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ABSTRACT

RNA-Seq has emerged as a revolutionary technol-
ogy for transcriptome analysis. In this article, we
report a systematic comparison of RNA-Seq and
high-density exon array for detecting differential
gene expression between closely related species.
On a panel of human/chimpanzee/rhesus cerebel-
lum RNA samples previously examined by the
high-density human exon junction array (HJAY)
and real-time qPCR, we generated 48.68 million
RNA-Seq reads. Our results indicate that RNA-Seq
has significantly improved gene coverage and
increased sensitivity for differentially expressed
genes compared with the high-density HJAY array.
Meanwhile, we observed a systematic increase in
the RNA-Seq error rate for lowly expressed genes.
Specifically, between-species DEGs detected
by array/qPCR but missed by RNA-Seq were
characterized by relatively low expression levels,
as indicated by lower RNA-Seq read counts, lower
HJAY array expression indices and higher qPCR
raw cycle threshold values. Furthermore, this issue
was not unique to between-species comparisons
of gene expression. In the RNA-Seq analysis of
MicroArray Quality Control human reference RNA
samples with extensive qPCR data, we also
observed an increase in both the false-negative
rate and the false-positive rate for lowly expressed
genes. These findings have important implications
for the design and data interpretation of RNA-Seq
studies on gene expression differences between
and within species.

INTRODUCTION

In the past decade, there has been great interest in using
genomic tools to identify gene expression differences
between closely related species (1–3). A series of studies
have used the DNA microarray technology to globally
compare expression levels of orthologous genes between
humans and non-human primates (4–10). These studies
offer important insight into human evolution and
diseases (1,3). For example, it has been reported that the
expression level of energy-metabolism genes has an overall
increase during human evolution (11–13). This finding is
attributed to the important role of increased energy pro-
duction in the evolution of the human brain size (14).
A popular approach in microarray-based interrogation
of primate transcriptomes is to hybridize primate tissue
samples to a microarray platform designed for analysis
of human genes (2,15,16). Based on the fluorescent
intensities of individual oligonucleotide probes that per-
fectly match orthologous transcripts, one can estimate
and compare gene expression levels in multiple species.
Indeed, with the rapid increase in probe density on
common microarray platforms, this strategy of ‘cross-
species microarray hybridization’ (15) is able to reliably
detect a large number of genes with differential expression
between humans and non-human primates. For example,
we recently reported the use of a high-density Affymetrix
Human Exon Junction Array (HJAY array) to profile
gene expression in chimpanzees and rhesus macaques
(17). This array contains eight probes per exon for
�315 000 exons in the human genome (17–19). By exploit-
ing the high probe density and the large number of HJAY
probes that perfectly match orthologous transcripts of all
three species, we detected differences in gene expression
levels between species with a validation rate of >95% by
real-time qPCR (i.e. 32 validated out of 33 tested) (17).
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However, despite these successes, microarray-based
comparison of gene expression between closely related
species has its inherent limitations. Most importantly,
microarray studies are restricted by probes designed to
target the genes in a given species’ genome. In cross-
species comparison of gene expression, since sequence di-
vergence between species could affect microarray probe
hybridization, it is important to select oligonucleotide
probes that perfectly match orthologous transcripts for
accurate estimation of expression levels (10). However,
this necessary probe-selection step leads to a significant
reduction in gene coverage especially in the analysis
of more distant species (16). For example, on the extreme-
ly probe-rich HJAY array, with a threshold of 11 perfect-
match probes for orthologous transcripts we were able
to compare expression levels of 12 481 orthologous gene
groups from human, chimpanzee, orangutan and rhesus
genomes, out of 16 774 RefSeq human genes initially
interrogated by the array design (17). Thus, a significant
fraction of genes, particularly those with a higher rate of
mRNA sequence divergence, cannot be compared across
species by the microarray approach.

Recently, RNA-Seq has emerged as a powerful
new technology for transcriptome analysis (20–24). By
mapping millions of RNA-Seq reads to individual genes’
transcripts, one can estimate the overall mRNA abun-
dance and detect differentially expressed genes (DEGs)
(21,25). In particular, since RNA-Seq is not constrained
by any prior platform design and can be used to analyze
any transcriptome of interest, it provides an attractive
approach for globally comparing gene expression
between species (26). However, the accuracy of RNA-
Seq in detecting DEGs between species and a systematic
comparison of RNA-Seq with other technologies (such as
high-density arrays and real-time qPCR) for this applica-
tion have not been reported.

In this article, we report an RNA-Seq analysis of
differential gene expression between humans and non-
human primates. On a panel of human/chimpanzee/
rhesus cerebellum RNA samples previously examined by
the high-density HJAY array and real-time qPCR (17), we
generated a total of 48.68 million 36-bp RNA-Seq reads
for these three species. By comparing RNA-Seq data with
results obtained by the high-density HJAY array and
real-time qPCR, we systematically assessed how accurate-
ly RNA-Seq can reveal gene expression differences
between closely related species.

MATERIALS AND METHODS

RNA-Seq, HJAY array and real-time qPCR data
of human, chimpanzee and rhesus macaque
cerebellum tissues

We performed single-end, 36-bp RNA-Seq of a panel
of three cerebellum RNA samples from humans, chimpan-
zees and rhesus macaques. RNA-Seq libraries were
prepared by the Iowa State University DNA facility,
and sequencing was conducted on the Illumina Genome
Analyzer II following the manufacturer’s standard
protocol. The human cerebellum RNA sample was a

pool of 24 male and female donors purchased from
Clontech (Mountain View, CA, USA). The chimpanzee
and rhesus cerebellum RNA samples were both pools of
cerebellum tissues of three animals, which were generously
provided by the Southwest National Primate Research
Center (San Antonio, TX, USA). These RNA samples
were previously profiled by microarray and real-time
qPCR for gene expression differences between species
(17). We performed two lanes of RNA-Seq per sample
for the human and rhesus cerebellum samples, and one
lane of RNA-Seq for the chimpanzee cerebellum sample.
This produced a total of 48.68 million RNA-Seq reads
(Supplementary Table S1). The resulting sequencing
reads have been deposited to the National Center for
Biotechnology Information (NCBI) short-read archive
under the accession number SRA023554.1.
For comparison with RNA-Seq analysis, we also

analyzed our existing microarray and real-time qPCR
data on the same set of samples. In our previous study,
we profiled gene expression in these cerebellum samples
using the HJAY (NCBI GEO GSE15666) (17). This array
contained eight probes per exon for �315 000 exons in the
human genome (17–19). On HJAY probes that perfectly
matched human/chimpanzee genomes or human/rhesus
genomes at a single unique location, we used our iterative
probe-selection algorithm developed for gene-level
analysis of exon array data to estimate the expression
levels of orthologous genes in human, chimpanzee and rhe-
sus tissues (27,28). After quantile normalization of the
calculated expression indices, we used the Bioconductor
LIMMA package (29) to identify DEGs between
humans and chimpanzees or humans and rhesus
macaques, with a minimum fold-change of 2 and a false
discovery rate (FDR) cutoff of 0.01. Additionally, among
the DEGs detected from the HJAY array analysis, we
previously selected 33 gene pairs and tested the relative
expression levels between species by SYBR-green
real-time qPCR using the housekeeping gene HPRT1 as
the reference. Of the 33 DEGs tested, 32 were confirmed
by qPCR as having at least 2-fold changes in expression
levels. The between-species expression fold changes
estimated by the HJAY array and by qPCR had a correl-
ation of >0.85 (17). In the present work, these preexisting
HJAY array and real-time qPCR data sets were compared
against RNA-Seq data to assess how accurately RNA-Seq
can detect differential gene expression between closely
related species.

Estimation and comparison of overall gene
expression levels in humans and non-human
primates from RNA-Seq data

We used the short-read mapping tool SeqMap (30) to
search the RNA-Seq reads against the genomes of
human (hg18), chimpanzee (panTro2) and rhesus
macaque (rheMac2), when appropriate. From the
SeqMap results, we identified reads that matched a
single unique location in the corresponding genome,
allowing up to two mismatches.
In the context of RNA-Seq analysis, we define the

overall gene expression level as the total abundance of
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all mRNAs transcribed from a single gene locus, including
various forms of final transcripts arising from alternative
promoter usage, alternative splicing and alternative
polyadenylation. To derive an estimate of the overall
gene expression level which was robust toward variations
in RNA processing patterns, for each gene we counted the
number of RNA-Seq reads that uniquely mapped to its
constitutive exons, i.e. exons always incorporated into the
final transcripts during splicing. To identify these consti-
tutive exons, for each human gene we used transcript an-
notations in the UCSC KnownGenes database (31,32) to
identify exons that were shared among all transcripts
annotated for this gene. To avoid spurious transcript an-
notations in the KnownGenes database, we removed tran-
scripts whose number of exons was less than half of the
maximum number of exons in any transcript of this gene.
We then identified the orthologous regions of all human
constitutive exons in the chimpanzee and rhesus genomes
using the UCSC pairwise genome alignments of the
human genome (hg18) to the genomes of chimpanzee
(panTro2) and rhesus macaque (rheMac2) (33). In com-
parison of overall gene expression levels between human
and chimpanzee (or rhesus) tissues, for each pair of
orthologous genes we counted the total number of
RNA-Seq reads that uniquely mapped to the human con-
stitutive exons in the human genome, and the total
number of RNA-Seq reads that uniquely mapped to the
orthologous exon regions in the chimpanzee (or rhesus)
genome. We used a previously described Poisson model
(25), which controlled for the total number of mapped
reads in each lane, to identify the DEGs between
humans and rhesus macaques or between humans and
chimpanzees, with a minimum fold-change of 2 and a
FDR cutoff of 0.01. The FDR was calculated using the
approach of Benjamini and Hochberg (34).

Real-time qPCR and RNA-Seq data on the MicroArray
Quality Control human reference RNA samples

We collected RNA-Seq and TaqMan qPCR data for two
reference RNA samples in the MicroArray Quality
Control (MAQC) project (35). The TaqMan qPCR data
for human Universal Human Reference RNA (UHR) and
Human Brain Reference RNA (brain) samples were
downloaded from the NCBI GEO database (NCBI GEO
GSE5350), with four replicate assays for each gene in each
sample (35). The downloaded data were the normalized
expression values in which the housekeeping gene
POLR2A was used as the reference gene. For each repli-
cate assay, the cycle threshold (Ct) value in the TaqMan
qPCR assay was subtracted from the average POLR2A Ct

to obtain a delta Ct value (POLR2A� gene of interest). A
higher delta Ct value indicates a higher expression level of
the gene of interest. The Illumina RNA-Seq data on the
same UHR and brain samples were downloaded from the
NCBI SRA database (SRA008403). SeqMap (30) was
used to search the reads against the human genome
(hg18). From the SeqMap results, we identified reads
that matched a single unique location in the human
genome, allowing up to two mismatches. For each gene,
we counted the total number of reads that mapped to its

constitutive exons in the UHR and brain samples. Similar
to the TaqMan qPCR analysis, the read counts in the two
samples were normalized to POLR2A.

RESULTS

Detection of DEGs between humans and non-human
primates using RNA-Seq

To assess how reliably RNA-Seq can identify gene expres-
sion differences between closely related species, we per-
formed single-end, 36-bp Illumina RNA-Seq on a panel
of three cerebellum RNA samples from humans, chimpan-
zees and rhesus macaques. We performed a total of five
lanes of RNA-Seq: two lanes per sample for the human
and rhesus cerebellum RNAs, and one lane for the chim-
panzee cerebellum RNA. Altogether, we generated �49
million RNA-Seq reads from these five lanes. Of these
five lanes of data, we mapped 85.9–92.4% of reads in
each lane to the respective genome allowing up to 2-bp
mismatches. Between 73.4% and 78.7% of the RNA-Seq
reads in each lane were mapped to a single unique location
in the respective genome, with an reads per kilobase per
million mapped reads (RPKM) read density of 10.7–12.6
within constitutive exon regions (Supplementary Table
S1). The number of reads generated per sample (�10–20
million) and the mapping statistics were comparable with
those in published RNA-Seq studies of gene expression
(21,25). The resulting gene-level RNA-Seq read counts
were highly reproducible for replicate lanes of the same
sample (i.e. between the two human replicate lanes, and
between the two rhesus replicate lanes), as demonstrated
by the MA plots and the QQ-plots comparing gene-level
counts of replicate lanes (Supplementary Figures S1 and
S2). The lane-by-lane variation was mostly observed for
genes with low expression levels (e.g. with less than 32
RNA-Seq reads in both lanes).

To identify DEGs between human and rhesus cerebel-
lum RNAs using RNA-Seq, we used a previously
described Poisson model (25), which controlled for the
total number of mapped reads in each lane. For all
human genes in the NCBI Entrez Gene database, 16 769
genes had at least one mapped RNA-Seq read in at least
one of the two sequencing lanes of either species. Of these
genes, we identified 7244 DEGs between human and
rhesus samples with a gene expression fold-change of at
least 2 and an FDR of less than 0.01.

Comparison of RNA-Seq with a high-density exon
junction array

We compared RNA-Seq detection of DEGs with results
on the same RNA samples using an HJAY array.
Previously, we hybridized these human, chimpanzee and
rhesus RNA samples to the HJAY array. By exploiting the
large number of HJAY probes that perfectly matched
orthologous transcripts of all three species, we detected
widespread differences in gene expression levels between
species with a validation rate of >95% by real-time qPCR
(i.e. 32 validated out of 33 tested) (17). Requiring at least
six HJAY probes that perfectly matched both human and
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rhesus transcripts and passed our iterative probe-selection
procedure (27,28), we were able to compare expression
levels of 12 194 pairs of orthologous genes between
humans and rhesus macaques using the HJAY array.
Thus, on these two samples, RNA-Seq had substantially
higher gene coverage for detecting DEGs between humans
and rhesus macaques compared with the HJAY array
(16 769 genes versus 12 194 genes).

Next, we focused on the 11 662 human–rhesus gene
pairs that can be analyzed by both platforms. We
compared the log2 expression fold-change between
human and rhesus tissues estimated by the HJAY array
and by RNA-Seq. We observed a Spearman rank correl-
ation of 0.61 (Supplementary Figure S3), indicating a fair
degree of consistency between these two independent plat-
forms. Among these 11 662 genes, we identified 5201
DEGs by RNA-Seq and 1990 DEGs by the HJAY
array. A total of 1346 DEGs were identified by both
RNA-Seq and the HJAY array (Figure 1A). We noted
that, in general, RNA-Seq appeared to be much more sen-
sitive than the HJAY array in detecting DEGs: 67.6% of

DEGs identified by the HJAY array were also identified
by RNA-Seq, while only 25.9% of DEGs identified by
RNA-Seq were also identified by the HJAY array. These
results are consistent with other studies reporting that
RNA-Seq has a better dynamic range for gene expression
levels and increased power to detect DEGs (20).
Additionally, 5107 gene pairs analyzed by RNA-Seq did
not have sufficient HJAY probes perfectly matching
orthologous transcripts, and thus were completely
missed by the HJAY analysis. Among these genes,
RNA-Seq identified 2043 DEGs between human and
rhesus cerebellum RNAs. This illustrates the advantage
of the unbiased RNA-Seq analysis, which does not
depend on any prior design and covers the entire tran-
scriptome in the comparison of global expression profiles
between species.

Array-specific DEGs are characterized by low gene
expression levels

Our comparison of the RNA-Seq and HJAY data sets
also revealed DEGs that were identified by only one of

Figure 1. A comparison of RNA-Seq and high-density HJAY array for detecting differential gene expression between human and rhesus cerebellum
tissues. (A) The Venn diagram showing the overlap between differentially expressed genes (Human versus Rhesus Macaque, FDR <1% and
FoldChange �2) detected by Illumina RNA-Seq and the Affymetrix HJAY array. Only genes that can be analyzed by both platforms are
shown. (B and C) The density plot showing the distributions of gene-level RNA-Seq read counts and HJAY array expression indices for different
sets of differentially expressed genes (DEGs) detected by the HJAY array only, or by RNA-Seq only, or by both (i.e. common DEGs). The x-axis is
each gene’s maximum log2 RNA-Seq read count (B), or maximum HJAY log2 expression index (C) in human and rhesus samples.
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the two platforms. For the 11 662 human–rhesus gene
pairs that can be analyzed by both platforms, 3855
DEGs were identified by RNA-Seq only (RNA-Seq
specific), and 644 DEGs were identified by HJAY only
(HJAY specific). We investigated the representative
features of RNA-Seq-specific, HJAY-specific and
common DEGs shared by both platforms. Interestingly,
we found that, compared with RNA-Seq-specific and
common DEGs, HJAY-specific DEGs were marked by
significantly lower gene expression levels (Figure 1B and
C). For each DEG, we calculated its maximum RNA-Seq
read count and maximum HJAY expression index in
the human and rhesus samples. The median value of the
maximum RNA-Seq read count of all HJAY-specific
DEGs was significantly smaller than that of RNA-Seq-
specific DEGs and that of common DEGs, respectively
(Table 1). We observed a similar pattern when we used
the HJAY expression index as the indicator of gene ex-
pression levels (Table 1). It should be noted that our
previous study indicated a very low FDR (1/33 tested by
real-time qPCR) among between-species DEGs identified
by the HJAY array analysis (17). Thus, we expect that the
vast majority of HJAY specific DEGs represent bona fide
gene expression differences between these human and
rhesus RNA samples. Together, these data suggest that
while RNA-Seq generally has a higher sensitivity to
detect between-species DEGs, it has a systematic
false-negative problem to detect DEGs with relatively
low expression levels in both species. It is possible that
such DEGs could be identified by a high-density micro-
array, especially when there are high-affinity probes
to detect signals of relatively low abundance transcripts.
On the other hand, they could be missed by RNA-Seq due
to insufficient transcript sampling of lowly expressed
genes.
To assess if this false-negative issue for lowly expressed

genes also affected RNA-Seq analysis of more closely
related species, we performed one lane of RNA-Seq on
the chimpanzee cerebellum RNA to produce �10.1
million reads. We compared the chimpanzee RNA-Seq
data with the human RNA-Seq data to identify DEGs.
Among the 13 344 genes that can be analyzed by both
RNA-Seq and the HJAY array, we identified 4345
DEGs by RNA-Seq and 866 DEGs by the HJAY array.
A total of 607 DEGs were shared by both platforms, ac-
counting for 14.0% DEGs detected by RNA-Seq and

70.1% DEGs detected by the HJAY array (Figure 2A).
There were 259 HJAY-specific and 3738 RNA-Seq-
specific DEGs. Consistent with the trend observed in the
human versus rhesus comparison, HJAY-specific DEGs
were characterized by significantly lower expression
levels compared with RNA-Seq-specific DEGs and
common DEGs (Table 1 and Figure 2B and C).

Real-time qPCR data confirm low expression levels of
between-species DEGs missed by RNA-Seq

The above comparison of RNA-Seq and HJAY data
suggest a systematic bias for RNA-Seq to miss between-
species DEGs of genes with relatively low expression
levels. To further confirm this finding, we examined the
RNA-Seq data of 33 human-versus-chimpanzee or
human-versus-rhesus orthologous gene pairs, for which
we had measured their expression levels using
SYBR-green real-time qPCR (17). These gene pairs were
randomly selected in our previous HJAY array study of
the same human and non-human primate samples for val-
idation of between-species DEGs (17). Of the 33 candidate
DEGs tested, 32 were validated by real-time qPCR (11/11
for human-versus-rhesus DEGs; 21/22 for human-versus-
chimpanzee DEGs; Supplementary Tables S2 and S3).
Among them, RNA-Seq correctly called between-species
DEGs for 29 gene pairs, yielding a false-negative rate of
9.4% (i.e. 3/32). The only qPCR-confirmed false-positive
DEG in our previous HJAY array study was NT5C. This
gene was called by the HJAY array as having >2-fold
reduction in expression level in humans as compared
with chimpanzees. However, qPCR indicated that the
human-versus-chimpanzee fold change was insignificant
(1.3-fold reduction in humans; Supplementary Table S3).
RNA-Seq called the expression difference of NT5C
between humans and chimpanzees as insignificant, with
an estimated fold reduction of 1.1, consistent with the
qPCR data.

Interestingly, the three ‘gold-standard’ between-
species DEGs missed by RNA-Seq were characterized by
relatively low expression levels in both the human
and chimpanzee (or rhesus) samples. The first gene,
EPHA6, was validated by qPCR as having >5-fold
increase in humans compared with rhesus macaques
(Supplementary Table S2). It has no more than four
RNA-Seq reads in any of the human and rhesus
macaque sequencing lanes. Although RNA-Seq correctly

Table 1. HJAY-specific DEGs are characterized by significantly lower gene expression levels compared with RNA-Seq-specific and

common DEGs

Human versus rhesus Human versus chimpanzee

Median of the maximum
RNA-Seq read count

Median of the
maximum HJAY
expression index

Median of the
maximum RNA-Seq
read count

Median of the
maximum HJAY
expression index

HJAY-specific DEGs 38 (N/A) 390 (N/A) 33 (N/A) 380 (N/A)
RNA-Seq-specific DEGs 104 (P=4.4e-42*) 633 (3.0e-18) 95 (2.5e-18) 590 (2.5e-11)
Common DEGs 99 (7.7e-31) 493 (6.9e-7) 81 (6.2e-12) 537 (2.1e-6)

*Compared with HJAY-specific DEGs (P-value of two-sided Wilcoxon rank sum test).
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predicted the direction of expression differences (i.e. up in
human), it failed to call this gene as a DEG. The second
gene, LPXN, was validated by qPCR as having >2-fold
increase in humans compared with chimpanzees
(Supplementary Table S3). It was missed by RNA-Seq,
with less than 34 reads in any of the human and chimpan-
zee sequencing lanes. For this gene, RNA-Seq failed to
predict the significance of its fold change as well as the
correct direction of fold change. The third gene missed by
RNA-Seq was SNTG2 in the human-versus-chimpanzee
comparison (Supplementary Table S3). Again, this gene
has no more than 14 reads in either humans or chimpan-
zees. To definitely confirm that these three genes had rela-
tively low expression levels, we examined the raw real-time
qPCR Ct values of these genes in human and non-human
primate samples, and compared them with the 29 ‘gold
standard’ DEGs correctly predicted by RNA-Seq. For
each DEG, we calculated the difference in Ct value of
our reference gene HPRT1 to the Ct value of the gene of
interest in both human and chimpanzee (or rhesus when

appropriate) samples, and obtained the maximum delta Ct

value in one of these two samples. DEGs whose maximum
delta Ct values were low had relatively low expression
levels in both samples used for identifying the DEGs.
We found that the three DEGs missed by RNA-Seq
(i.e. false negatives of RNA-Seq) had a median
maximum delta Ct of �1.92, as compared with �0.25
for the other 29 DEGs correctly predicted by RNA-Seq
(P=0.07, one-sided Wilcoxon rank sum test). Thus, the
gold-standard real-time qPCR data on this relatively small
list of genes also indicates a systematic bias of RNA-Seq
to have false negatives for DEGs of lowly expressed genes.
This is consistent with our genome-scale comparison of
RNA-Seq and HJAY array data.

MAQC reference RNA data sets confirm an increased
error rate of RNA-Seq for detecting DEGs of lowly
expressed genes

The above analysis of RNA-Seq, HJAY and real-time
qPCR data on human and non-human primate tissues

Figure 2. A comparison of RNA-Seq and high-density HJAY array for detecting differential gene expression between human and chimpanzee
cerebellum tissues. (A) The Venn diagram showing the overlap between differentially expressed genes (Human versus Chimpanzee, FDR <1% and
FoldChange �2) detected by Illumina RNA-Seq and the Affymetrix HJAY array. Only genes that can be analyzed by both platforms are shown. (B
and C) The density plot showing the distributions of gene-level RNA-Seq read counts and HJAY array expression indices for different sets of
differentially expressed genes (DEGs) detected by the HJAY array only, or by RNA-Seq only, or by both (i.e. common DEGs). The x-axis is each
gene’s maximum log2 RNA-Seq read count (B) or maximum HJAY log2 expression index (C) in human and chimpanzee samples.
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indicates that RNA-Seq tends to have an increased
false-negative rate for genes with relatively low expression
levels. However, two questions remained to be answered.
First, is this issue unique to the detection of DEGs
between closely related species, or does it also affect the
detection of within-species DEGs? Second, our analysis so
far focused on the false-negative issue of RNA-Seq. Does
RNA-Seq also tend to have increased false positives for
lowly expressed genes? To address these questions, we
compared RNA-Seq and TaqMan qPCR data of two
human reference RNA samples in the MAQC project
(35). The MAQC project generated TaqMan qPCR data
for 960 genes in two samples—human UHR and brain,
with four replicate assays per gene in each sample. This
provided extensive gold standard expression measure-
ments for assessing the accuracy of RNA-Seq to detect
DEGs.
We observed a strong overall concordance between

TaqMan qPCR and RNA-Seq in the detection of
DEGs. The fold-change estimates by qPCR and by
RNA-Seq were strongly correlated (Pearson correlation
coefficient was 0.95). We found that 12.7% of qPCR
DEGs were missed by RNA-Seq, a false-negative rate
comparable with what we observed (9.4%) in our com-
parison of RNA-Seq and qPCR data between multiple
species. Meanwhile, 58 out of 323 non-DEGs according
to qPCR data were predicted by RNA-Seq as DEGs, rep-
resenting a false-positive rate of 18%.
Based on the DEG selection by RNA-Seq, we further

divided these genes into four subsets: the true positive (TP)
set (qPCR DEGs correctly selected by RNA-Seq), the
false positive (FP) set (qPCR non-DEGs incorrectly
selected by RNA-Seq), the true negative (TN) set (qPCR
non-DEGs correctly excluded by RNA-Seq) and the false
negative (FN) set (qPCR DEGs incorrectly excluded by
RNA-Seq). We found that both the FP and FN sets were
characterized by significantly lower levels of gene expres-
sion compared with the TP and TN sets. For each gene,
we obtained its maximum RNA-Seq read count and
maximum qPCR delta Ct value (the reference gene
POLR2A—gene of interest) in the UHR and brain
samples. The median values of the maximum qPCR
delta Ct and the maximum RNA-Seq gene count of the
FN set were significantly smaller than those of the TP set
(Table 2 and Figure 3). The median values of the
maximum qPCR delta Ct and the maximum RNA-Seq
gene count of the FP set were also significantly smaller
than those of the TN set (Table 2 and Figure 3).
Together, these results indicate that RNA-Seq has a
reduced accuracy for detection of DEGs in genes with
low expression levels, reflected by an increase in both the
false-negative and the false-positive rates.
Recent work on RNA-Seq has revealed a potential de-

tection bias toward differential expression of genes with
long transcripts (36). To assess whether this issue con-
founded the trend that we observed in this study, we
normalized the RNA-Seq gene count by the total length
of constitutive exons and plotted the distribution of
transcript-length normalized gene counts for different
sets of genes. We observed the same trend (Supplementary
Figure S4) that the accuracy of DEG detection by

RNA-Seq was reduced for genes with low transcript-
length normalized gene counts.

DEG detection by RNA-Seq: the influence of sequencing
count and extent of expression change

The analysis of the MAQC RNA-Seq and TaqMan qPCR
data confirmed a systematic bias for RNA-Seq in the
analysis of genes with relatively low expression levels.
This raised several interesting questions. How does
the sequencing count affect the false-negative rate of
RNA-Seq for detecting true DEGs? Does the false-
negative rate also depend on the extent of expression
change one wishes to study?

To address these questions, we again made use of the
MAQC data to assess the influence of sequencing count
and extent of expression change on DEG detection. Based
on the TaqMan qPCR estimates of expression fold change
(FC) between the MAQC human UHR and brain
samples, we grouped the 510 qPCR DEGs into four quar-
tiles: first quartile, log2 FC between 1 and 1.6; second
quartile, 1.6–2.9; third quartile, 2.9–5.9 and fourth
quartile, >5.9. Similarly, we grouped the 510 qPCR
DEGs into four quartiles based on the maximum
gene-level RNA-Seq read count in the human UHR and
brain samples: first quartile, read count 1–44; second
quartile, 44–130; third quartile, 130–380; and fourth
quartile, >380. For each fold-change group, we calculated
the proportion of TaqMan qPCR DEGs missed by
RNA-Seq (i.e. RNA-Seq false-negative rate) in individual
RNA-Seq read count groups. This analysis allowed us to
investigate how the RNA-Seq false-negative rate could be
affected by the extent of expression change and the
number of sequences per gene.

Our results indicate that DEGs with larger extent of
expression change require less sequencing count to
identify the change (Table 3 and Figure 4). For DEGs
with small expression fold-change (i.e. log2 FC between
1.0 and 1.6; first quartile based on the expression
fold-change), only 55.3% of DEGs from the first
RNA-Seq read-count quartile (i.e. <44 reads) can be
detected by RNA-Seq, while 78.8% of DEGs from the
fourth RNA-Seq read-count quartile (i.e. >380 reads)
can be detected by RNA-Seq. In contrast, for DEGs

Table 2. For DEG detection by RNA-Seq in the MAQC samples,

both the false positive (FP) set and the false negative (FN) set are

characterized by significantly lower gene expression levels compared

with the true positive (TP) set and the true negative (TN) set

Median of the
maximum qPCR
delta Ct value

Median of the
maximum RNA-Seq
read count

FN set (PCR+SEQ-) �2.83 (N/A) 57 (N/A)
TP set (PCR+SEQ+) �1.41 (8.8e-7*) 145 (1.5e-6*)
FP set (PCR-SEQ+) �3.20 (N/A) 59 (N/A)
TN set (PCR-SEQ-) �1.77 (2.7e-3**) 98 (2.0e-2**)

*Compared with the FN set (P-value of two-sided Wilcoxon rank
sum test).
**Compared with the FP set (P-value of two-sided Wilcoxon rank
sum test).
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with larger expression fold-change (i.e. log2 FC between
1.6 and 2.9; second quartile based on the expression
fold-change), 83.3% of DEGs from the first RNA-Seq
read-count quartile (i.e. <44 reads) can be detected by
RNA-Seq, while 96.3% of DEGs from the fourth
RNA-Seq read-count quartile (i.e. >380 reads) can be
detected by RNA-Seq. Consistent with this trend, we
obtained even lower false-negative rates (i.e. higher
RNA-Seq detection rate) in DEGs from the third and
fourth quartiles of expression-fold change (Table 3 and
Figure 4). Together, our results confirm that the ability
of RNA-Seq to identify significant DEGs is positively
associated with both the number of sequences per gene
and the extent of expression-fold change.

We also used the MAQC samples (8.1 million reads for
UHR and 10.1 million reads for brain) to determine the
overall distribution of sequence count per gene from a
typical RNA-Seq data set of �10 million reads. At this
sequencing depth, 34% of human genes had read counts
>1 and <44 (first quartile in our analysis of the qPCR
DEGs), 13% of human genes had read count >380 (fourth
quartile) and 41% of human genes had intermediate read
counts of between 44 and 380 (second and third quartiles)
(Supplementary Figure S5).

DISCUSSION

RNA-Seq has emerged as a revolutionary technology for
transcriptome analysis (20). Unlike gene expression micro-
array which relies on prior probe design and existing tran-
script annotations, RNA-Seq can be used to analyze any
transcriptome. This is particularly useful for achieving
complete gene coverage when comparing transcriptomes
of multiple species.
In this work, we systematically assessed how accurately

RNA-Seq can detect DEGs between closely related
species, specifically between humans and non-human
primates. We generated �49 million RNA-Seq reads on
a panel of cerebellum RNA samples of humans, chimpan-
zees and rhesus macaques, which were previously profiled
by the HJAY array and real-time qPCR. Although the
HJAY array is a newly designed exon array with an un-
precedented probe density (17–19), our results indicate
that RNA-Seq has substantially better coverage for

Figure 3. The density plot showing the distribution of TaqMan qPCR delta Ct value (A) and gene-level RNA-Seq read counts (B) for different sets
of genes: false negative set (black), false positive set (red), true positive set (green) and true negative set (blue) in the analysis of the MAQC reference
RNA samples (UHR and brain). The x-axis is each gene’s maximum delta Ct value (POLR2A—gene of interest) (A), or maximum log2 RNA-Seq
read count (B) in UHR and brain samples. The median TaqMan qPCR delta Ct of these four sets of gene is �2.83, �3.20, �1.41 and �1.77,
respectively. The median RNA-Seq read count of these four sets of gene is 57, 59,145 and 98, respectively.

Table 3. The proportions of MAQC TaqMan qPCR DEGs

missed by RNA-Seq, stratified by the number of sequences per gene

(i.e. gene-level RNA-Seq read counts) and the extent of expression

change (i.e. log2 fold-change between brain and UHR)

Q1a (1–44)
(%)

Q2a (44–130)
(%)

Q3a (130–380)
(%)

Q4a (>380)
(%)

Q1b (1.0–1.6) 44.7 48.3 28.6 21.2
Q2b (1.6–2.9) 16.7 10.3 8.0 3.7
Q3b (2.9–5.9) 9.5 3.7 0.0 0.0
Q4b (>5.9) 8.3 0.0 0.0 0.0

aThe four quartiles based on the gene-level RNA-Seq read counts.
bThe four quartiles based on the TaqMan qPCR estimates of
expression fold change (log2 scale).

Nucleic Acids Research, 2011, Vol. 39, No. 2 585



DEGs in cross-species comparison of gene expression. For
example, in the human-versus-rhesus comparison of gene
expression levels, 65.0% of DEGs identified by the HJAY
array can be identified by RNA-Seq. In contrast, only
18.6% of DEGs identified by RNA-Seq can be identified
by the HJAY array. In fact, 28.2% of RNA-Seq DEGs
cannot even be analyzed by the HJAY array due to lack of
probes perfectly matching orthologous transcripts of both
species. It should be noted that with the same statistical
criteria, we estimated a false-positive rate of �18% for
RNA-Seq detection of DEGs in the MAQC human refer-
ence RNA samples. Thus, we expect that the vast majority
of RNA-Seq-specific DEGs represent bona fide gene ex-
pression differences between these human and non-human
primate samples. The significantly improved gene
coverage and increased sensitivity for DEGs will provide
a powerful tool that can greatly advance our understand-
ing of transcriptome changes during human evolution.
Despite the strength of RNA-Seq for comparative

studies of gene expression, we also observed a systematic
bias for RNA-Seq in the analysis of genes with relatively
low expression levels. Specifically, DEGs missed by
RNA-Seq (i.e. false negatives) were characterized by low
expression levels in samples being examined, as indicated
by lower RNA-Seq read counts, lower HJAY expression
indices and higher raw Ct values by real-time qPCR.
Additionally, our analysis of the MAQC human data

set showed that this issue was not restricted to the com-
parison of gene expression between species. In the com-
parison of two human reference RNA samples, we found
an increase in both the false-negative rate and the
false-positive rate for RNA-Seq detection of DEGs with
relatively low expression levels.

Although our finding appears to contradict the general
assumption that RNA-Seq is particularly suitable for
analysis of lowly expressed genes as compared with micro-
arrays (23,24), it is not entirely unexpected. For DEGs
with low mRNA abundance, RNA-Seq at 10–20 million
reads per sample may not achieve sufficient transcript
sampling to accurately detect the changes in their
mRNA concentrations. Meanwhile, for non-DEGs with
low mRNA abundance, random sampling noise during
RNA-Seq may have a more significant impact on their
final read counts, thus causing an increase in false-positive
predictions. It is reassuring that among the three
RNA-Seq false negatives of qPCR-confirmed DEGs
between humans and non-human-primates, RNA-Seq
correctly predicted the direction of expression changes in
two genes. It is possible that these DEGs can be eventually
detected by even deeper RNA-Seq. It should be noted that
the sequencing depth in this study (10–20 million reads per
sample) is comparable with most published RNA-Seq
studies of gene expression levels (21,25). Thus, our conclu-
sions have important implications for the design and data
interpretation of RNA-Seq studies on gene expression dif-
ferences between and within species.

In our study, the RNA-Seq data were generated on
pooled RNA samples from each species. Specifically, the
human cerebellum RNA sample was a pool of 24 male
and female donors, and the chimpanzee and rhesus cere-
bellum RNA samples were both pools of cerebellum
tissues of three animals. It should be noted that RNA
pooling is a common practice in many gene expression
studies, and has been well justified based on statistical
and practical considerations (37). Pooling is a desirable
strategy when the cost to profile individual samples is
high and the primary research goal is to identify differ-
ences in gene expression profiles between different bio-
logical classes. Studies on pooling have concluded that it
does not adversely affect the inference for most genes (37).
It should also be noted that because of the current high
cost of RNA-Seq as well as the long running time and
limited access of high-throughput sequencers (compared
with arrays), it is common for RNA-Seq studies to adopt
the pooling strategy to reduce the number of sequencing
runs. Our experimental design and the number of reads
generated (1–2 lanes of data per RNA pool) were repre-
sentative of published RNA-Seq studies of gene expres-
sion. By designing our experiment in this way, we expect
the conclusions drawn from our data set will be valuable
to many investigators using the RNA-Seq technology in
diverse settings. Moreover, in our previous HJAY array
analysis of these samples, we found a strong correlation in
expression profiles of biological replicates from individual
species (17). For example, the three rhesus macaque cere-
bellum samples had a Pearson correlation coefficient of at
least 0.98 in their expression profiles. This further justifies

Figure 4. The ability of RNA-Seq to identify significant DEGs is posi-
tively associated with both the number of sequences per gene and the
extent of expression change. Based on the TaqMan qPCR estimates of
expression fold-change (FC) between the MAQC human UHR and
brain samples, we grouped the 510 qPCR DEGs into four quartiles:
first quartile, log2 FC between 1 and 1.6; second quartile, 1.6–2.9; third
quartile, 2.9–5.9 and fourth quartile, >5.9. Similarly, we grouped the
510 qPCR DEGs into four quartiles based on the maximum gene-level
RNA-Seq read count in the human UHR and brain samples: first
quartile, read count 1–44; second quartile, 44–130; third quartile,
130–380 and fourth quartile, >380. For each fold-change group, we
calculated the proportion of TaqMan qPCR DEGs missed by
RNA-Seq (i.e. RNA-Seq false-negative rate) in individual RNA-Seq
read count groups, as shown in the barchart.
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the use of the pooling strategy in our RNA-Seq study
design.

Although the RNA-pooling strategy does not assess
biological variations among individual samples from
each species, it must be emphasized that the major
finding of our study, i.e. there exist a systematic bias
and a higher false-negative rate for RNA-Seq in the
analysis of DEGs with relatively low expression levels,
cannot be an artifact attributed to the pooling strategy.
It is well known that the pooling strategy could potentially
increase statistical power by reducing the biological vari-
ation among individual samples comprising the RNA pool
(37,38). Thus, in a study without pooling we would expect
a more pronounced false-negative problem for RNA-Seq
to detect between-species DEGs with relatively low ex-
pression levels. Similarly, the MAQC data sets also do
not contain information about biological variation.
Nonetheless, the MAQC samples have been used exten-
sively for assessing gene expression platforms and statis-
tical methods of data analysis (35,39). The tremendous
insights gained from these studies further demonstrate
the validity and utility of evaluating gene expression
technologies without addressing the issue of biological
variation.

Another important issue in comparative studies of gene
expression is to distinguish bona fide inter-species expres-
sion differences from intra-specific variations of gene ex-
pression, which can arise from a variety of confounding
factors such as the age, gender and health conditions of
individual samples. To address this issue, it is usually ne-
cessary to perform expression profiling and validation ex-
periments on a large number of samples from each
individual species. However, this issue is not a concern
to the present study, as the goal of this work is to inves-
tigate the accuracy of RNA-Seq in between-species com-
parisons of gene expression levels. For this purpose, as
long as there are genuine expression differences of
orthologous genes in samples from different species, we
can seek to assess various factors (such as gene expression
level and extent of expression change) that affect the
accuracy of RNA-Seq. The underlying cause of such ex-
pression differences does not confound our evaluation of
RNA-Seq and the comparison to microarray technology.
Nonetheless, it should be clarified that because of our
limited sample size, the gene expression differences
identified from the RNA-Seq data set are not necessarily
equivalent to genuine species-specific expression patterns.

SUPPLEMENTARY DATA
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