in water to settle, and the precipitate was observed with a polariz-

ing microscope (DE/DM500, Leica Microsystems) to confirm the presence of B. xylophilus.
Thus, it was confirmed that 15 out of 75 trees were infected in Gyeongju and 3 out of 65 trees

were infected in Ulsan. All test trees were manually inspected and photographed to record any

discoloration and/or defoliation (S1 File). If significant discoloration or defoliation was

observed throughout the tree, it was identified as a dying tree. Every tree infected with B. xylo-
philus was properly cut and removed by responsible government agents until February 2020 to

prevent the spread of PWD infection.
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Table 1. Sensing device installation location and tree inspection results in Gyeongju.

Tree

number

Sensing device ID (LoRa modem

unique ID)

Latitude Longitude PWD nematode

inspectiona
Wood chip moisture content

(%)b
Visual observation

(photographed)c

1 93702c1ffffe4f6b04 35.67781 129.41805 + (found) 50.3 ± 3.5 Healthy

2 93702c1ffffe4f6b1c 35.67781 129.41802 - N.A. Healthy

3 93702c1ffffe4f6ac6 35.67787 129.41797 - 42.1 ± 1.7 Healthy

4 93702c1ffffe4f6ace 35.67792 129.41799 - 36.7 ± 2.3 Healthy

5 93702c1ffffe4f6bbe 35.67792 129.41799 + (found) 32.1 ± 3.6 Dying

6 93702c1ffffe4f6c28 35.67793 129.41812 - 50.1 ± 1.1 Healthy

7 93702c1ffffe4f6c12 35.67775 129.41798 - 50.1 ± 1.4 Healthy

8 93702c1ffffe4f6b18 35.67779 129.41798 - 47.8 ± 2.5 Healthy

9 93702c1ffffe4f6c17 35.67787 129.41796 - 26.0 ± 5.5 Healthy

10 93702c1ffffe4f6c0d 35.67779 129.41798 + (found) 29.2 ± 1.4 Dying

11 93702c1ffffe4f6b3f 35.67790 129.41795 - 50.7 ± 2.5 Healthy

12 93702c1ffffe4f6a94 35.67779 129.41796 + (found) 29.6 ± 1.8 Dying

13 93702c1ffffe4f6c1d 35.67790 129.41828 - 47.7 ± 1.6 Healthy

14 93702c1ffffe4f6c55 35.67801 129.41790 - 49.8 ± 0.4 Healthy

15 93702c1ffffe4f6ad3 35.67779 129.41828 + (found) 43.2 ± 2.6 Dying

16 93702c1ffffe4f6adc 35.67805 129.41797 - 31.6 ± 2.3 Healthy

17 93702c1ffffe4f6b2f 35.67801 129.41797 + (found) 46.2 ± 1.7 Dying

18 93702c1ffffe4f6c14 35.67803 129.41797 - 46.4 ± 2.2 Healthy

19 93702c1ffffe4f6afc 35.67805 129.41791 - 46.9 ± 1.0 Healthy

20 93702c1ffffe4f6adb 35.67805 129.41781 + (found) 34.2 ± 5.3 Dying

21 93702c1ffffe4f6af5 35.67802 129.41797 N.A. 42.9 ± 3.6 Healthy

22 93702c1ffffe4f6acc 35.67805 129.41781 - 35.2 ± 7.9 Healthy

23 93702c1ffffe4f6ad1 35.67807 129.41781 + (found) 26.7 ± 1.2 Dying

24 93702c1ffffe4f6c53 35.67805 129.41779 - 26.6 ± 1.0 Dying

26 93702c1ffffe4f6a6e 35.67807 129.41780 + (found) 24.7 ± 1.8 Healthy

27 93702c1ffffe4f6ab1 35.67807 129.41781 - 25.4 ± 1.1 Dying

28 93702c1ffffe4f6ac4 35.67807 129.41779 + (found) 30.9 ± 3.1 Dying

29 93702c1ffffe4f6c1a 35.67810 129.41781 - 43.2 ± 0.7 Healthy

30 93702c1ffffe4f6c13 35.67805 129.41779 - 46.4 ± 1.3 Healthy

31 93702c1ffffe4f6b0b 35.67795 129.41788 - 44.6 ± 2.0 Healthy

32 93702c1ffffe4f6a8c 35.67808 129.41778 - 35.5 ± 6.9 Healthy

33 93702c1ffffe4f6adf 35.67812 129.41785 - 40.0 ± 4.7 Healthy

34 93702c1ffffe4f6a8b 35.67809 129.41783 - 47.8 ± 3.4 Healthy

35 93702c1ffffe4f6aef 35.67818 129.41777 - 41.9 ± 1.8 Healthy

36 93702c1ffffe4f6af6 35.67812 129.41783 + (found) 40.4 ± 8.2 Dying

37 93702c1ffffe4f6b16 35.67823 129.41767 - 48.1 ± 7.0 Healthy

38 93702c1ffffe4f6c58 35.67799 129.41776 - 38.3 ± 2.2 Healthy

39 93702c1ffffe4f6a9d 35.67800 129.41777 - 39.0 ± 0.8 Healthy

40 93702c1ffffe4f6b89 35.67808 129.41774 - 45.1 ± 3.7 Healthy

42 93702c1ffffe4f6a6f 35.67806 129.41772 - 24.9 ± 2.4 Dying

43 93702c1ffffe4f6aa0 35.67810 129.41777 - 45.0 ± 1.4 Healthy

45 93702c1ffffe4f6b44 35.67823 129.41769 - 48.4 ± 3.0 Healthy

47 93702c1ffffe4f6b0a 35.67820 129.41770 - 41.9 ± 0.4 Healthy

48 93702c1ffffe4f6a9f 35.66887 129.42026 - 44.4 ± 1.6 Healthy

49 93702c1ffffe4f6af8 35.66887 129.42026 - 39.4 ± 2.9 Healthy

50 93702c1ffffe4f6c2c 35.66887 129.42026 + (found) 39.4 ± 0.6 Healthy

(Continued)
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Wood chip moisture content analysis

Wood chips were collected using an electric drill. The moisture content was measured using a

moisture analyzer (MB90, Ohaus, USA). One gram of wood chips was placed on an aluminum

plate and heated until the weight stopped changing. The difference between the initial and

final weights was measured to calculate moisture content. Measurements were performed

three times, and the moisture content was presented as the mean and standard deviation.

Data processing and statistical analysis

A program was developed using VB.NET for data processing and analysis. The processing

order was as follows. Firstly, the sensor data stored in MySQL were downloaded; secondly,

redundant data and some noise data were removed, and sorting was performed over time.

Thirdly, baseline values were calculated by applying a median filter. Fourthly, deviation and

the mean absolute deviation (MAD; the average of the absolute deviations) were calculated.

Fifthly, charts were created on a monthly and annual basis and used for analysis and data

inspection. All the data and charts generated through processing were inspected by humans to

ensure that there were no abnormalities. For statistical analysis, ANOVA on ranks followed by

Table 1. (Continued)

Tree

number

Sensing device ID (LoRa modem

unique ID)

Latitude Longitude PWD nematode

inspectiona
Wood chip moisture content

(%)b
Visual observation

(photographed)c

51 93702c1ffffe4f6c2f 35.66887 129.42026 - 42.0 ± 3.7 Healthy

53 93702c1ffffe1cf906 35.66887 129.42026 - 43.0 ± 4.6 Healthy

54 93702c1ffffe4f6acf 35.66887 129.42026 - 40.2 ± 2.1 Healthy

55 93702c1ffffe4f6b11 35.66959 129.42285 - 39.3 ± 3.0 Healthy

56 93702c1ffffe1d18bc 35.66887 129.42026 - 37.3 ± 10.9 Healthy

57 93702c1ffffe4f6a80 35.66887 129.42026 - 37.4 ± 1.4 Healthy

58 93702c1ffffe4f6af0 35.66887 129.42026 - 47.1 ± 0.4 Healthy

59 93702c1ffffe4f6b42 35.66959 129.42285 - 45.9 ± 2.5 Healthy

60 93702c1ffffe4f6b0e 35.66867 129.43192 - 46.8 ± 0.5 Healthy

61 93702c1ffffe4f6c3c 35.66959 129.42285 - 40.9 ± 1.8 Healthy

62 93702c1ffffe4f6b23 35.66887 129.42026 - 48.2 ± 2.9 Healthy

63 93702c1ffffe4f6acd 35.66959 129.42285 - 45.5 ± 1.8 Healthy

64 93702c1ffffe4f6aeb 35.66887 129.42026 - 45.3 ± 3.9 Healthy

65 93702c1ffffe4f6aec 35.66887 129.42026 - 30.5 ± 2.6 Healthy

66 93702c1ffffe4f6c2a 35.66959 129.42285 - 48.0 ± 3.1 Healthy

67 93702c1ffffe4f6b09 35.66887 129.42026 + (found) 45.4 ± 2.0 Dying

68 93702c1ffffe4f6c5b 35.66887 129.42026 - 45.0 ± 1.6 Healthy

69 93702c1ffffe4f6b1f 35.66887 129.42026 - 30.4 ± 2.1 Dying

70 93702c1ffffe4f6c56 35.66887 129.42026 - 52.2 ± 1.1 Healthy

71 93702c1ffffe4f6add 35.66887 129.42026 - 48.6 ± 1.7 Healthy

72 93702c1ffffe4f6b20 35.66887 129.42026 + (found) 27.9 ± 2.5 Dying

73 93702c1ffffe4f6c22 35.66887 129.42026 + (found) 38.0 ± 2.1 Dying

74 93702c1ffffe4f6ae3 35.66887 129.42026 - 46.2 ± 0.8 Healthy

75 93702c1ffffe4f6c1e 35.66887 129.42026 + (found) 23.0 ± 0.9 Dying

aPWD nematode inspection was performed from July to September 2019.
bWood chips were collected in September 2019.
cVisual observation was carried out in January 2020.

https://doi.org/10.1371/journal.pone.0257900.t001
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Dunn’s post-hoc test was performed using SigmaPlot 12, and linear discriminant analysis was

performed using MATLAB (S2 File). In bar graphs, errors were expressed as 95% confidence

intervals.

Results and discussion

Development of a sensing device

The sensing device consisted of a microcontroller (Arduino Pro Mini 328P), an alkaline bat-

tery pack, a LoRa modem, and a sensor module. Three pairs of stainless-steel nails were

inserted at different locations on trees, and the distance between each pair of nails was 3 cm

(Fig 1). By connecting the electrodes to the voltage divider circuit of the sensing device, the

stem resistance between the electrodes was converted to a voltage and read through a 10-bit

analog input pin of the microcontroller. The height of the W1 sensor installed at the highest

point was approximately 2.5 m from the ground; sensors W2 and W3 were installed at lower

positions. To measure the moisture content of the soil, custom electrodes were installed in the

soil. A temperature and humidity sensor (DHT-11) were also included in the sensing device to

monitor the atmospheric environment.

The sensing device was programmed to enter sleep mode, except for a short period during

sensing and LoRa communication in order to operate on a battery for a long time. Sensing and

data transmission were performed at 1 h intervals. The data sent from the LoRa modem was

propagated to the SK Telecom (Seoul, South Korea) LoRa network, processed by the base sta-

tion, and finally collected in our MySQL server.

The resistance between electrodes can be measured as a voltage using a simple voltage

divider circuit. The tree sensor value measured with a 10-bit analog to digital converter (ADC)

ranged from 0 to 1023. There was a correlation between the resistance between the electrodes

(R kO) and the 10-bit analog sensor value:

Sensor value ¼ 1023�
R

R1 þ R
; where R1 ¼ 10 kO ð1Þ

This equation indicates that the resistance decreases with a decrease in the sensor value.

Conversely, if the resistance is infinite or has a large value, the sensor value reaches a maxi-

mum of 1023. We tested multiple carbon composition resistors having various resistance val-

ues with our sensing module and confirmed that the calculated resistance value was the same

as the actual resistance value (R2 = 1.000).

Remote sensing of trees and environmental monitoring

The annual change in sensing data collected from one infected tree in Gyeongju in 2019 and

the short-term changes over approximately two weeks are shown in Figs 2A and 3A, respec-

tively. Fig 2B shows the temperature and humidity changes at the location where the sensing

device was installed.

In Gyeongju, the sensing value of W1 was generally lowest in August and September and

tended to be high in winter (Fig 2A). The tree sensing signal vibrated in a cycle 24 h a day,

with the highest value (i.e., the highest resistance) between 4 am and 6 am; the signal then

decreased, with the sensor value at the lowest (i.e., the lowest resistance) in the afternoon

between 1 pm and 3 pm (Fig 3A). In a study that measured the sap flow rate of a maple tree,

there was almost no sap flow from midnight to 6 am, and the flow rate had a maximum value

of 100 to 150 mm/h at approximately 2 pm [17]. Similarly, in an experiment with a tomato

tree, there was almost no sap flow from midnight to 6 am, and the sap flow rate had a
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maximum value of approximately 1,400 mm/h from 12 pm to 4 pm [16]. The atmospheric

temperature might have affected our sensing measurements to some extent; however, as the

sap flow rate increases, the stem water content is expected to increase, and consequently, the

resistance is expected to decrease. Therefore, our experimental results can be considered to be

in good agreement with those in other reports.

Classification of infected and uninfected trees by mean absolute deviation

(MAD) of sensing signals

To diagnose PWD based on these sensing signals, the deviation and MAD were calculated by

processing the signals. Firstly, baseline values (shown in gray) were calculated by applying a

median filter to remove the vibrating pattern (Fig 3A). Because the sensing signal changed in a

daily cycle and sensing was set to be performed once per hour, a total of 25 sensing data (one

center point + 12 data received before the center point + 12 data received after the center

point) corresponding to approximately 24 h of sensing data were used to compute the median

value. However, various factors (such as the mountain region, weather, and installation loca-

tion) appeared to lower the reception rate, and 3–6 of the expected 24 data were not received.

Therefore, the actual data used for computing the median value was slightly larger than the

24-h data. Then, the MD, which is the difference between the sensor and baseline values, was

calculated (Fig 3B). An examples of annual deviation changes of an infected and uninfected

tree in Gyeongju are shown in Fig 3C and 3D, respectively.

We found that both infected and uninfected trees exhibited a lower MAD value in the sum-

mer (July to September) than in other seasons (Fig 4). Especially in July, the MAD was at the

Fig 1. Installation of a battery powered remote sensing device. (A) Schematic diagram of the installation of sensor electrodes

(W1, W2, and W3) and soil sensor. The measured data were transmitted via long-range (LoRa) communication. (B) Actual

scene where the sensing device was installed and photo of electrode installation.

https://doi.org/10.1371/journal.pone.0257900.g001
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lowest level during the year; moreover, the MADs of the infected and uninfected trees were

similar. However, there were differences in the MAD changes of the uninfected and infected

trees, especially after August; the MAD of infected trees was higher than that of uninfected

trees (ANOVA on ranks, p-value< 0.01). The MAD value gradually increased from Septem-

ber, but the increase was larger in infected trees than in uninfected trees.

A two-dimensional plane was constructed with MAD in July (MADJuly) and MAD in Octo-

ber (MADOctober) as the x and y axes, respectively, and the positions of individual trees were

marked with dots (Fig 5). Surprisingly, the infected and uninfected trees displayed in the two-

dimensional plan could be divided into two regions. The linear equation obtained by perform-

ing linear discriminant analysis was MADOctober = 2.0791 + 0.6888 × MADJuly. When infection

was diagnosed based on this separation line, the true positive accuracy was 70% (9 out of 13),

and true negative accuracy was 94% (47 out of 50). However, when the optimized custom sepa-

ration line was set to maximize the true positive accuracy, the true positive accuracy was 92.9%

(12 of 13), and the true negative accuracy was 82.0% (42 of 50).

Since infected and uninfected trees were located above and below the separation line,

respectively, in the two-dimensional plane, the average MADOctober/MADJuly value (MAD

ratio) of the infected trees was larger than that of the uninfected trees. The calculated MAD

ratio of the infected trees was 1.924 ± 0.489 (mean ± 95% confidence interval), whereas that of

the uninfected trees was 1.276 ± 0.087 (ANOVA on ranks, p-value = 0.005) (Fig 6). In addition,

uninfected trees in Gyeongju and Ulsan had similar MAD ratios.

Fig 2. Actual measurement of a remote sensing device in Gyeongju. (A) Changes in W1 sensor value measured in

one tree for a year. (B) Changes in temperature (black line) and humidity (gray line) where the sensing device was

installed.

https://doi.org/10.1371/journal.pone.0257900.g002
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Fig 3. Sensor signal processing and deviation computed in Gyeongju. (A) Generation of baseline sensor values (gray

line) from raw sensor values (black line) by applying a median filter. (B) Computed deviation, i.e., difference between

the baseline and measured sensor values. (C) Annual change in the deviation of an uninfected tree. (D) Annual change

in the deviation of an infected tree.

https://doi.org/10.1371/journal.pone.0257900.g003
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Correlation between wood chip moisture content and MAD

To determine the cause of the change in the MAD value, we collected wood chips and analyzed

their moisture content (Table 1). We observed that there was a linear relationship between the

MAD and the moisture content of wood chips collected for September (regression coefficient

R = 0.5511; S1 Fig). The linearity improved when data for the month of October was added

(regression coefficient R = 0.6176) (Fig 7). It was observed that MAD decreased with increas-

ing moisture content. PWD-infected pine trees generally tend to have a lower moisture con-

tent than healthy trees [5,19,20]. In our analysis, the wood chip moisture content of the

infected trees was 16.6% lower than that of the uninfected trees, and the difference was statisti-

cally significant (ANOVA on ranks, p = 0.004; S2 Fig). Therefore, these results imply that the

change in moisture content in infected trees had some effect on MAD.

Further discussion on the diagnosis of pine wilt disease

The separation of two groups of uninfected and infected trees with a simple separation line

sometimes led to misclassification, especially for trees located near the boundary region (Fig

5). Since the internal stem structure of each tree is different, the sensing value may vary

depending on the location of the sensor electrode. Moreover, the time of infection and disease

progression are different for individual trees, as are the physiological characteristics. They

might have had an effect on the accuracy of the classification. To increase the accuracy, new

methods should be developed to reduce the variance of sensor values and MADs between simi-

lar different trees. In particular, the installation of sensor electrodes is important, and it may

be helpful to develop a method for detecting a sensor value within an appropriate range by

installing the sensor electrodes at an optimal installation position.

Trees 26 and 50 in Gyeongju are in a group of uninfected trees below the separation line

despite being infected. However, they were identified as healthy trees through visual observa-

tion (S1 File). In addition, Trees 24, 27, and 69 were found to be dying trees, although pine

Fig 4. Monthly mean absolute deviation (MAD) of uninfected and infected trees in Gyeongju. � p< 0.05; �� p< 0.01; ���

p< 0.001; p-value, one-way ANOVA on ranks. n.s: Not significant. The bars and error bars stand for means and 95% confidence

intervals, respectively.

https://doi.org/10.1371/journal.pone.0257900.g004
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wood nematode (B. xylophilus) was not found in the wood chip examination. Perhaps, pine

wood nematode could have been found if additional chips were collected and analyzed from

these trees. At least, it is still possible to distinguish between healthy and dying trees through

the separation line in the two-dimensional plane represented by MADJuly and MADOctober. By

calculating the average MADOctober and MADJuly values of multiple trees, it is possible to accu-

rately detect whether PWD infection had occurred, or trees were dying in the area where the

sensing devices were installed.

For both uninfected and infected trees, the MAD value was lowest in the summer, and the

difference in MAD values of uninfected and infected trees was small; however, this difference

increased from October, after the summer. Further research is needed, but our analysis results

suggest that even the infected trees remained somewhat healthy in the summer, owing to suffi-

cient light intensity and rainfall; it is sometimes difficult to observe any visible signs of infec-

tion (eg brown leaves) in the summer. In fact, weather data related to precipitation (S3 Fig)

were compared to the average MAD of trees (Fig 4). Notably, as shown in Fig 8, there was a

Fig 5. Classification of infected and uninfected trees by MAD values. Sample size: n = 13 for infected trees (closed

dots); n = 50 for uninfected trees (open dots) for July and October in Gyeongju. Black dashed line: Separation line

generated using linear discriminant analysis; gray line: Custom separation line.

https://doi.org/10.1371/journal.pone.0257900.g005
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Fig 6. Difference in the ratio of MADOctober and MADJuly between infected and uninfected trees. Sample size:

n = 13 for Gyeongju infected; n = 50 for Gyeongju uninfected; n = 45 for Ulsan uninfected. �� p< 0.01; p-value, one-

way ANOVA on ranks. n.s: Not significant. The bars and error bars stand for means and 95% confidence intervals,

respectively.

https://doi.org/10.1371/journal.pone.0257900.g006

Fig 7. Correlation between wood chip moisture content and MAD from September and October. Wood chips were

collected in September 2019. The bars and error bars stand for means and 95% confidence intervals, respectively.

https://doi.org/10.1371/journal.pone.0257900.g007
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fairly strong negative correlation between the monthly total precipitation and the average

monthly MAD of trees (regression coefficient R = 0.7988 for infected trees; R = 0.7337 for

uninfected trees). For both infected and uninfected trees, the smaller the monthly total precipi-

tation, the larger was the average monthly MAD value. These results implied that infected

trees were more vulnerable than uninfected trees during the periods of low precipitation.

In this study, we discovered MAD as a key feature of time-series sensing data for PWD

infection diagnosis. We also investigated other features such as the mean sensor value, but

they were not as successful as MAD. Similar to MAD, the ratio between the mean sensor values

in July and October of individual trees was also calculated. The ratio was then used to investi-

gate whether there was a difference between the infected and uninfected trees. However, as

shown in S4 Fig, there was no statistically significant difference between the values (ANOVA

on ranks, p = 0.134). Nevertheless, it is still necessary to compute and study various features

from the time-series data collected. Since the number of infected trees is not large, it may be

more promising to find additional key features that distinguish infected and uninfected trees

through dimension reduction techniques such as principal component analysis (PCA), linear

discriminant analysis (LDA), and t-distributed stochastic neighbor embedding (T-SNE) than

by artificial intelligence learning. The current method for diagnosing using the July and Octo-

ber MAD values is time-consuming in terms of an early diagnosis of PWD. New key features

in the future are expected to help a faster diagnosis of PWD.

We not only fabricated a low-power remote sensing device capable of LoRa communication

but also developed a novel technology to diagnose PWD by processing the sensor signals and

calculating the MAD values. It is notable that existing disease diagnosis technology using sen-

sors for humans and animals has been expanded to the plant domain. We expect this

Fig 8. Correlation between average monthly MAD and monthly total precipitation from March to December.

Closed points: Infected trees; Open points: Uninfected trees; Solid line: Regression line for infected tress; Dashed line:

Regression line for uninfected trees. Each dot represents the total precipitation and the average MAD of trees for a

specific month.

https://doi.org/10.1371/journal.pone.0257900.g008
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technology to be applied to the monitoring of physiological characteristics of various plants

and the diagnosis of diseases, including fire blight disease, which causes great damage to

orchard farms.

Supporting information

S1 Fig. Correlation between wood chip moisture content and MAD for September.

(TIF)

S2 Fig. Comparison of wood chip moisture content between infected and infected trees.

(TIF)

S3 Fig. Past weather data on the number of days of precipitation and total precipitation in

Gyeongju. Data from the Open Weather Data Service of the Korea Meteorological Adminis-

tration (data.kma.go.kr). The number of days of precipitation is defined as the number of days

with a daily precipitation of 0.1 mm or more.

(TIF)

S4 Fig. Difference in the ratio of mean sensor values for October and July for infected and

uninfected trees in Gyeongju. Sample size: n = 14 for infected; n = 51 for uninfected. n.s: not

significant (one-way ANOVA on ranks). The bars and error bars stand for means and 95%

confidence intervals, respectively.

(TIF)

S1 File. Photographs of the test trees in Gyeongju for visual observation. Photos were taken

in January 2020.

(PDF)

S2 File. MATLAB source code for discriminant analysis.

(PDF)
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