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Objective: The pupillary light reflex (PLR) and the pupillary diameter over time (the PLR
curve) is an important biomarker of neurological disease, especially in the diagnosis of
traumatic brain injury (TBI). We investigated whether PLR curves generated by a novel
smartphone pupillometer application could be easily and accurately interpreted to aid in
the diagnosis of TBI.

Methods: A total of 120 PLR curves from 42 healthy subjects and six patients with
TBI were generated by PupilScreen. Eleven clinician raters, including one group of
physicians and one group of neurocritical care nurses, classified 48 randomly selected
normal and abnormal PLR curves without prior training or instruction. Rater accuracy,
sensitivity, specificity, and interrater reliability were calculated.

Results: Clinician raters demonstrated 93% accuracy, 94% sensitivity, 92% specificity,
92% positive predictive value, and 93% negative predictive value in identifying normal
and abnormal PLR curves. There was high within-group reliability (k = 0.85) and high
interrater reliability (K = 0.75).

Conclusion: The PupilScreen smartphone application-based pupillometer produced
PLR curves for clinical provider interpretation that led to accurate classification of normal
and abnormal PLR data. Interrater reliability was greater than previous studies of manual
pupillometry. This technology may be a good alternative to the use of subjective manual
penlight pupillometry or digital pupillometry.

Keywords: traumatic brain injury, pupillary light reflex (PLR), machine learning, mobile technology, pupillometry

INTRODUCTION

Traumatic brain injury (TBI) is a major contributor to global morbidity and mortality. In 2016,
there were an estimated 27.1 million new cases of TBI (a rate of approximately 369 per 100,000
people globally), causing an associated 8.1 million years lived with disability (YLD) (Alali et al.,
2018). The National Study on the Costs and Outcomes of Trauma demonstrated that up to 60%
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of severe TBI patients are under-triaged and admitted to non-
trauma hospitals (Capone-Neto and Rizoli, 2009; Carrick et al.,
2021). This pattern of under-triage results in an excess mortality
of 25% for TBI patients in the United States (Chesnut et al., 1993;
Capone-Neto and Rizoli, 2009; Chen et al., 2011; Cheng et al.,
2017; Carrick et al., 2021). Excess mortality is potentially higher
for low and middle-income countries where 85% of the world’s
population resides, and where mortality is doubled following
severe TBI (Couret et al., 2016; Alali et al., 2018; Dagain et al.,
2018; Dewan et al., 2018a).

Conducting an initial trauma survey in the field is inherently
complex, particularly in cases involving head and neck injuries
(Alali et al., 2018). One well-established TBI biomarker is the
pupillary light reflex (PLR). The reflexive constriction of the pupil
in response to a flash of light is a direct representation of the
functional state of the central nervous system (Dewan et al.,
2018b; GBD, 2019; Gurney et al., 2020). The PLR can indicate
increased intracranial pressure, a more severe consequence of
TBI (Haas et al., 2010), and it has been shown to be abnormal
even in concussion (Hall and Chilcott, 2018) and mild TBI
(Helmick et al., 2015). The PLR is among the most important
early indicators of TBI (Hernández-Sierra et al., 2021), and the
simplest and most common method of PLR assessment is the
traditional penlight exam (also known as manual pupillometry),
in which a handheld light source is used to elicit constriction of
the pupil. The examiner then uses the naked eye to determine
the extent and nature of the PLR. While simple and affordable,
this method lacks inter-observer reliability (GBD, 2019). Digital
pupillometry currently represents the gold standard for assessing
the PLR (Larson and Behrends, 2015); however, such machines
are expensive and require specialized training to use.

To address the shortcomings of current clinical pupillometry
techniques, we developed a mobile application called PupilScreen
(Mariakakis et al., 2017; Figure 1). PupilScreen is a machine
learning-driven application that relies upon computer vision
neural network algorithms and is designed to perform
pupillometry on the smartphone platform to provide a method
of assessing the PLR with more accuracy and reliability than
manual pupillometry, while being more accessible than digital
pupillometry. While a previously published study demonstrated
the accuracy of the application in assessing the PLR (Mariakakis
et al., 2017), the best method for presenting these results to
the examiner for interpretation remains unclear. The aim of
this study is to determine whether practitioners can assess
PLR normalcy simply by viewing the PLR curve generated
by PupilScreen, and to compare the interrater reliability of
this method of assessment to the more traditional penlight
method. Alternative methods for smartphone detection of
the PLR do exist (Meeker et al., 2005; McAnany et al., 2018;
Master et al., 2020), however PupilScreen is currently unique in
its binocular approach to measuring the PLR.

MATERIALS AND METHODS

This study was approved by the University of Washington’s
Institutional Review Board. A database of individually validated

normal and abnormal PLR curves was generated through a
process employed in the initial development of the PupilScreen
app and as previously detailed (Mariakakis et al., 2017). In
short, 42 healthy individuals (Table 1) with a variety of pupillary
sizes, iris colors and skin tones were recruited for study.
Two predicted PLR curves were generated from each subject
representing 84 total normal curves, with curve normality
determined by the reactivity of the pupil evident via the curve
morphology (Figure 2). Additionally, six patients with severe TBI
(as determined both clinically and with the gold-standard digital
pupillometer) and subsequently deranged PLR—as evidenced in
these patients with severe TBI by a lack of pupillary constriction
evident via curve morphology—were recruited during their stay
in a neurological intensive care unit alongside the typical use of
pupillometry in the care of these patients at our institution, and
each generated six samples totaling 36 abnormal predicted PLR
curves (Figure 3). A random selection of 24 PLR curves from
both the normal and abnormal PLR groups were combined to
form one master set of 48 randomly selected and deidentified
PLR curve samples. Average normal and abnormal PLR curves
are provided as a reference for the reader (Figure 4).

Clinicians were chosen to assess the different groups’ PLR
curves from a pool of providers working in the neuro-intensive
care unit (NICU) who regularly assess patient’s pupillary
responsiveness, both with and without digital pupillometers. All
selected nurses were members of the NICU team who regularly
care for and monitor neurosurgical and neurology patients.
All selected physicians were residents specializing in either
neurological surgery, neurology, or anesthesia. These participants
were asked to interpret the PLR curves without any additional
instruction or patient information. They classified each curve
as “normal” or “abnormal.” Sorted curves were then scored as
correct or incorrect by a member of the research team.

Statistical analysis was performed to assess individual
accuracy, sensitivity, and specificity. A Cohen’s kappa coefficient
(k) was calculated for each individual practitioner to determine
the degree of agreement between the individual practitioner’s
assessments and the correct assessments. The entire cohort
was then analyzed for diagnostic consistency. Randolph’s kappa
coefficient (K), an extension of Cohen’s kappa in groups of greater
than two raters, was calculated within all nurses, all physicians,
and the entire clinician cohort.

RESULTS

Six physicians and five nurses served as raters for the study
(Table 2). Nurses accurately classified the PLR curves as “normal”
or “abnormal” at a rate of 91%, physicians at a rate of
94% and the entire group at a rate of 93%. Sensitivity was
calculated as a measure of the test’s ability to rule out an
abnormality through correct identification of a normal curve.
Sensitivity of the test as interpreted by nurses, physicians, and
the entire group was 88, 98, and 94%, respectively. Positive
predictive value, or the ability to determine that an abnormal
PLR was abnormal, was 93, 91, and 92% for nurses, physicians,
and the entire group, respectively. Conversely, specificity was
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FIGURE 1 | Example mockup screen from the PupilScreen application. A pupillary light reflex (PLR) curve is shown with constriction demonstrating a normal healthy
result based on the curve morphology.

calculated as a measure of the test’s ability to rule in an
abnormality by virtue of correctly identifying abnormal curves.
Nurses, physicians, and the entire group demonstrated specificity
of 93, 90, and 92%, respectively. The negative predictive
value was 89% for nurses, 98% for physicians, and 93% for
the entire group.

Reliability within each provider group was high: k> 0.8 across
groups (nurses k = 0.82, physicians k = 0.88, total k = 0.85).
In terms of consistency (Table 3), K demonstrated substantial
interrater reliability between all nurses (K = 0.72), between all
physicians (K = 0.78), and between the entire group (K = 0.75).

DISCUSSION

In the present study we seek to understand the potential
of a novel method of data presentation to enhance provider
accuracy in evaluating the PLR generated by a smartphone-
based pupillometry app. The output provided by PupilScreen
is a two-dimensional representation of the PLR curve itself, as
opposed to a single number calculated by software, such as the
Neurological Pupil Index that is reported by digital pupillometers
(Okie, 2005). In this proof-of-concept study, we demonstrated
that clinicians could interpret these curves based solely on the
appearance of the graphed PLR, without any further calculation

TABLE 1 | Characteristics of healthy volunteers for building sample PLR curves.

Volunteer characteristics N (%)

Male 16 (38.1%)

Female 26 (61.9%)

Iris color

Blue 17 (40.5%)

Brown 20 (47.6%)

Mixed 5 (11.9%)

or interpretation. This is an important first step in crafting
digital health tools in a way that maximizes value and minimizes
cost and complexity.

This study showed that physicians and critical care nurses
were able to interpret the PLR curves generated by the
PupilScreen app with a high degree of accuracy, which compares
favorably with current standard pupillometry assessments
(Olson et al., 2017). These results confirm our previous work
(Mariakakis et al., 2017) which had preliminarily indicated
that providers can interpret PLR curves solely based on their
two-dimensional morphology. In our study, all raters were
able to interpret the PLR curves in this format to determine
whether the patients’ pupils were reactive or non-reactive
with an accuracy of 88% or better. Both the sensitivity and
the specificity of the test were high, implying that the test
is useful for both identifying an abnormally non-reactive
pupil, and for excluding an abnormality by confirming normal
reactivity. The kappa coefficients were also high, confirming
that PupilScreen maintained high interrater reliability.
These results compare favorably to manual pupillometry
(Olson et al., 2017).

Currently there are two methods used to assess PLR in
the clinical setting: digital infrared pupillometry and manual
pupillometry. Manual pupillometry is a low-tech, low-cost,
portable approach that remains the standard of practice in
most clinical settings both in the US and globally (Olson
et al., 2017). Manual pupillometry is highly subjective and
has been shown to be imprecise, with a median error of
0.5 mm, more than twice that of a digital infrared pupillometer
(Papageorgiou et al., 2008; Olson et al., 2016, 2017; Prabhakaran
et al., 2017; Ong et al., 2019). In contrast, PupilScreen can
measure the pupil diameter with a median error of 0.36 mm,
an improvement over manual pupillometry (Mariakakis et al.,
2017) and the curve interpretation that PupilScreen provides
allows for further improved accuracy over manual penlight
pupillometry. In addition, specific, useful components of the
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FIGURE 2 | Example pupillary light reflex (PLR) curve for a normal subject, as is evidenced by the large amount of constriction after the light stimulus is applied at the
3 s time point. Binocular recording of the PLR is obtained using the PupilScreen application such that the simultaneous constriction of both the right eye (blue curve)
and the left eye (red curve). The current generation of PupilScreen produces PLR curves in terms of pixels and seconds.

FIGURE 3 | Example pupillary light reflex (PLR) curve for an abnormal subject, as is evidenced by the lack of constriction after light stimulus is applied at the 3 s time
point. The PLR curves for the right eye (blue) and left eye (red) are presented.

PLR, such as constriction velocity and amplitude (Ong et al.,
2019), cannot be quantified with manual pupillometry. Instead,
pupillary reactivity is expressed in general terms such as “normal,”
“sluggish,” or “fixed.” These qualitative metrics are notoriously
unreliable across examiners: In one single-blinded observational
study of 2,329 paired assessments, interobserver agreement
was moderate-to-poor for pupil size (κ = 0.54) and reactivity

(κ = 0.40). Importantly, only 33.3% of the pupils judged by
to be non-reactive (an indicator of severe TBI) were found
to be non-reactive when further assessed by digital infrared
pupillometry (Olson et al., 2017). Another study that compared
trained healthcare professionals’ assessment of the PLR vs. a
pupillometer showed discordance of 18% (Olson et al., 2016),
demonstrating that even with extensive training, the subjective
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FIGURE 4 | Average pupillary light reflex (PLR) curves overlayed on a single plot for both normal and abnormal subjects. The vertical dashed line in blue represents
the timing of the light stimulus for the normal healthy recordings and the vertical dashed line in red represents the slightly differential timing of the light stimulus for the
abnormal TBI recordings.

TABLE 2 | PupilScreen measures of diagnostic accuracy.

Accuracy Sensitivity Specificity Positive predictive value Negative predictive value Cohen’s Kappa

Nurses 91% 88% 93% 93% 89% 0.82
1 92% 100% 83% 86% 100% 0.83

2 83% 71% 96% 94% 77% 0.67

3 96% 96% 96% 96% 96% 0.92

4 88% 75% 100% 100% 80% 0.75

5 96% 100% 92% 92% 100% 0.92

Doctors 94% 98% 90% 91% 98% 0.88
1 75% 96% 54% 68% 93% 0.50

2 96% 92% 100% 100% 92% 0.92

3 100% 100% 100% 100% 100% 1.00

4 96% 100% 92% 92% 100% 0.92

5 100% 100% 100% 100% 100% 1.00

6 98% 100% 96% 96% 100% 0.96

Overall 93% 94% 92% 92% 93% 0.85

TABLE 3 | PupilScreen measures of diagnostic consistency (inter-rater reliability).

N Agreement Randolph’s Kappa

Nurses 5 85% 0.72
(0.63, 0.81)

Doctors 6 89% 0.78
(0.71, 0.86)

Overall 11 88% 0.75
(0.71, 0.79)

Bold values represent the Randolph’s kappa (with 95% confidence interval in
parentheses below each bold value). And agreement between members of that
group (i.e., nurses had overall agreement of 85% in their diagnoses with Randolph’s
kappa of 0.72).

method of measuring the PLR without digital pupillometry may
yield inaccurate data.

Digital infrared pupillometry is the current clinical gold
standard, consisting of a device with a light-emitting diode (LED)

light source and a digital infrared camera. The device utilizes
infrared imaging to detect the boundaries of the pupil, then
stimulates the eye with a flash from the LED source, eliciting
and tracking the pupillary diameter constriction and calculating
a Neurological Pupil Index score. Digital infrared pupillometry
can successfully track pupil diameter with a median error of
0.23 mm (Prabhakaran et al., 2017). For comparison, the median
resting pupil diameter of a healthy patient is about 3.4 mm
and constricts by about 0.88 mm with light exposure of 180–
200 cd/m (Ravindra et al., 2015). Digital infrared pupillometry
is reliable in regular clinical use; however, the method suffers
from disadvantages that limit widespread adoption outside of
high-resource settings. Digital infrared pupillometer devices are
expensive and require disposable parts for each patient, leading
to ongoing operational cost. They are not portable and require a
power source. Additionally, providers must be trained in both the
acquisition and interpretation of results.

Frontiers in Neuroscience | www.frontiersin.org 5 July 2022 | Volume 16 | Article 893711

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-893711 June 27, 2022 Time: 15:41 # 6

McGrath et al. Smartphone Pupillometry in Brain Injury

Given the growing global burden of TBI, a tool that bridges the
accessibility of the penlight exam with the precision and accuracy
of the digital pupillometer fills a critical need. While quick and
accurate triage is important in routine pre-hospital care of all
trauma patients with a possible head injury, providing this sort
of capability is even more critical in low-and-middle income
countries in which about 90% of the world’s trauma occurs (Scott
et al., 2005), and which simultaneously suffer from a chronic
insufficiency of both human and technical resources, particularly
for advanced subspecialties such as neurosurgery (Stiver and
Manley, 2008; Shoyombo et al., 2018). In modern war zones,
blast injuries routinely cause severe TBI (Taylor et al., 2003). It is
estimated that TBI has affected an estimated 22% of those injured
in recent conflicts in Iraq and Afghanistan (Thurman et al., 1998).
Management of these injuries is extremely difficult, in part due
to the innate scarcity of technical medical resources in these
environments and the extreme costs involved in deploying any
such equipment in terms of both added risk and dollars (Warf,
2015; Velez et al., 2020). In the United States, sports-related
or mild TBI also represents a growing concern. Approximately
300,000 sports-related TBIs occur annually, although this is
thought to be an underestimate as it is estimated that half of
all such diagnoses are currently missed (Xiang et al., 2014),
for example as a result of reactive but abnormal pupils. These
patients are most often evaluated via qualitative testing on the
sidelines rather than in a well-equipped clinical setting. The
PupilScreen technology demonstrated in this study has the
future potential to address some of the shortcomings of existing
methods of TBI assessment in these diverse environments and
patient populations, such as reactive but abnormal pupils that
may be nuanced and difficult to differentiate using subjective
manual penlight pupillometry.

Strengths of this study include a robust statistical analysis of
practitioners that specifically represent the primary end users
for this technology. This study was limited by the relatively
small number of clinician raters. While only resident physicians
and nurses were tested, we would expect this to be useful to
a broader spectrum of providers, including first responders,
nurse practitioners, and medical assistants. Additionally, those
tested regularly assess pupils with either a penlight exam or
pupillometry; we did not assess the ability of raters who do not
perform pupil assessment regularly. Lastly, it will be important
to validate the utility of the PupilScreen PLR curves in patients
with mild and moderate TBI in addition to healthy volunteers and
patients with severe TBI (as in the current study), as differences
in the PLR curve will likely be more subtle and potentially more
difficult to appreciate in those cases. A future goal of study
using the PupilScreen technology is to demonstrate the ability

to differentiate such subtle differences in the acute concussion or
mild TBI populations. Furthermore, future research will focus on
broadening participation to multiple types of practitioners and to
include results from patients spanning the full spectrum of TBI.

CONCLUSION

In conclusion, the PupilScreen app generated PLR curves from
normal subjects and TBI patients that were accurately interpreted
as normal or abnormal by physician and nurse raters without
prior training. The level of accuracy and interrater reliability
was higher than those of historical studies using manual
pupillometry, which may improve future clinical management
of TBI patients. This demonstrates the potential for machine
learning-driven mobile digital health technologies to improve
TBI diagnosis in a variety of clinical environments.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the University of Washington Institutional Review
Board. The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

LM was responsible for software development, data
collection, and data analysis. JE and IA were responsible for
data collection and manuscript writing. AM was responsible for
data processing and analyses and manuscript revisions. CK was
responsible for data analysis, manuscript writing, and revisions.
RC and ML were responsible for data interpretation, manuscript
writing, and revisions. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by grants from the Washington
Research Foundation and Amazon Catalyst.

REFERENCES
Alali, A. S., Temkin, N., Barber, J., Pridgeon, J., Chaddock, K., and Dikmen,

S. A. (2018). clinical decision rule to predict intracranial hypertension in
severe traumatic brain injury. J. Neurosurg. 131, 612–619. doi: 10.3171/2018.
4.JNS173166

Capone-Neto, A., and Rizoli, S. B. (2009). Linking the chain of survival: trauma as
a traditional role model for multisystem trauma and brain injury. Curr. Opin.
Crit. Care 15, 290–294. doi: 10.1097/MCC.0b013e32832e383e

Carrick, F. R., Azzolino, S. F., Hunfalvay, M., Pagnacco, G., Oggero, E., D’Arcy,
R. C. N., et al. (2021). The Pupillary Light Reflex as a Biomarker of Concussion.
Life 11:1104. doi: 10.3390/life11101104

Chen, J. W., Gombart, Z. J., Rogers, S., Gardiner, S. K., Cecil, S., and Bullock,
R. M. (2011). Pupillary reactivity as an early indicator of increased intracranial
pressure: the introduction of the Neurological Pupil index. Surg. Neurol. Int.
2:82. doi: 10.4103/2152-7806.82248

Cheng, P., Yin, P., Ning, P., Wang, L., Cheng, X., and Liu, Y. (2017). Trends
in traumatic brain injury mortality in China, 2006-2013: a population-based

Frontiers in Neuroscience | www.frontiersin.org 6 July 2022 | Volume 16 | Article 893711

https://doi.org/10.3171/2018.4.JNS173166
https://doi.org/10.3171/2018.4.JNS173166
https://doi.org/10.1097/MCC.0b013e32832e383e
https://doi.org/10.3390/life11101104
https://doi.org/10.4103/2152-7806.82248
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-893711 June 27, 2022 Time: 15:41 # 7

McGrath et al. Smartphone Pupillometry in Brain Injury

longitudinal study. PLoS Med. 14:e1002332. doi: 10.1371/journal.pmed.100
2332

Chesnut, R. M., Marshall, L. F., Klauber, M. R., Blunt, B. A., Baldwin, N., Eisenberg,
H. M., et al. (1993). The role of secondary brain injury in determining outcome
from severe head injury. J. Trauma. 34, 216–222. doi: 10.1097/00005373-
199302000-00006

Couret, D., Boumaza, D., Grisotto, C., Triglia, T., Pellegrini, L., and Ocquidant,
P. (2016). Reliability of standard pupillometry practice in neurocritical care: an
observational, double-blinded study.Crit. Care 20:99. doi: 10.1186/s13054-016-
1239-z

Dagain, A., Aoun, O., Sellier, A., Desse, N., Joubert, C., Beucler, N., et al. (2018).
Acute neurosurgical management of traumatic brain injury and spinal cord
injury in French armed forces during deployment. Neurosurg. Focus 45:E9.
doi: 10.3171/2018.9.FOCUS18368

Dewan, M. C., Rattani, A., Fieggen, G., Arraez, M. A., Servadei, F., Boop, F. A., et al.
(2018a). Global neurosurgery: the current capacity and deficit in the provision
of essential neurosurgical care. Executive Summary of the Global Neurosurgery
Initiative at the Program in Global Surgery and Social Change. J. Neurosurg
1–10. [Epub ahead of print]. doi: 10.3171/2017.11.JNS171500

Dewan, M. C., Rattani, A., Gupta, S., Baticulon, R. E., Hung, Y. C., and Punchak, M.
(2018b). Estimating the global incidence of traumatic brain injury. J. Neurosurg
1–18. [Epub ahead of print]. doi: 10.3171/2017.10.JNS17352

GBD (2019). Global, regional, and national burden of traumatic brain injury and
spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of
Disease Study 2016. Lancet Neurol. 18, 56–87. doi: 10.1016/S1474-4422(18)
30415-0

Gurney, J. M., Loos, P. E., Prins, M., Van Wyck, D. W., McCafferty, R. R., and
Marion, D. W. (2020). The Prehospital Evaluation and Care of Moderate/Severe
TBI in the Austere Environment. Mil Med. 185, 148–153. doi: 10.1093/milmed/
usz361

Haas, B., Gomez, D., Zagorski, B., Stukel, T. A., Rubenfeld, G. D., and Nathens,
A. B. (2010). Survival of the fittest: the hidden cost of undertriage of major
trauma. J. Am. Coll. Surg. 211, 804–811. doi: 10.1016/j.jamcollsurg.2010.08.014

Hall, C. A., and Chilcott, R. P. (2018). Eyeing up the Future of the Pupillary Light
Reflex in Neurodiagnostics. Diagnostics 8:19. doi: 10.3390/diagnostics8010019

Helmick, K. M., Spells, C. A., Malik, S. Z., Davies, C. A., Marion, D. W., and
Hinds, S. R. (2015). Traumatic brain injury in the US military: epidemiology
and key clinical and research programs. Brain Imag. Behav. 9, 358–366. doi:
10.1007/s11682-015-9399-z

Hernández-Sierra, J. F., Tellez-Quijada, F., Hernández Gómez, C. A., Hernández-
Gómez, J. F., and Fonseca Leal, P. (2021). Estimation and interrater reliability
of pupillography by digital mobile app: digital movil pupillography app validity.
Eur. J. Ophthalmol. 31, 1779–1784. doi: 10.1177/1120672120949752

Larson, M. D., and Behrends, M. (2015). Portable infrared pupillometry:
a review. Anesth Analg. 120, 1242–1253. doi: 10.1213/ANE.000000000000
0314

Mariakakis, A., Baudin, J., Whitmire, E., Mehta, V., Banks, M. A., Law, A., et al.
(2017). PupilScreen: using Smartphones to Assess Traumatic Brain Injury.
PACM Interact Mob. Wearable Ubiquitous Technol. 1, 1–27.

Master, C. L., Podolak, O. E., Ciuffreda, K. J., Metzger, K. B., Joshi, N. R.,
and McDonald, C. C. (2020). Utility of Pupillary Light Reflex Metrics as
a Physiologic Biomarker for Adolescent Sport-Related Concussion. JAMA
Ophthalmol. 138, 1135–1141. doi: 10.1001/jamaophthalmol.2020.3466

McAnany, J. J., Smith, B. M., Garland, A., and Kagen, S. L. (2018). iPhone-
based Pupillometry: a Novel Approach for Assessing the Pupillary Light Reflex.
Optom. Vis. Sci. 95, 953–958. doi: 10.1097/OPX.0000000000001289

Meeker, M., Du, R., Bacchetti, P., Privitera, C. M., and Larson, M. D. (2005).
Pupil examination: validity and clinical utility of an automated pupillometer.
J. Neurosci. Nurs. 37, 34–40.

Okie, S. (2005). Traumatic brain injury in the war zone. N. Engl. J. Med. 352,
2043–2047. doi: 10.1056/NEJMp058102

Olson, D. M., Stutzman, S. E., Atem, F., Kincaide, J. D., Ho, T. T., Carlisle, B. A.,
et al. (2017). Establishing Normative Data for Pupillometer Assessment in
Neuroscience Intensive Care: the “End-PANIC” Registry. J. Neurosci. Nurs. 49,
251–254. doi: 10.1097/JNN.0000000000000296

Olson, D. M., Stutzman, S., Saju, C., Wilson, M., Zhao, W., and Aiyagari, V. (2016).
Interrater Reliability of Pupillary Assessments. Neurocrit. Care 24, 251–257.
doi: 10.1007/s12028-015-0182-1

Ong, C., Hutch, M., and Smirnakis, S. (2019). The Effect of Ambient Light
Conditions on Quantitative Pupillometry. Neurocrit. Care 30, 316–321. doi:
10.1007/s12028-018-0607-8

Papageorgiou, E., Ticini, L. F., Hardiess, G., Schaeffel, F., Wiethoelter, H., Mallot,
H. A., et al. (2008). The pupillary light reflex pathway: cytoarchitectonic
probabilistic maps in hemianopic patients.Neurology 70, 956–963. doi: 10.1212/
01.wnl.0000305962.93520.ed

Prabhakaran, K., Petrone, P., Lombardo, G., Stoller, C., Policastro, A., and Marini,
C. P. (2017). Mortality rates of severe traumatic brain injury patients: impact
of direct versus nondirect transfers. J. Surg. Res. 219, 66–71. doi: 10.1016/j.jss.
2017.05.103

Ravindra, V. M., Kraus, K. L., Riva-Cambrin, J. K., and Kestle, J. R. (2015). The
Need for Cost-Effective Neurosurgical Innovation–A Global Surgery Initiative.
World Neurosurg. 84, 1458–1461. doi: 10.1016/j.wneu.2015.06.046

Scott, S., Vanderploeg, R., Belager, H., and Schloten, J. (2005). Blast injuries:
evaluating and treating the postacute sequale. Fed. Pract 22, 67–75.

Shoyombo, I., Aiyagari, V., Atem Stutzman, S. E. F., Hill, M., and Figueroa, S. A.
(2018). Understanding the Relationship Between the Neurologic Pupil Index
and Constriction Velocity Values. Sci. Rep. 8:6992. doi: 10.1038/s41598-018-
25477-7

Stiver, S. I., and Manley, G. T. (2008). Prehospital management of traumatic brain
injury. Neurosurg. Focus 25:E5. doi: 10.3171/FOC.2008.25.10.E5

Taylor, W. R., Chen, J. W., Meltzer, H., Gennarelli, T. A., Kelbch, C., Knowlton, S.,
et al. (2003). Quantitative pupillometry, a new technology: normative data and
preliminary observations in patients with acute head injury. Technical. Note J.
Neurosurg. 98, 205–213. doi: 10.3171/jns.2003.98.1.0205

Thurman, D. J., Branche, C. M., and Sniezek, J. E. (1998). The epidemiology
of sports-related traumatic brain injuries in the United States: recent
developments. J. Head Trauma. Rehabil. 13, 1–8. doi: 10.1097/00001199-
199804000-00003

Velez, A. M., Frangos, S. G., DiMaggio, C. J., Berry, C. D., Avraham, J. B.,
and Bukur, M. (2020). Trauma center transfer of elderly patients with mild
Traumatic Brain Injury improves outcomes. Am. J. Surg. 219, 665–669. doi:
10.1016/j.amjsurg.2019.06.008

Warf, B. C. (2015). Who Is My Neighbor?” Global Neurosurgery in a Non-Zero-
Sum World. World Neurosurg. 84, 1547–1549. doi: 10.1016/j.wneu.2015.07.
052

Xiang, H., Wheeler, K. K., Groner, J. I., Shi, J., and Haley, K. J. (2014). Undertriage
of major trauma patients in the US emergency departments. Am. J. Emerg. Med.
32, 997–1004. doi: 10.1016/j.ajem.2014.05.038

Conflict of Interest: LM was a cofounder and employee of EigenHealth Inc., the
creators of the PupilScreen application. ML was a consultant for Medtronic and
Metis Innovative, and has equity interest in Synchron, Cerebrotech, and Proprio.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 McGrath, Eaton, Abecassis, Maxin, Kelly, Chesnut and Levitt.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 7 July 2022 | Volume 16 | Article 893711

https://doi.org/10.1371/journal.pmed.1002332
https://doi.org/10.1371/journal.pmed.1002332
https://doi.org/10.1097/00005373-199302000-00006
https://doi.org/10.1097/00005373-199302000-00006
https://doi.org/10.1186/s13054-016-1239-z
https://doi.org/10.1186/s13054-016-1239-z
https://doi.org/10.3171/2018.9.FOCUS18368
https://doi.org/10.3171/2017.11.JNS171500
https://doi.org/10.3171/2017.10.JNS17352
https://doi.org/10.1016/S1474-4422(18)30415-0
https://doi.org/10.1016/S1474-4422(18)30415-0
https://doi.org/10.1093/milmed/usz361
https://doi.org/10.1093/milmed/usz361
https://doi.org/10.1016/j.jamcollsurg.2010.08.014
https://doi.org/10.3390/diagnostics8010019
https://doi.org/10.1007/s11682-015-9399-z
https://doi.org/10.1007/s11682-015-9399-z
https://doi.org/10.1177/1120672120949752
https://doi.org/10.1213/ANE.0000000000000314
https://doi.org/10.1213/ANE.0000000000000314
https://doi.org/10.1001/jamaophthalmol.2020.3466
https://doi.org/10.1097/OPX.0000000000001289
https://doi.org/10.1056/NEJMp058102
https://doi.org/10.1097/JNN.0000000000000296
https://doi.org/10.1007/s12028-015-0182-1
https://doi.org/10.1007/s12028-018-0607-8
https://doi.org/10.1007/s12028-018-0607-8
https://doi.org/10.1212/01.wnl.0000305962.93520.ed
https://doi.org/10.1212/01.wnl.0000305962.93520.ed
https://doi.org/10.1016/j.jss.2017.05.103
https://doi.org/10.1016/j.jss.2017.05.103
https://doi.org/10.1016/j.wneu.2015.06.046
https://doi.org/10.1038/s41598-018-25477-7
https://doi.org/10.1038/s41598-018-25477-7
https://doi.org/10.3171/FOC.2008.25.10.E5
https://doi.org/10.3171/jns.2003.98.1.0205
https://doi.org/10.1097/00001199-199804000-00003
https://doi.org/10.1097/00001199-199804000-00003
https://doi.org/10.1016/j.amjsurg.2019.06.008
https://doi.org/10.1016/j.amjsurg.2019.06.008
https://doi.org/10.1016/j.wneu.2015.07.052
https://doi.org/10.1016/j.wneu.2015.07.052
https://doi.org/10.1016/j.ajem.2014.05.038
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Mobile Smartphone-Based Digital Pupillometry Curves in the Diagnosis of Traumatic Brain Injury
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


