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Abstract: This article provides a systematic review of studies on recognising bathroom activities
in older adults using wearable sensors. Bathroom activities are an important part of Activities of
Daily Living (ADL). The performance on ADL activities is used to predict the ability of older adults
to live independently. This paper aims to provide an overview of the studied bathroom activities,
the wearable sensors used, different applied methodologies and the tested activity recognition
techniques. Six databases were screened up to March 2020, based on four categories of keywords:
older adults, activity recognition, bathroom activities and wearable sensors. In total, 4262 unique
papers were found, of which only seven met the inclusion criteria. This small number shows that
few studies have been conducted in this field. Therefore, in addition, this critical review resulted
in several recommendations for future studies. In particular, we recommend to (1) study complex
bathroom activities, including multiple movements; (2) recruit participants, especially the target
population; (3) conduct both lab and real-life experiments; (4) investigate the optimal number and
positions of wearable sensors; (5) choose a suitable annotation method; (6) investigate deep learning
models; (7) evaluate the generality of classifiers; and (8) investigate both detection and quality
performance of an activity.

Keywords: older adults; activity recognition; bathroom activities; wearable sensors; machine learn-
ing techniques

1. Introduction

Globally, the population is ageing rapidly. By 2050, the number of people aged 60 years
and older is expected to double to 2.1 billion [1]. This ageing process introduces physical
and social challenges for older adults [2–5]. One prominent element is the decreased
ability of performing Activities of Daily Living (ADL), which affects older adults’ ability
to live independently at home. In the past years, a variety of devices have been used
and researched to overcome limitations related to ageing and to help older adults stay
independently at home, including wearable sensors, cameras, audio recorders and Internet
of Things devices [6–10]. These devices can be used for recognising specific situations and
activities in the daily life of older adults. Additionally, such devices can also be extended
with functionalities that alert clinical staff, caregivers or trusted family members when a
suspicious situation occurs [11–13]. Wearable sensors in particular, mainly accelerometers,
have already been widely applied for the monitoring daily activities [12,14,15]. Compared
to cameras and audio recorders, wearable sensors are superior in the number of recognised
activities [10] and the protection of privacy and security of users. Compared to environ-
mental sensors (presence, pressure, temperature etc.), wearable sensors can detect more
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complex activities rather than only one action. For example, the water flow detection
sensor attached to the sink can detect the flow of water. However, it cannot detect whether
the person is washing their hands or washing their face. To detect an activity, it should be
combined with other sensors, which increases the complexity of device set-up. Compared
to radar sensors, wearable sensors are not limited by the customised hardware set up and
environmental interference [16].

The performance on ADL is usually assessed to predict the ability of an older adult to
live independently [17,18] and to indicate functional frailty. For example, the Katz Index of
Independence in Activities of Daily Living, is a scale to measure six ADLs (bathing, dress-
ing, toileting, transferring, feeding and continence). The performance score is evaluated
based on whether the participant can perform activities by themselves or not [19]. The final
scores are then used by care providers to estimate care needs and by care planners for the
distribution of health care resources [20]. Additionally, the performance quality on ADL
can reveal the functional status of older adults, which can form the basis for therapeutic
decisions, particularly when applied to certain diseases that are associated with old age,
e.g., chronic obstructive pulmonary disease [21] and stroke [22].

ADLs can be categorised into different ways, but the most researched and monitored
group is composed of the basic ADL (BADL). These BADLs involve bathing, grooming,
maintaining dental hygiene, nail and hair care, dressing, toileting, continence, walking
and feeding [17]. Among these BADLs, bathroom activities take up a large ratio. Bathroom
activities are prominent in taking care of personal hygiene and preventing the spread of
communicable disease [23].

However, to the best of the authors’ knowledge, few studies have been conducted on
bathroom activity monitoring for older adults, especially using wearable sensors [6,7,9,24–27].
Therefore, the objective of this study is to review such studies and examine the actual
studied bathroom activities, used wearable sensors, different applied methodologies
and the activity recognition techniques. From this review, recommendations are generated
for future studies.

This article presents a systematic review study of related work surrounding the
field of bathroom activity recognition in older adults using wearable sensors. Literature
encompassing conferences and journal papers were investigated to not only build the
state-of-the-art but also lay the ground for recommendations as well.

This systematic review focuses particularly on the following research questions (RQ):

RQ1. Which bathroom activities are explored in current studies?
RQ2. Which wearable sensors are used?
RQ3. Which methodology, regarding the setup of the experiment, the number and

type of participants, and the method of annotating the activities, is used in the
current experiments?

RQ4. Which activity recognition techniques are investigated for bathroom activities?

To this end, Section 2 presents the methodology for selecting the search query and
therefore including all relevant papers. Next, the retained studies are presented indi-
vidually in Section 3, followed by a discussion in Section 4 where all research questions
are answered. Additionally, at the end of each research question, recommendations are
proposed to researchers who want to perform activity recognition in bathroom activities
for older adults. A summary on the conducted systematic review is given in Section 5.

2. Methods

The focus of this review is on bathroom activities, such as bathing, showering,
(un-)dressing, grooming, toileting and brushing teeth, recognised via wearable sensors. The
protocol for searching and selecting papers was according to the recommended PRISMA
guidelines on preferred reporting items for systematic reviews and
meta-analyses [28], schematically represented in Figure 1.
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2.1. Search Query

In order to find all relevant studies, keywords were organised into four categories,
classified by concept; i.e., older adults as target population, activity recognition as outcome,
bathroom activities as specification, and wearable sensors as materials. In two iterations,
the researchers Y.Z, I.D, and J.C (also co-authors of the paper) identified and discussed
relevant synonyms for these keywords. As only few papers were found in a pilot test,
search criteria were expanded in order to not miss any relevant studies. The final set can
be found in Table 1. By combining these concepts with the logical AND operator, the final
query was formed.

Table 1. Selected keywords for search. An asterisk (*) was used as a wildcard to broaden the search for words starting or
ending with a keyword.

Concept Keywords

Target population: older adults

“older adult” OR “older person” OR “older people” OR elderly OR elder OR
senior OR ageing OR aging OR aged OR retire* OR old OR gerontol* OR

gerontechnology OR 60-plus

Outcome: activity recognition
monitor OR monitoring OR tele-monitoring OR user-activity OR recogni* OR

detection OR detecting OR detect OR classif*

Specification: bathroom activities

“personal care” OR “wearing clothes” OR washing OR “brush* teeth” OR “teeth
brush*” OR “brush* tooth” OR “tooth brush*” OR groom OR grooming OR
“mouth care” OR bath OR bathing OR dress OR undress OR dressing OR
undressing OR toilet OR OR toileting hygien* OR shower OR showering

Materials: wearable sensors wearable OR sensor OR mobile* OR track* OR *worn OR portable OR monitor*

Papers were searched in six libraries, both technological and general: IEEE Xplore,
Science Direct, PubMed, Scopus, Web of Science and ACM. The keywords searching fields
covered title, keyword and abstract. This search included all relevant papers, which were
published in English until March 2020. Some libraries were limited in their advanced
search feature, e.g., max. 15 search terms (IEEE), max. 8 logical operators (Science Direct,
ACM) or only 2000 results to download (Scopus). Therefore, depending on the limitations
of the library, smaller subcategories were generated to create and retrieve all possible
combinations. Note that these combinations for all search terms were generated via a
coded computer program to avoid mistakes and forgotten combinations. The subcategories
of these keywords can be found in Appendix A.

2.2. Inclusion and Exclusion Criteria

To be included in the study, the paper should focus on older adults as the target
population, but the age of participants was not limited. Papers should focus on at least one
bathroom activity, i.e., bathing, showering, (un-)dressing, grooming, toileting or brushing
teeth. In addition, at least one wearable sensor, either worn on the body or in pockets,
should be used to recognise activities. Studies that included other activities or additionally
implemented different sensors were retained at first. Afterwards, a distinction was made
between wearable sensors and other sensors, in order to gain insights into these different
approaches. However, the final analysis was limited to papers using wearable sensors.
In addition, all papers needed to be published in English and should be of sufficient length
to warrant a scientific contribution, e.g., at least 1500 words. Notes or one-page papers
were excluded.

2.3. Search Procedure

As a result of querying in the six different libraries, 5621 papers were found. Zotero [29]
was used as the management tool. An overview of the screening procedure is shown in
Figure 1. Due to the aforementioned need of performing different searches and combina-
tions, many duplicates were found, with a total of 1359 duplicated papers being excluded.
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The remaining 4262 papers were divided over three researchers to be further investigated.
Papers were screened at first on titles and 4049 papers were excluded. This large number is
due to the fact that Web of Science also includes “Keywords Plus®” [30], i.e., extra keywords
based on references used in the paper, and also lemmatisation, i.e., including related words,
often used in libraries. By these broader search terms, we wanted to guarantee that all
relevant papers were included. However, this also implied finding a big number of papers
to exclude based on a title screening. For example, aged or old are often used to describe
participants’ age in general, and also hygiene was often found related to “oral hygiene”,
e.g., “Caries Increment and Oral Hygiene Changes in 6- and 12-Year-Old Children”.

papers searched from databases on March 31, 2020
n = 5621

papers for title screening
n = 4262

papers for abstract screening
n = 213

papers for full-text screening
n = 109

papers for eligibility screening

research papers
n = 44

review papers
n = 6

final paper set
n = 7

remove review papers
n = 6

include reference from review paper
n = 1

Papers using other types of sensors
for bathroom activity recognition

n = 39

remove based on inclusion criteria
n = 59

remove based on inclusion criteria
n = 104

remove based on inclusion criteria
n = 4049

remove duplicates
n = 1359id
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Figure 1. Flowchart of the paper screening procedure.

Next, papers were screened on the abstract (n = 213) and, afterwards, the entire paper
was read (n = 109). When in doubt, the papers were discussed with all three researchers
before including or excluding them, resulting in 50 papers. Review papers were initially
retained and screened [31–33], making sure that all relevant papers mentioned by these
studies were included as well. Based on this screening, two papers [9,34] on activity
recognition of older adults were added. These two papers were not included in our initial
findings as they did not cover all the keywords from the four concepts in the searching
filed. The paper in [9] did not include the keywords of “older adults” and the paper in [34]
did not include the keywords of “bathroom activity”.

Finally, papers were excluded based on eligibility, removing an additional 39 papers.
The eligibility screening process is illustrated in Figure 2. Among the 50 papers, six
papers were literature review papers. The other 44 papers were research papers, including
bathroom activities recognition for older adults, using wearable sensors or other types of



Sensors 2021, 21, 2176 5 of 23

the sensors. Two extra research papers were included which were mentioned from the
review papers. Thus, in total 46 research papers were screened for eligibility.

Figure 2. Sankey Diagram of the overview of the papers for eligibility screening.

Among these 46 papers, studies in seven papers used wearable sensors. The other
39 papers used other types of sensors, among which audio recorders, video/image
recorders, radar sensors, inertial measurement unit (IMU) sensors (accelerometer and/or
gyroscope) attached to the object instead of the human body and environmental sensors.
Audio recorders were used for detecting activities related to water flowing, e.g., wash-
ing hands [35–39], washing face [36], toileting [38,40,41] or bathing [40]. Video/image
recorders were usually used for detecting washing hands [35,39,42–44], washing face [36]
and dressing [45–48]. Radar sensors were used for detecting standing/sitting while
showering [49], entering the bathtub [49,50] and sitting on/leaving toilet [51]. IMU sen-
sors were attached to the water pipe for detecting washing and bathing [52], on the
robot for detecting dressing [46], and in the soap bar for hand washing [37]. Multiple
environmental sensors were combined for detecting bathing/showering [34,36,40,53–59],
toileting [34,36,38,40,41,55–58,60–70], dressing [45,58,71,72], general personal hygiene ac-
tivity [54,61], washing hands [36–38], washing face [36] and grooming [58,70].

Compared with wearable sensors, other types of sensors have limitations for detecting
bathroom activities. First, the bathroom setting is a private environment, especially for
activities like bathing, dressing and toileting. Thus, videos or images should be handled
with the utmost care to protect the privacy of the users [34,36]. Second, using only an
environmental sensor or audio recordings, the number of detectable activities are limited.
As afore-described, environmental sensors usually only detect one action, which is not
useful for detecting complex activities of daily living in the bathroom, which include a
sequence of multiple actions [36,39,53]. Audio sensors can detect activities that create
typical sounds, like washing hands [36,39]. However, it is limited in detecting dressing
and combing hair, and it is noise-sensitive [52,56]. Therefore, with an increased number
of activities that need to be detected, the number of sensors also increases. These reasons
motivate the choice to focus on wearable devices for bathroom activity monitoring.

In conclusion, a final set of seven papers were studied in depth. All three authors anal-
ysed the selected studies and extracted data regarding target population, activities, sensor
use, participants, setup of the experiment, feature extraction and recognition techniques.
An overview of this information is shown in Tables 2 and 3.
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Table 2. Overview of extracted data from papers regarding target population, activities, sensor use, participants, setup of the experiment, feature extraction and recognition techniques.

Target
Population

Activities Sensor Use Participants

Reference Year ADLs
Number of
Bathroom

ADLs

Wearable
Sensors Brands Position Frequency

(Hz)
Additional

Sensors
Mean Age

(Years) Number

Chan et al.
[6] 2016

older
participants,
caregivers

washing hands,
toileting (urination,

defecation)
3 ACM / right wrist,

waist 20 / / /

Cherian et al.
[7] 2017

older adults,
dementia
patients

phase 1: drinking,
brushing teeth,

combing hair, washing
hands, scratching the

chin, taking medication
phase 2,3: brushing

teeth, others

phase 1: 3
phase 2,3: 1 ACM Pebble wrist 25 / /

phase 1: 20
phase 2: 10
phase 3: 12

Noury et al.
[24] 2012 older adults

walking, dressing,
toileting, recreation,
sleeping, breakfast,

lunch, dinner

2 Actimometer
(3 ACMs)

lab-
developed chest / / 27 (n = 7), 80.5

(n = 4) 11

Kim et al.
[25] 2009 general (incl.

older adults) brushing teeth 1 ACM, MAG

ACM-MMA
7260,

freescale, Tx;
MAG-HMC

1055,
Honeywell,

MN

in
toothbrush 50 / 25 4

Garlant et al.
[26] 2018 general (incl.

older adults)

walking, brushing teeth,
drinking, from a mug,
opening a pill bottle

1 ACM, GYR BiostampRC dominant
hand 100 / 22–24 4
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Table 2. Cont.

Target
Population

Activities Sensor Use Participants

Reference Year ADLs
Number of
Bathroom

ADLs

Wearable
Sensors Brands Position Frequency

(Hz)
Additional

Sensors
Mean Age

(Years) Number

Masum et al.
[27] 2019 general (incl.

older adults)

walking upstairs,
walking downstairs,

walking, jogging, typing
and writing, standing,
sitting, lying, toileting

1 ACM, GYR
Xiaomi

Redmi 4A
smartphone

hand data collec
-tion rate:1 / / /

De et al. [9] 2015
older adults,
Alzheimer

patients

using refrigerator,
cleaning utensil, cooking,
sitting and eating, using
bathroom sink, moving
from indoor to outdoor,
moving from outdoor to
indoor, walking upstairs,

walking downstairs,
standing, lying on the
bed, sitting on the bed,

lying on the floor, sitting
on the floor, lying on the
sofa, sitting on the sofa,
and toileting (sit on the

toilet)

2

ACM, GYR,
temperature,

humidity,
atmospheric

pressure

Galaxy S4
smartphone

waist, lower
back, thigh,
and wrist

ACM, GYR:
100,

temperature,
humidity: 1,

atmospheric: 5

beacon
trademarks / 1
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Table 3. Overview of extracted data from papers regarding target population, activities, sensor use, participants, setup of the experiment, feature extraction and recognition techniques (con-
tinued).

Setup of the Experiment Feature Extraction Recognition Techniques

Reference Test Period Environment:
Lab/Real-Life Annotation Methods Window Size Number of

Features Domain
Machine
Learning

Algorithms

Other
Algorithm

Evaluation
Metrics Model Training

Chan et al. [6] 50 times / / 40 data points,
95.5% overlap 6 time,

frequency

REP-tree,
SMO, RF,

Naive Bayes
forest, HMM,

VOHMM

/ accuracy 10-fold cross
validation

Cherian et al.
[7]

phase 1:
79 min (total)

phase 2: 1h
per person

phase 3:
4.9 h/6.25 days

per person

at least once
per activity
per day per

person

phase1: lab
phase2: real-life
phase 3: real-life

phase1: supervisor
phase2: participant
phase3: participant,

4 s, 75% overlap

total: 51

after feature
selection:

phase 1: 24
phase 2,3: 13

time,
frequency

C4.5, KNN,
multilayer

perception, RT,
RF

/ accuracy,
F1-score

phase1,2:
10-fold cross
validation

phase 3: LOPO

Noury et al.
[24] 2 h in total real-life participants writing 15 s / / /

self -developed
method using
probabilities

recall, specificity /

Kim et al. [25] / lab / 30 data points / / / threshold values accuracy /
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Table 3. Cont.

Setup of the Experiment Feature Extraction Recognition Techniques

Reference Test Period Environment:
Lab/Real-Life Annotation Methods Window Size Number of

Features Domain
Machine
Learning

Algorithms

Other
Algorithm

Evaluation
Metrics Model Training

Garlant et al.
[26]

30 s for
brushing teeth lab supervisor / / / / statistical

method
correlation,
overlap rate /

Masum et al.
[27] 20,000 cases lab / / / ACM, GYR

DNN, SVM,
DT, KNN, RF,

NB, LR
/ accuracy,

precision 80% for training

De et al. [9] 90 min real-life supervisor (developed
app) 2 s

ACM: 6
GYR: 6

temperature: 2
pressure: 2
humidity: 2

beacon
trademarks: 1

time /
multi-scale
conditional

random field
accuracy 50% for training



Sensors 2021, 21, 2176 10 of 23

3. Results

Results are presented in Tables 2 and 3. Below, the studies of seven papers will be
discussed individually, addressing the aforementioned research questions.

Chan et al. [6] focused on two bathroom activities: washing hands and toileting
(urination and defecation). Washing hands was included in this study as it was part
of the toileting event. To collect movement signals, two accelerometers were used: one
attached to the right wrist and the other one attached to the waist of the participant.
Detailed information about the sensors was not mentioned, except its sampling rate at
20 Hz. In addition, little information was given about the experimental setup, neither the
number of participants nor their age. They only reported that the toileting activity was
performed 50 times. The collected signals were directly transmitted to the smartphone
via Bluetooth. The signals were segmented by a sliding window at the length of 2 s, with
97.5% overlap. A two-layer hierarchical model was trained for recognising the activities,
with 10-fold cross-validation. The first layer was used to classify segments, with six
handcrafted features as input, all listed in Table 4. Four classifiers were tested: reduced
error pruning decision tree (REP-tree), sequential minimal optimisation (SMO), random
forest (RF) and Naive Bayes forest. Regarding the computation cost and accuracy result,
the REP-tree scored best, achieving an overall accuracy of 76%. The classification result
of the first layer was later used as the input of the second layer to predict the activity
sequence. In the second layer, researchers developed a variable ordered hidden Markov
model (VOHMM). Authors verified that compared to the traditional HMM model, this
model is effective when an unreasonable class of segment is predicted [6]. For instance,
in a sequence of segments for defecation, the first segment was predicted as the state of
defecation but the last one was predicted incorrectly. To solve this problem, VOHMM
defines a fixed order with excluding the possibility of transition to the unreasonable states.
In other words, the current state determines which were the next possible states. As a
result, VOHMM obtained the overall accuracy of 73%, around 43% higher than traditional
HMM. In a future study, Chan et al. [6] proposed to study an adaptive model which can
simplify the training process.

The study by Cherian et al. [7] did not only focus on the older adults, but also people
with dementia. However, it is unclear which groups were recruited in this study. The stud-
ied ADLs included brushing teeth, drinking, combing hair, washing hands, scratching
the chin and taking medicine. To collect the movement signal, a Pebble smartwatch was
used, which was integrated with an accelerometer. Although the sensor position was not
mentioned specifically, given that the study focused on detecting brushing teeth, it can be
derived that the sensor was worn on the dominant wrist. The sampling rate was 25 Hz
and the data were transmitted via Bluetooth to a smartphone. This study was conducted
in three phases: recognising fixed ADLs, recognising brushing teeth within ADLs in a lab
environment, and real-life environment. Respectively, 20, 6 and 12 unique participants (age
unknown) were recruited in the three phases. During the first two phases, the activities
were annotated by researchers and, in the third phase, it was done by the participants.
The obtained signal was segmented by a 4-second sliding window, with 50% overlap and
then processed to extract features. From each axis of the acceleration, 17 types of features
were extracted, including seven types that were exclusively related to brushing teeth move-
ments, as shown in italic in Table 4. A Correlation-based Feature Selection (Cfs) Subset
Evaluator in WEKA [73] was used to search the optimal feature subset where each feature
was highly correlated with the class and not correlated with each other. Five traditional
machine learning techniques were investigated: C4.5 decision tree, k-nearest neighbors
(KNN), multilayer perception, random tree (RT) and RF. In phase 1, the classifiers were
trained in 10-fold cross-validation. RF reached the highest result, with an accuracy of
93.5% for brushing teeth, 64.0% for combing hair and 75.1% for washing hands. In phase 2,
the model was trained for binary classification with brushing teeth versus the other five
activities. To solve the imbalance problem, data collected in phase 1 and 2 were mixed
together. Finally, C4.5 obtained the best result, with the averaged accuracy of 96.1% and
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F1-score of 0.620. Phase 3 also used binary classification, with the model trained using the
data of phase 1 and 2 and tested on the data of phase 3. In this phase, C4.5 still obtained
the best result, with an accuracy of 93.6% and F1-score of 0.824. Similar to the study by
Chan et al. [6], the segment prediction result was used for predicting the sequence of
brushing teeth. Three threshold values were set up: minimum brushing teeth duration
(60 s), maximum pausing duration while brushing teeth (15 s) and ratio of brushing teeth
duration taking up the total sequence duration (75%). As a result, 94% of brushing teeth
sequences were detected. Concerning future studies, Cherian et al. [7] suggested to test
the model in a real-life environment and generalise the model to predict other activities,
like washing hands and taking medicine, as well. The final aim in the long run would be a
personalised intervention system.

Table 4. Handcrafted features (time and frequency domain) for activity classification.

Reference Signal Features

Time Domain Frequency Domain

Chan et al. [6] acceleration
mean, standard deviation (std),

correlation, signal magnitude area, tilt
angle

spectral entropy

Cherian et al. [7] acceleration

mean, std, mean jerk, mean distance
between axes, correlation, number of
peaks, number of valleys, root mean

square, std of valleys, mean of peaks, std of
peaks, mean of peaks, mean of the side

heights, std of the side heights, number of
times axes crossed each other

energy, entropy

Noury et al. [24] acceleration, PIR signal, time location, static/dynamic, walking or not,
transfers, postures, time /

Kim et al. [25] acceleration, magnetometer / /

Garlant et al. [26] acceleration, gyroscope / /

Masum et al. [27] acceleration, gyroscope raw signal /

magnitude of acceleration

mean, variance of the magnitude, mean,
variance of the first derivative of the

magnitude, mean, variance of the
second derivative of the magnitude

/

De et al. [9]
magnitude of gyroscope

mean, variance of the magnitude, mean,
variance of the first derivative of the

magnitude, mean, variance of the
second derivative of the magnitude

/

temperature, humidity,
atmospheric subtle change /

beacon trademarks location, presence /

Noury et al. [24] focused on eight representative ADLs, including toileting and dress-
ing. Besides a lab-developed actimometer (integrated with three accelerometers), a PIR
detector and one central clock were also used. The actimometer was attached to the chest,
with an unknown sampling rate. The experiment was conducted in a real-life setting of a
flat. Seven younger participants (mean age: 27 years old) and four older participants (mean
age: 80.5 years old) were recruited. Participants were asked to annotate the activities by
themselves. After being segmented with 15-second windows, collected signals were pro-
cessed to generalise six features: posture (lying, standing or sitting), transfers (sitting down,
standing up or none), static/dynamic activity, walking or not, location (room) and time
(hour). The features were fused together to calculate the Bayesian posterior probability.
Final results of different populations, younger and older participants, were calculated
separately. Compared to younger participants, the overall classification results of older
participants were higher, with a recall (ratio of positive samples correctly predicted) of
86.9% versus 67.0%, and the specificity (ratio of negative samples correctly predicted) of
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59.3% versus 52.6%. Considering toileting and dressing, the group of older participants
also achieved better classification results. For toileting, the recall was 100% for older partici-
pants, compared to 77.7% for younger participants. The specificity was 92.8% and 85.0% for
older and younger participants, respectively. The results for dressing, however, were much
lower than those for toileting. The recall of dressing was 33.3% for older participants and
23.0% for younger participant. The specificity was 18.9% for older participants, which was
1% higher than that for younger participants. To improve the performance of the system in
future studies, researchers proposed to recruit more participants, especially older adults.
In addition, performing a longer experiment and using Beacon trademarks to personalise
the location and time information while detecting multiple people simultaneously were
also proposed to improve the results.

Different from the aforementioned studies, instead of detecting multiple activities,
Kim et al. [25] aimed to monitor brushing teeth only and develop a training system. To ac-
complish this, three stroke patterns of brushing teeth movements were predicted: vertical,
left-right and up-down. Each stroke pattern was further divided into three semi-patterns
based on the teeth position: the front, left molar and right molar. One accelerometer and
one magnetometer were integrated in the tooth brush for collecting signals. Data were
sampled at a rate of 50 Hz and transmitted via radio frequency wireless communication.
Four participants (mean age: 25 years old) were recruited. During the experiment, an ap-
plication was used to show participants a 3D render of their tooth brushing movements.
Detailed information about the experiment’s duration was not reported. The patterns were
estimated using the processed data of the accelerometer and the magnetometer, together
with predefined threshold values. The predicted patterns of each participant were even-
tually compared with the 3D render patterns to calculate the accuracy (coincidence rate).
Among the participants, the highest accuracy reached to around 83% and the lowest one
reached to around 72%. In the future, researchers would like to observe for more brushing
teeth patterns and explore which patterns are most suitable for correctly, in terms of quality,
brushing your teeth.

Garlant et al. [26] performed both a qualitative and quantitative analysis to determine
the similarity of the movement signals of activities, inter- and intra-subject. This contrasts
with the other studies that mainly focused on classifying activities. In this study, four partic-
ipants, aged 22–24 years old, were recruited in the experiment. They were asked to perform
activities by following the instructions of researchers. Four ADLs were investigated, in-
cluding one bathroom activity: brushing teeth. During the experiment, participants were asked
to take the toothbrush using their dominant hands, pretend placing the toothpaste using the
other hands and brush teeth for 30 s. The activities were annotated by the researchers. One
BiostamRCTM [74] sensor was attached to the dominant hand, with the sampling rate at 100 Hz.
This sensor consisted of one accelerometer and one gyroscope. The collected signals were
transmitted via Bluetooth to a tablet. The raw signals of both the accelerometer and gyroscope
were used for analysis without processing. In the qualitative analysis, ten volunteers were asked
to match the unlabelled signals with the labelled signals by observation. The similarity analysis
of the same activity among participants were conducted in two ways: (1) semi-quantitative:
evaluating the similarity degree between participants via calculating the overall congruence
of signal envelope. The similarity was graded from 1–5, with 5 presenting for total overlap;
(2) quantitative: calculating the Pearson correlation between participants. The result showed
that brushing teeth patterns were subjectively different, with an overlapping score of 2 and low
correlation values ranging from r = 0.62 to r = 0.68. In future studies, Garlant et al. [26] aspired
to focus on automatically recognising activities; next to manual and statistical methods, machine
learning techniques should be explored. Moreover, they argued that other physiological sensors,
like ECG, should also be used.

Masum et al. [27] mainly focused on basic physical activities, including toileting.
A Xiaomi Redmi 4A smartphone was attached to the hand, with data collected at a rate
of 1 Hz. In total, 20, 000 activities—walking (upstairs/downstairs), sitting, standing,
lying, toileting, writing and typing—were recorded in both male and female participants
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(ages and numbers are unknown). For training the model, the raw acceleration and
gyroscope signals were directly used as features. Principal Component Analysis (PCA)
was used to analyse the features, and the result implied that, compared to only using the
signal of one sensor, the combination of these two sensors is better in classifying activities.
Support vector machine (SVM), decision tree, KNN, RF, Naive Bayes (NB) and logistic
regression (LR) were used as classifiers. In addition, a Dense Neural Network (DNN), with
six hidden layers, was also investigated. The number of neurons of each hidden layer
used were respectively 500, 500, 500, 300, 200 and 100. The classifier was trained at the
learning rate of 0.0001, with the maximum iterations of 2000. This study was also aimed
to investigate the classification difference between genders. Thus, 80% of the data of each
gender were taken out and mixed together for training the data. The classifiers were tested
on the remaining 20% of the data, for each gender group separately. The authors found
the DNN model outperformed other algorithms, with the highest accuracy both in female
(94.38%) and male (93.35%) data set. The accuracy results of RF were about 1% lower
than the DNN model. This could be because that the nested hierarchical architecture of
the DNN model can extract more complex features by nonlinear conversion of the input
data. For toileting, the data set of male participants obtained an accuracy of 99.7%, and the
data set of female participants obtained 100%, which implied that there was no significant
difference between genders. Considering the performance of DNN, researchers expressed
they would like to investigate more deep learning models in the future.

De et al. [9] aimed to use activity recognition to track the progression of certain
diseases, e.g., Alzheimer. Among the studied activities, two bathroom activities were
included: toileting and using a bathroom sink. The researchers did not specify the activity
related to using a bathroom sink, thus it could equally be washing hands, washing the face,
etc. In this study, four Galaxy Sr smartphones were used simultaneously, placed on the
waist, lower back, thigh and the wrist separately. One software application was developed
for supervisors to annotate the activity. Only one person participated in the experiment,
demographics unknown. The participant performed activities in his/her preferred order
for two iterations, each iterations for 45 min. The data collected from one iteration were
used as training data set, and the other iteration’s as data set. Signals were collected by an
accelerometer, a gyroscope, thermometer, humidity sensor and atmospheric pressure sensor,
which were available in the smartphones. Note that features from acceleration or gyroscope
were not extracted from each axis, but their magnitude (Mag =

√
Ax2 + Ay2 + Az2).

A Conditional Random Field (CRF) model was applied as the classifier. The signals of
the four smartphones were fused at the decision level. The final recognition result was
determined by the results of the sensor of which the attached body position was most
relevant to the performed activity. Finally, using a bathroom sink and toileting achieved an
accuracy of 75% and 95%, respectively.

4. Discussion

This section revisits the four research questions, as articulated at the end of Section 1.
Considering that only seven studies were found, despite the widely cast net in querying the
libraries, future studies on bathroom activity recognition in older adults by using wearable
sensors is needed. Therefore, for each research question, recommendations are formulated,
based on the lessons learned from studies in this systematic review.

4.1. RQ1. Which Bathroom Activities Have Already Been Explored in Current Studies?

In total, seven distinct bathroom activities were investigated, which can be listed accord-
ing to the number of times they were included: toileting [6,9,24,27], brushing teeth [7,25,26],
washing hands [6,7], combing hair [7], dressing [24] and using a bathroom sink [9]. Therefore,
this review study shows that most frequently studied bathroom activities are those charac-
terised by simple movements, like toileting, or those characterised by periodic movements,
like brushing teeth. Such activities achieved relatively high classification performance as well.
Bathroom activities like bathing or showering were not found to be studied using wearable
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sensors, and other bathroom activities like washing hands or dressing still obtained a low
classification result. Currently most studies focused on classifying certain activities, whereas,
in a real-life application, it is recommended to detect these activities among other ADLs as
well. Besides detecting activities, especially as a prediction the live independently ability of
older adults, the quality of performing these activities should be taken into account as well.

Therefore, based on the activities that are studied in the current state of the art,
researchers who aim to extend the state-of-the-art should:

• Investigate more types of bathroom activities. Dressing, showering, and bathing
should be given priority in the future study.

• Not only classify, but also detect activities. Perform real-life experiments where
activities can be detected among all other daily actions.

• Evaluate the activity performance quality. Besides classifying or detecting an activity,
one should also investigate whether this activity is performed as desired.

4.2. RQ2. Which Wearable Sensors Were Applied?

In this systematic review, the focus was on wearable sensors, attached to different body
positions. Sensors were attached to the participant’s hands [25,26], to the wrist [6,9], to the waist
[6,9], to the chest [7], to the lower back [9] and to the thigh [9]. One study integrated the sensors
in a toothbrush, as it was only focused on different types of brushing teeth patterns [27].

For washing hands, brushing teeth and combing hair, wearable sensors were attached
to the wrist [6,75], to the hand [26] or integrated in the toothbrush [25]. For toileting,
the attached body parts varied from the wrist [6,9], to the waist [6,9], the chest [15],
the hand [27], the lower back [9] and the thigh [2]. Note that for every activity measured,
the performance of the machine learning algorithm is highly dependent on the position of
the sensor on the body.

Combining multiple sensors can improve the recognition accuracy of activities [76].
In De et al. [9], the classification results of the fusion of four smartphones were better than
only using one smartphone. However, more sensors increases the complexity of the system.
As a result, installation and maintenance workload will increase. The user acceptance rate is
also influenced by the type and number of sensors [8]. Park et al. [8] state that especially for
environmental sensors, compatibility with the traditional devices, connectedness and cost
are prominent factors for user acceptance.

Compared to other wearable sensors, the use of a smartphone proved to be more
likely to support tracking activities for a longer time-span [77]. This could be due to the
fact that participants often already have a smartphone, and therefore do not need to get
familiar with using the sensors. Among the seven studies, two studies [9,27] made use of
the smartphone and verified its feasibility. However, current studies did not mention the
orientations (e.g., landscape or portrait) of the sensors, which could impact the algorithms.

Regarding devices, many different wearable sensors were used. Below, two recom-
mendations for choosing a device in future studies are presented.

• Combine accelerometer with other types of sensors. When activities have similar
movements like washing hands, or washing food, environmental or physiological
sensors can be used for detecting (previously conducted) related activities.

• Investigate the optimal attachment position of the wearable sensor. As aforemen-
tioned, the position of the wearable sensors on the human body is tightly related to the
studied activity. Future studies should further investigate the influence of different
positions and orientations of the devices on activity classification.

4.3. RQ3. Which Methodology, Regarding the Setup of the Experiment and Annotating the
Activities, Was Used in the Current Experiments?

In five of the seven included studies, the experimental procedures were not described
in detail [6,9,25–27]. Therefore, it is hard to evaluate their experimental protocol and
impossible for others to repeat their experiments, making it hard to generalise results.
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Three studies (Kim et al. [25], Garlant et al. [26], Masum et al. [27]) conducted lab ex-
periments, and two studies (De et al. [9], Noury et al. [24]) performed real-life experiments
in a living lab. Although a living lab may increase ecological validity, we found natural
influences to be still limited. For example, there were no disturbances, such as a phone call,
to interrupt and add noise. Therefore, an extra study in a real-life environment would be
necessary to also investigate real-world, noisy signals. The abilities of classifiers in real
daily living situations remain unknown.

In addition, the experiment period was short and included few participants, often less
than ten participants. Thus, the classification model training was impacted, like the
overfitting problem faced in the study by Chan et al. [6]. From the perspective of recruited
participants, even though all the studies included older adults as their target population,
only Noury et al. [24] reported to include older adults as participants. Considering the
performance difference between older and younger adults in the movement speed and
amplitude, the results of the other six studies are difficult to be generalised to the older
adults. Below, four recommendations are provided for performing experiment.

• Conduct experiments with participants in three phases. First, a controlled lab ex-
periment is necessary to test the protocol and the sensor setup. Afterwards, an uncon-
trolled lab environment, or living lab, could help to pilot the study. However, finally,
a study in the participants’ own living environment is necessary to generalise results.
Participants will probably act different without any supervision, which are important
actions to validate algorithms.

• Increase the diversity of participants and ensure participants are representative for the
target population. It is strongly recommended to include older adults as participants.
In addition, as the frailty status will impact the activity performance, not only healthy
older adults, but also participants at different frailty levels need to be studied.

• Conduct a longer period experiment. By conducting experiments with participants dur-
ing several weeks or months, the performing patterns of activities, like frequency, duration
and performing time, can be monitored. Moreover, the change of the patterns can be used
to predict the decrease/increase of the living independently ability of older adults.

• Select an applicable annotation method. This is important in order to acquire high
quality data from the experiment, to be used as a ground-truth. Based on the type of
experiment (controlled, uncontrolled or real-life), a researcher could use a protocol to
annotate for the participants, let participants annotate by themselves, or consider ways
to automate annotation through a third system. Depending on the activity, privacy
may be an issue, e.g., installing a camera in the bathroom. When participants need to
annotate by themselves, this method should be made as easy as possible. Forms of
annotations include a diary, checklist, software application or automatic annotations
by PIR sensors. Note that software applications are often preferred by researchers, but
difficult for older adults to handle, as they need to get familiar with it. In addition, be
careful with participant-made annotations that function as ground truth. These may
contain errors too.

4.4. RQ4. Which Activity Recognition Techniques Were Investigated for Bathroom Activities?

In total, three different types of models were applied: statistical models, machine learn-
ing models and deep learning models. However, it was hard to compare the performance
between the different studies, as they were tested on different data sets. For the method
of model training, only one study discussed the generalisation ability of the classifier for
new participants [7]. Others first mixed the data from different participants together, then
took out part of the mixed data set for training. While training the model, imbalanced data
could affect the evaluation of the performance of the model, as the model will be trained to
reach a higher performance for the classes with more data points. From the seven papers,
only Cherian et al. [7] tried to solve the imbalanced problem by combining the data of two
phases together to train the model. The most applied evaluation metrics were accuracy
[6,7,25,27], precision [27], recall [24], specificity [24], and F1-score [7]. In an unbalanced
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data set, it is common to use an F1-score instead of other metrics, as it combines the result
of precision and recall and does not rely on true negatives [78].

Usually, regarding the signal preprocessing approach, filtering techniques with band-
or low-pass filters are used to remove noise and extract movement components of the ac-
celeration signals [79–81]. Curiously, none of the included studies applied these techniques.
This may suggest that such filtering techniques are not needed for bathroom activity recog-
nition. In the studies which used machine learning techniques [31], the features were
extracted from the time domain and/or frequency domain, or directly the raw signals were
used as features. In addition, in [7], new handcrafted features were extracted for detecting
brushing teeth specifically.

As many different techniques can be used to detect activities, based on the results,
the following recommendations are proposed:

• Balance data set. An imbalanced data set can affect the classification performance
of the class taking up the smaller ratio. To solve this problem, multiple resampling
techniques can be applied: oversampling [82], undersampling [83,84] and hybrid
method [85,86]. These are usually applied for handcrafted features. If raw signals
are directly used as the input in deep learning models, the augmentation method can
be further researched. Proposed methods are permutation, time-wrapping, scaling,
jittering and cropping of the raw signals [75].

• Generalise the classifiers. To simulate real-life application, classifiers need to include
new participants in the test data set. The method of leave-one-subject-out (LOSO)
is suggested for training classifiers, with taking the data set of one subject out as
the testing data set and the data set of the other subjects as training data set. In this
situation, to overcome the impact of subjective difference, transfer learning can be
applied, via taking part of the test subjects’ data set into the training data set.

• Investigate deep learning classifiers. Deep learning classifiers, like convolutional
neural network (CNN), long short-term memory model (LSTM) and gated recurrent
units (GRU), have already been widely applied in activity recognition using wearable
sensors [13,87–89]. Compared to traditional machine learning algorithms, these classifiers
can extract features directly from the raw signals without the need of determining and
extracting handcrafted features. To understanding the meaning and the attribution of
the extracted features, DeepExplain can be applied Ancona et al. [90]. As a large number
of parameters need to be optimised in a deep learning classifier, massive data samples
are needed. If there are limited samples, it is suggested to pre-train the classifier using a
similar large data set, or augment the data set to increase the number sample.

4.5. Available Benchmark Data Sets

To the best of authors’ knowledge, the data sets of the seven papers have not been
published. We searched for the relevant public data sets including bathroom activities with
wearable sensors in five repositories, i.e., UCI [91], PhysioNet [92], Microsoft Research Open
Data [93], Academic Torrents [94] and Figshare [95], and two search engines, i.e., Kaggle
(https://www.kaggle.com/datasets, accessed on 7 March 2021) and Google Dataset Search
(https://datasetsearch.research.google.com/, accessed on 7 March 2021). As a result, four
data sets [96–99] were found. The information about these four data sets is listed in Table 5.
Papers related to these four data sets were not included in our review result, because they did
not include keywords related to target population (older adults) and specification (bathroom
activities) in the searching field. In the data set in [96,98], brushing teeth was included. The data
was collected in the lab environment. In the data set in [97], grooming, dressing, toileting
and bathing/showering were included. In the data set in [99], brushing teeth and showering
were included. The data of these two data sets were collected in the real-life environment.
However, there are still limitations of these four data sets, as they did not have older adults as
their participants and they only included limited number of bathroom activities.

https://www.kaggle.com/datasets
https://datasetsearch.research.google.com/
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Table 5. Overview of the public data set regarding activities, sensor use, participants and setup of the experiment.

Activities Sensor Use Participants Setup of the Experiment

Reference Year Bathroom
ADLs

Number
of Total
ADLs

Wearable
Sensors Position Frequency (Hz) Age

(Years) Number
Average

Test
Period

Environment:
Lab/Real-

Life

Annotation
Methods

Weiss et al.
[96] 2019 brushing

teeth 18
smartphone
+
smartwatch

smartphone-
right pants
pocket,
watch-
dominant
hands

ACM, GYR: 20 18–25 51
3 min/
activity/
person

lab /

Vaizman
et al. [97] 2017

grooming,
dressing,
toileting,
bathing/showering

51
smartphone
+
smartwatch

left wrist (none-
dominant side
for 93% of
participants)

ACM, GYR, MAG
(smartphone): 40,
ACM (smartwatch):
25,
audio: 22 k,
location: recorded
when the value
changes,
phone state: sampled
once/activity example

18–42 60 7 days/
person real-life

annotated
by partici-
pants using
software

Ruzzon et al.
[98] 2020 Brushing

teeth nine six IMUs
(AcM, GYR)

left upper arm,
left lower arm,
right upper arm,
fight lower arm,
back, right
thigh

33 22–28 10 16 min/
person lab

annotated
by one
researcher

Garcia-Ceja
et al. [99] 2014

showering,
brushing
teeth

eight smartwatch
(ACM) dominant wrist 20 /

2 (only 1
per-
formed
bath-
room
activi-
ties)

10.5
days/
person

real-life

annotated
by partici-
pants by
taking
notes
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5. Conclusions

This study aimed to investigate the feasibility of recognising bathroom activities
of older adults via wearable sensors. We surveyed current studies related to specific
bathroom activities, wearable sensors, experimental setup and recognition techniques.
While 50 papers were identified that focused on bathroom activities, only seven papers
were found that uses wearable sensors, indicating that few studies have been conducted in
this field. Moreover, from these seven papers, only one included the target population,
older adults, as participants. Despite the limited studies found thus far, results suggest
that it is possible to detect certain bathroom activities, such as brushing teeth, toileting and
washing hands, using wearable sensors. Therefore, more studies need to be performed in
the future, for which we generated recommendations, based on the review. We recommend
that more complex bathroom activities can be investigated. Additionally, ideally a real-life
experiment of a few weeks or months is conducted, including older adults as participants.
Next, it is important to investigate the optimal combination of sensors and choose a
suitable annotation method. Furthermore, we suggest to test more machine learning
techniques, especially deep learning models, and also train the model using LOSO with
transfer learning. Then, also the generality of the classifiers can be investigated. Finally,
we recommend to investigate both detection and classification of activities, trying to
account for a quality indicator of certain activities.
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Appendix A. Keywords Subcategories of Libraries

Appendix A.1. IEEE Explore

Table A1. Subcategories of Keywords applied in IEEE Explore. An asterisk (*) was used as a wildcard to broaden the search
for words starting or ending with a keyword.

Concept Keywords Subcategories

Target
population:

P1: elderly OR elder OR senior OR ageing OR aging OR aged OR retire*
P2: “older adult” OR “older person” OR “older people” OR old OR gerontol* OR gerontechnology OR 60-plus

Outcome: O1 : monitor OR monitoring OR tele-monitoring OR user-activity OR recogni*
O2: detection OR detecting OR detect OR classif*

Specification:

S1:personal care“ OR “wearing clothes” OR washing OR “brush* teeth”
S2: “teeth brush*” OR groom OR grooming OR “mouth care”
S3:“brush* tooth” OR bath OR bathing OR dress
S4:undress OR dressing OR undressing OR “tooth brush*”
S5: toilet OR toileting OR hygien*OR shower OR showering

Devices: D1: wearable OR sensor OR mobile* OR track*
D2: monitor* OR *worn OR portable
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Appendix A.2. Science Direct

Table A2. Subcategories of Keywords applied in Science Direct.

Concept Keywords Subcategories

Target
population:

P1: elderly OR elder
P2: senior OR ageing
P3: aged OR aging
P4: old OR “older adults”
P5: “older person” OR “older people”
P6: 60-plus OR gerontechnology
P7: retired OR retiree
P8: gerontology

Outcome: O1 : monitor OR monitoring OR tele-monitoring OR user-activity OR detection OR detecting
O2: detect OR classifier OR classification OR recognition OR recognizing OR recognized

Specification:

S1: personal care“ OR “’wearing clothes” OR washing
S2: groom OR grooming OR “mouth care”
S3: bath OR bathing OR dress
S4: undress OR dressing OR undressing
S5: toilet OR toileting OR shower
S6: showering OR brush OR brushing
S7: teeth OR tooth OR hygiene
S8: hygienic

Devices:
D1: wearable OR sensor OR portable OR mobile
D2: tracking OR tracker OR monitor OR monitoring
D3: monitorized OR monitored OR worn

Appendix A.3. ACM

Table A3. Subcategories of Keywords applied in ACM. An asterisk (*) was used as a wildcard to broaden the search for
words starting or ending with a keyword.

Concept Keywords Subcategories

Target
population:

P1: elderly OR elder OR senior OR ageing OR aging OR aged OR retire*
P2: old OR “older adult” OR “older person” OR “older people” OR gerontol* OR 60-plus OR gerontechnology

Outcome: O1: monitor OR monitoring OR tele-monitoring OR “user-activity” OR recogni*
O2: detection OR detecting OR detect OR classif*

Specification:

S1: “personal care” OR “wearing clothes” OR washing OR “brush* teeth” OR “teeth brush*”
S2: “brush* tooth” OR “tooth brush*” OR groom OR grooming OR “mouth care”
S3: bath OR bathing OR dress OR undress OR dressing
S4: undressing OR toilet OR hygien* OR shower OR showering

Devices: D1: wearable OR sensor OR mobile* OR track*
D2: *worn OR portable OR monitor*
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