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Abstract

Background: Changes in gene regulation are suspected to comprise one of the driving forces for
evolution. To address the extent of cis-regulatory changes and how they impact on gene regulatory
networks across eukaryotes, we systematically analyzed the evolutionary dynamics of target gene
batteries controlled by |16 different transcription factors.

Results: We found that gene batteries show variable conservation within vertebrates, with slow
and fast evolving modules. Hence, while a key gene battery associated with the cell cycle is
conserved throughout metazoans, the POUSF| (Oct4) and SOX2 batteries in embryonic stem cells
show strong conservation within mammals, with the striking exception of rodents. Within the
genes composing a given gene battery, we could identify a conserved core that likely reflects the
ancestral function of the corresponding transcription factor. Interestingly, we show that the
association between a transcription factor and its target genes is conserved even when we exclude
conserved sequence similarities of their promoter regions from our analysis. This supports the idea
that turnover, either of the transcription factor binding site or its direct neighboring sequence, is
a pervasive feature of proximal regulatory sequences.

Conclusions: Our study reveals the dynamics of evolutionary changes within metazoan gene
networks, including both the composition of gene batteries and the architecture of target gene
promoters. This variation provides the playground required for evolutionary innovation around
conserved ancestral core functions.

Background Consequently, evolution does not just proceed through
Gene function does not just depend on the biochemical and  changes of intrinsic properties of the gene product, but also
physical properties of gene products, but also on the spatio-  through modification of its expression pattern in time, space
temporal expression of these products within the organism. and quantity. A growing number of studies have implicated
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'regulatory’ evolution as an important aspect of inter-species
differences, indicating that changes in the elements that con-
trol the expression of gene products make a significant contri-
bution to evolutionary divergence and variation (see [1,2] for
recent reviews of known cis-regulatory mutations and their
significance). However, despite this growing awareness of the
significance of evolutionary changes of this kind, most studies
have focused on the characteristics of individual promoters
[3,4], rather than large-scale analyzes. So far, only a few stud-
ies of the evolution of cis-regulation have focused on the
genome-wide level, mostly in yeast [5-7]. In animals, most
comparative studies have used expression analysis [8],
although some have compared, in a genome-wide manner,
binding site location from chromatin immunoprecipitation
(ChIP) experiments performed in two species [9,10]. Pairwise
comparison of experimental datasets of this kind has pro-
vided a good description of the evolutionary changes along a
single lineage. However, to incorporate additional lineages,
ChIP experiments should ideally be performed in various spe-
cies using the same cell type. Given the obvious difficulties to
run such experiments over multiple species [5], we applied a
similar procedure as previously described [5], in our case
focusing on animals.

This computational method investigates the extent of gene
battery conservation between many species based on the glo-
bal conservation of binding elements in the homologous
sequences of the target gene sets. In this context, we define a
'gene battery' as all genes directly regulated by a transcription
factor (TF) as defined by ChIP experiments in the reference
species. We also define the 'binding motif' as the sequence
recognized by the TF, and the 'binding sites' as being the pos-
sible positions on the DNA sequence where the TF binds.

Focusing on over-represented motifs similar to the known TF
binding motif, we then evaluated the profile of over-represen-
tation of these binding motifs across the homologous
sequences of 25 eukaryote species. Significant overrepresen-
tation of the binding motif from the reference species in
another species is indicative of a global conservation of the TF
gene battery in this other species.

Studying 16 publicly available ChIP datasets over 25 species,
we found several batteries conserved throughout the amniote
lineage or beyond, for example, E2F1-E2F4 (E2F), which is
conserved from Homo sapiens to Caenorhabditis elegans.
Intriguingly, the metazoan E2F gene battery appears to be
conserved in yeast even though it is here likely regulated by
Mbp1 instead of E2F. In contrast, other batteries have
diverged considerably between closely related species, as
exemplified by the change in the POU5F1 and SOX2 networks
in mouse compared to human in embryonic stem cells.
Within a conserved battery, turnover is a pervasive feature of
the corresponding TF binding sites, showing that gene batter-
ies can be conserved in the absence of significant sequence
conservation in the associated regulatory regions. The rate of
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turnover appears to be independent from the extent of battery
conservation, suggesting that sequence dynamics is not the
driving force for battery evolution. However, the position of
binding sites relative to the transcription start site (TSS) is
usually conserved, indicating constraints shaping the struc-
ture of promoter regions.

Results and discussion

Considerable variability in degree of conservation of
different batteries

We compiled a set of 16 published ChIP datasets based on
various human and mouse TFs that play pivotal roles in a
wide range of biological processes (Additional data file 1).
Using Trawler [11], we de novo identified over-represented
motifs corresponding to the TF binding motif in the species in
which the ChIP was done (the 'reference’ species). A total of
16 binding motifs, one per dataset, were identified (Addi-
tional data files 2 and 3). Additional over-represented motifs
were also considered if they matched known TF binding
motifs.

To analyze the dynamics of gene battery evolution, we inves-
tigated the presence of these binding motifs in the corre-
sponding homologous regions of 25 eukaryotic organisms,
ranging from H. sapiens to Saccharomyces cerevisiae.
Homologous regions are defined by their positions relative to
the homologs of the target genes and, hence, do not necessar-
ily align to the reference region. Organisms in which the
homologous regions collectively contained a significant over-
representation of the reference species' binding motif(s) are
identified as having a 'conserved' battery with respect to the
reference organism. This is unlikely to be conservation of all
the binding sites in all homologs; rather, it is conservation of
enough binding sites for us to be able to detect that a statisti-
cally significant number of the interactions found in the ref-
erence organism are shared by the other organism. We found
that global conservation of these batteries are restricted to
different sets of organisms for different TFs (Figure 1a and
Additional data file 4), corroborating the result previously
done in yeast on a different evolutionary scale [5].

While half of the batteries are conserved beyond mammals
(Figure 1c), the most ancestrally conserved battery, control-
led by E2F [12], is conserved even further into several inver-
tebrates, including C. elegans, indicating that a substantial
part of the E2F targets have been conserved for at least 990
million years [13]. In the reference species, both the E2F and
NF-Y (CBF complex) binding motifs were found to be over-
represented. Investigating the evolution of this combination,
we found the NF-Y binding motif over-represented in all
studied vertebrates, indicating global conservation of the E2F
NF-Y combinatorial logic of regulation within the vertebrate
lineage (Additional data file 5).
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Conservation of the gene batteries. (a) Conservation profiles of the gene batteries. For each battery, the over-represented motif(s) found in the
reference sequence is assessed for over-representation in the corresponding regions of the homologous target genes in 24 other eukaryotic species. The
reference species is the one from which the ChIP data were collected (H. sapiens or M. musculus if labeled with an asterisk). In red are the species whose
over-representation score is above 8; in black are the species whose over-representation scores are between 4 and 8; and in blue are the species whose
over-representation scores are lower than 4. The higher the over-representation score, the more over-represented is the motif in that species and, hence,
the more conserved is the network compared to the reference species network. A significant over-representation score is 4 or above (see Material and
methods). The values in parentheses correspond to the number of genes forming the batteries in the reference species. (b) Conservation profiles of the
regulatory networks using non-alignable sequences: same as (a) except that the sequences used have been masked in the region where a significant
alignment can be found with the reference sequence. Grey boxes correspond to the reference species, which, by definition, does not have unaligned
sequences. For numerical values, see Additional data file 4. (c) Pie chart representing the variable degree of conservation of the various gene batteries
analyzed: | (6%) gene battery is conserved through the primate lineage (NfKb); 5 (31%) are conserved in most mammals (SRF, POU5FI, SOX2, HNFIA,
HNF4A); 4 (25%) are conserved through the tetrapode lineage (Myod|, Myog, NRFI, HNF6 (ONECUT )); 5 (31%) are conserved through the vertebrate

lineage (YYI, ETS, CREBI, ESRI, NOTCHI); and only | (E2F) is conserved through the metaozan lineage.

In two cases, SOX2 and POU5F1 [14], we observed strong evi-
dence for a lineage-specific loss of binding motif over-repre-
sentation in the rodent lineage, most prominently in Mus
musculus (Figure 1a). This result suggests fundamental dif-
ferences in the gene regulation by SOX2 and POU5F1, TFs
that control pluripotency and self-renewal in human and
mouse embryonic stem cells. Such differences have been
speculated in previous reports [8,10,15], and our study fur-
ther shows that these changes are rodent specific. One possi-
ble scenario amongst others for such a rodent specific change
is the turnover of SOX2 and POU5F1 binding sites into
rodent-specific transposable elements, as has been studied
previously [15].

Despite conservation of target genes, many of the
predicted binding sites do not align even for closely
related species

Regulatory regions are thought to be more conserved than
neutrally evolving sequences. To study how the overall con-
servation of the battery is related to the turnover rate of the
binding sites of the corresponding TF, we investigated
whether most of the binding sites are located in alignable
regions and, thus, have conserved their ancestral locations.
To do this, we repeated the same binding motif over-repre-
sentation analysis using only those regions that could not be
aligned with the orthologous region of the reference species
(see Material and methods).

In most of the batteries a signal for over-representation of the
appropriate binding motif was detected in non-alignable
sequences (Figure 1b and Additional data file 4), even for rel-
atively closely related species such as human and mouse (sep-
arated by around 75 million years). In more distantly related
species the over-representation profiles follow roughly the
same pattern as if the entire sequences had been used.

This analysis indicates that many binding sites are found in
non-alignable sequence and is consistent with other studies
[9,16-19]. This could be due either to the binding sites failing
to retain their ancestral positions or to such a high rate of base
substitution around the ancestral binding site that it is no

longer possible to obtain significant alignments of these
regions. In both scenarios, whether change in the binding site
or the flanking sequence is responsible, binding sites lose
their ancestral genomic context and can, therefore, be consid-
ered as turned-over.

Despite wide-spread turnover, we detected a bias in the posi-
tion of the binding sites relative to the TSSs for most of the
gene batteries analyzed (Additional data file 6). This posi-
tional bias is conserved in all species where the battery is con-
served (Additional data file 11). Taken together, these results
indicate that turn-over occurs only within a spatially
restricted interval and follows functional constraints (for
example, interactions with the basal transcription machin-
ery) that act on the evolution of the promoter architecture.

Next, we investigated whether the turnover-rate is similar for
the different batteries. In particular, we investigated whether
batteries that are conserved over long evolutionary distances
(that is, E2F, CREB1) have a lower rate of turnover due to
stronger sequence constraints compared to the batteries that
are conserved only within the mammalian lineage. If this
were the case, we would expect motif over-representation in
non-alignable sequences to be detectable only between more
distantly related species for batteries conserved through long
evolutionary distances. We found, however, that detection of
such over-representation starts at 75 million years independ-
ent of the extents of the battery conservation (Figure 1b). This
result shows that there is no correlation between the rate of
binding site mobility within a regulatory region and the
extent of battery conservation. Consistent with this observa-
tion, we therefore speculate that turnover of binding sites
within the control locus of a gene is mostly the consequence
of a genetic drift rather than an active selection.

A significant number of genes in the gene battery are
conserved in most species and form the ancestral core
battery

When considering conservation of a gene battery across sev-
eral species, two evolutionary scenarios can be envisioned:
regulatory regions of all genes in the battery are equally likely
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to retain the binding site(s), hence each gene is equally likely
to be lost from the battery; or this probability is highly varia-
ble, with certain gene regulatory regions having conserved the
binding site(s) in all or most species considered. The latter
scenario would argue for the presence of an ancestral regula-
tory core (those genes for which the probability of loss is par-
ticularly low).

To distinguish between these scenarios, we assessed individ-
ual genes in each of the batteries and tested whether the bind-
ing motif was found in all or most of the species in a given
lineage. To exclude identifying an ancestral core simply by
chance, we calculated the probability of a gene being part of
an independent lineage core (the lineage not leading to the
reference genome) given that the gene is or is not in the ances-
tral core of the lineage leading to the reference genome. We
generated p-values using the hypergeometic intersection sta-
tistics of the two core sets. The overlap of the ancestral core in
the two independent branches forms the ancestral core at the
root of the two lineages. In most of the batteries the ancestral
core hypothesis is supported at various phylogenetic dis-
tances (Figure 2), suggesting that such a core battery repre-
sents an invariant network composed of ancestral associated
targets indicative of the original function of the correspond-
ing transcriptional regulator (Additional data file 7 and Fig-
ure 2).

Compared to other gene batteries, those for E2F and CREB1
have significant ancestral cores over relatively long lineages.
These are also the two batteries with the highest overall
degree of gene-battery conservation. For E2F, the vertebrate
ancestral core contains MCM6 (Additional data file 8), which
is essential for the initiation of eukaryotic DNA replication
[20,21] by ensuring that DNA replication occurs only once in
the cell cycle. We also detected CDC6 as a member of this
ancestral network, another essential protein for the initiation
of DNA replication. The number of replication initiation
genes increases in the vertebrate ancestral core with the pres-
ence of genes coding for the polymerase subunits (POLA1 and
POLA2). In light of these results and consistent with other
findings [22], we speculate that the ancestral role of E2F in
the cell cycle is to control replication initiation. Interestingly,
two batteries (Myod1 and SRF) contain the trans-regulator
gene itself in the vertebrate and mammalian ancestral cores,
respectively (Additional data file 8). Thus, feed-back loops
were originally present in the ancestral core of these tran-
scriptional regulators and have been well conserved since
then.

For a few TFs, promoter ChIP experiments have been per-
formed using two species (human and mouse) [9]. For one TF
(E2F [22]) we also found significant cores at various phyloge-
netic distances using an independent dataset from Ren et al.
[12]. In order to compare our data with the human-mouse
core previously defined experimentally, we divided the exper-
imental set of human E2F bound genes into two categories:
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genes for which orthologous genes in mouse are bound by
E2F (87 genes); and genes for which the mouse orthologs are
not bound by E2F (297 genes). The first category can be con-
sidered as an ancestral core between human and mouse and,
consequently, these genes should overlap with our core data-
sets. Indeed, we find that a much larger fraction of the
human-mouse core overlaps with our ancestral E2F cores at
all the phylogenetic distances considered compared to the
non-core genes (mammalian, 8% versus 2%; vertebrate, 6%
versus 0.6%; and chordate, 2% versus 0.3%), further validat-
ing the ancestral core hypothesis.

Mode of regulatory network evolution

Where the battery is not conserved, several scenarios can
explain this lack of conservation. Since we focused our analy-
sis on promoter regions, extensive changes in the localization
of the regulatory regions that link the TF to its target genes
(from the proximal promoter region to more distal positions)
could account for an apparent loss of conservation, but only if
such dramatic remodeling of the cis-regulatory architecture
affected most of the genes involved (a possible scenario for
the SOX2 and POU5F1 gene batteries in rodent).

As previously reported in yeast [5], a loss of regulatory net-
work conservation can be caused by a change in the TF con-
trolling that network. This change could be either an
alteration of the binding motif recognized by the TF or, more
drastically, a cooption of a regulatory system by a different
TF. For each of the TFs, we analyzed the conservation of those
amino acid residues important for sequence-specific DNA-
binding (Additional data file 11). For all TFs analyzed, we
identified in most organisms at least one protein expected to
bind to the binding motif (Additional data file 9). This indi-
cates that the driving force of gene-battery evolution is mostly
in cis rather than in trans.

Next we investigated replacement of the TF. For this purpose,
instead of estimating the enrichment in orthologous
sequences of the over-represented binding motif, we applied
the de novo motif discovery algorithm directly on the orthol-
ogous sequence sets. The rationale being that if another motif
is found over-represented, it would correspond to the binding
motif of the replacement TF. As expected, for most of the bat-
teries no signal was found. For the E2F battery, however, we
found that the yeast orthologous sequences contain a differ-
ent over-represented motif that resembles the E2F motifin its
core, but largely differs in the flanking nucleotides (Addi-
tional data file 5). This motif corresponds to the binding motif
of Mbp1, a DNA binding protein that forms the MBF complex
together with Swi6. Mbp1 binds the cell cycle box (consensus
ACGCGT [23]) in promoters of genes controlling DNA repli-
cation and repair [24]. The MBF complex is thought to be the
analogue of the E2F family in the yeast S. cerevisiae [25,26].

As E2F also regulates the cell-cycle in the plant kingdom, the
most parsimonious explanation is the cooption by the MBF
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Figure 2

Assessment of the ancestral cores. For each gene battery we show the probability of the genes to be part of the ancestral core for lineage b given that
the genes are part (blue) or not (green) of the ancestral core of lineage a. Significant differences between P(core b | core a) and P(core b | not in core a)
are indicated by asterisks (p-values < 0.001). Three phylogenetic distances were considered: (a) mammalian; (b) vertebrates; (c) chordates.
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complex of the E2F gene battery in the yeast S. cerevisiae.
However, despite related cases reported in the literature
[5,71, functional replacements of this kind are the exception
rather than the rule as the majority of the evolution seems to
happen in cis. This is expected, given that changes in the
trans-factor binding specificity would immediately influence
the regulation of many genes at the same time, with a poten-
tially bigger phenotypic effect than the gradual change of
individual gene expression.

Conclusion

We have shown that the extent of gene battery stability greatly
varies between trans-acting factors. We also observed line-
age-specific variation in the rate of gene battery evolution, as
exemplified by the POU5F1 and SOX2 gene batteries. Investi-
gating binding site turnover, we find it to be a pervasive fea-
ture of promoters that appears to be independent of the
stability of the gene battery across evolutionary time. We
therefore speculate that turnover has little to do with the
dynamics of gene battery evolution but rather is a predomi-
nantly neutral process. In most of the batteries, we detected a
significant ancestral core indicative of the ancestral function
of the TF. Taken together, these results highlight yet again
that an alignment-centric view is not a suitable perspective
for the analysis of regulatory elements. This holds true even
when studying highly conserved processes, and perhaps more
importantly, even when comparing closely related sequences.
Motif composition is a much more accurate measure of non-
coding conservation/evolution and can be used across greater
evolutionary distances.

Materials and methods

ChIP data

Sixteen publicly available promoter ChIP experiments per-
formed on 16 different trans-acting factors from H. sapiens
and M. musculus were used. Details of the datasets used have
been previously published [11] with further information in
Additional data file 1.

Species analyzed

The species analyzed are the 27 species available in EnsEMBL
version 42 [27], unless otherwise stated. A detailed list of spe-
cies and genome assembly versions used is available in Addi-
tional data file 11.

De novo motif discovery

Trawler [11] was used to de novo identify over-represented
motifs. Sequences were repeat-masked (default repeat mask-
ing procedure by EnsEMBL). The following parameters were
used: motif from 1 nucleotide to 20 nucleotides long; maxi-
mum number of mismatches = 2; minimum occurrences of
motif in sample = 10. The sequence length used for the de
novo analysis of E2F (Additional data file 5) were either 1,000
(vertebrate), 500 or 250 bp (yeast) in order to take into
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account the variable intergenic size between mammals and
yeast. The background was adjusted accordingly. Only the
five families with the highest scores were analyzed and motif
matching the studied TF binding motif was selected. For E2F,
an additional motif corresponding to the NF-Y binding motif
was also selected. NF-Y binding sites (CAAT box) are known
to be specifically abundant in promoters of genes regulated
during G2/M phase [28] and the binding of NF-Y to its site is
dynamic through the cell cycle [29].

Homology assignment and sequence retrieval

For each gene present in the gene batteries analyzed, the
homologous genes in the other species listed in EnsEMBL
(see 'Species analyzed' section above) were retrieved using
EnsEMBL Compara (version 42). Homologous genes anno-
tated as ortholog_one2many, ortholog_one2one,
apparent_ortholog_one2one, ortholog many2many by
Compara were used. If multiple orthologous genes were
mapped to one gene, all the genes were used for that species.
See Additional data file 4 for a complete list of EnsEMBL gene
IDs and homologue gene IDs used.

All the sequences used are repeat-masked sequences down-
loaded from EnsEMBL (version 42). Sequences of 1 kb were
used (except for SOX2 and POU5F1, for which 8 kb repeat-
masked sequences were used). These sequences correspond
to the regions upstream of the annotated start site (of the
longest transcript) in EnsEMBL, and define the sample set for
each species and battery analyzed.

For the background set a much larger number of genes
(2,000) were randomly picked from the reference species (the
species used for the ChIP experiment) and the orthologous
genes and repeat-masked sequences were retrieved as
described above.

Over-representation assessment

Each binding motif found by Trawler is described by a set of
discrete N-mers (Additional data file 3) that can be mapped to
the sequences corresponding to either the sample or the
appropriate background. The appropriate background is
defined as sequences of the same length and coming from the
same species as the sample sequences. We did not include
other apes as there is insufficient variation in genomic
sequences between the apes to distinguish between neutral
regions and regions under selection. The number of positions
where at least one of the N-mer (or its reverse complement)
matches the sequence is calculated in both the sample (P,)
and the background (Py). A position is counted only once even
if multiple N-mers map to the same position or overlap with
the positions of a N-mer already counted. Additionally, all the
possible positions in the sample (V) and the background (IV,,)
are calculated (see equation 1). These correspond to the
length of the sequences minus the size of the motif minus one
nucleotide:

Genome Biology 2008, 9:R172
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N= n(sseq - Smotif_ 1) €y

with N being all possible positions, n being the number of
sequences in the sample or the background set, S, being the
sequence length (in base-pairs) and S, being the motif
length (in base-pairs). The over-representation of the binding
motifs in the sample sequence compared to the background
sequences in different species is assessed by calculating the
cumulative distribution function of the hypergeometric dis-
tribution using the R statistical application [30]. The density
of this distribution is given by equation 2. The upper tail of the
distribution is considered.

(P Np—Py Ny
N

The over-representation score corresponds to the log of the
inverse of p(P,) and represents the significance of over-repre-
sentation of the binding motif. The over-representation score
is computed if p(P,) < 0.5 else 0 is reported (Additional data
file 4).

In order to test how significant the conservation score is, a
randomization procedure was applied to all sequences ana-
lyzed. For this, random gene batteries have been derived for
each transcription factor studied with the same number of
genes as the real battery. Genes were randomly picked from
the set of protein coding genes annotated in the human or
mouse (for Myodi1 and Myog) EnsEMBL database. The
sequences were retrieved and analyzed as described above
and the highest over-representation score (computed as
equal to 4) corresponds to the lower limit for significant
scores in the real data.

We further investigated whether the extent of the conserva-
tion is related to the initial size of the gene batteries and we
did not find correlation (r = 0.18; Additional data file 11) rul-
ing out sample size effects.

Positional bias

To mask unspecific positional effects due to nucleotide bias
around the TSS [31], we calculated the frequency of distribu-
tion of the occurrence of the binding sites relative to the back-
ground distribution upstream of the TSS within random loci.

Binding sites are located within 1 kb upstream of the anno-
tated TSS of all the genes in a gene battery (or their orthologs
in other species). The same procedure was also applied to a
set of 2,000 random genes of the same species analyzed. The
TSS of a gene is defined as being the start of the genes as
annotated by EnsEMBL (version 42). The upstream region is
divided into bins of 100 bp and the number of occurrence
found in each bin is counted for both the sample and the back-
ground sets. If Vi is the total number of nucleotides in bin i,
mi is the number of occurrence of the binding motif found in
bin 1, b corresponds to the background sequences, and s cor-
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responds to the sample sequences, then the relative frequency
of occurrence F;for bin i is:

mjs mip
Fy=— 210 ®3)
Nis Nip

If the number of motifs found m;, or m;, > 2 then equation 3
is calculated, else F; = o.

Ancestral networks

If the core hypothesis is true, the distribution of binding motif
conservation is not uniform and, consequently, genes that are
part of this core should have a much higher probability of
retaining the binding motif in all the species derived for the
last common ancestor of the two selected lineages (that is, be
part of the ancestral gene battery).

Patser [32] was used to search the positions of the binding
motif (represented as position frequency matrix (Additional
data file 8)) in the homologous sequences (see "Homology
assignment and sequence retrieval' section above). Patser was
run with the default parameters and -Is 7. In order to account
for false negatives due to wrong orthology assignment or
badly annotated TSSs, the ancestral core criteria for all the
species to have occurrences of the binding motif in the orthol-
ogous region was relaxed to most of the species and only the
well annotated species were used.

Three evolutionary distances were considered (see Figure 2
for the phylogenetic tree). First was chordates with two inde-
pendent branches: a) the vertebrate branch with H. sapiens,
Pan troglodytes, M. musculus, Rattus norvegicus, Bos tau-
rus, Canis familiaris, Tetraodon nigroviridis, Oryzias lat-
ipes, Gasterosteus aculeatus, Takifugu rubripes and Danio
rerio; b) the tunicate branch with Ciona savignyi and Ciona
intestinalis. For a gene to be in core a and b, the binding motif
should be found in the upstream sequences of at least nine
and two species. respectively.

Second was vertebrates with two independent branches: a)
the mammalian branch with H. sapiens, P. troglodytes, M.
musculus, R. norvegicus, B. taurus and C. familiaris; b) the
teleost branch with T. nigroviridis, O. latipes, G. aculeatus, T.
rubripes and D. rerio. For a gene to be in core a and b, the
binding motif should be found in the upstream sequences of
at least five and four species, respectively.

Third was mammals with two independent branches: a) the
primate/rodent branch with H. sapiens, P. troglodytes, M.
musculus and R. norvegicus; b) other mammals with B. tau-
rus, C. familiaris, Dasypus novemcinctus and Loxodonta
africana. For a gene to be in core a and b, the binding motif
should be found in the upstream sequences of at least three
and three species, respectively.
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A list of genes that are both in core a and b for the three phy-
logenetic distances considered is available in Additional data
file 4. For each distance, we calculated: the probability of a
gene being part of the independent lineage core (the lineage
not leading to the reference genome) given that the gene is in
the ancestral core of the lineage leading to the reference
genome (P(core b | core a)); and the probability of a gene
being part of the independent lineage core (the lineage not
leading to the reference genome) given that the gene is not in
the ancestral core of the lineage leading to the reference
genome (P(core b | not core a)). All the genes analyzed have
homolog assignments in species in both linage a and b and
have a binding motif in at least one species from lineage a and
b. We also calculated how significantly higher is P(core b |
core a) compared to P(core b | not core a) by calculating the
cumulative distribution function of the hypergeometric dis-
tribution using R phyper(w, X, y, z lower.tail = FALSE). With
w = number of genes in both cores a and b, x = number of
genes conserved in b, y = number of genes with motif in
branch a and b - x, and z = number of genes conserved in a. A
value below 0.001 is considered significant.

As further controls, we investigated the distribution of bind-
ing motif in the reference sequences upstream of the genes
contained or not in the core and found a small but significant
difference in the distribution (average motif number 1.7 and
2.1 for the genes in the core and not in the core, respectively;
KS test p-value 1e-14; Additional data file 10). To rule out the
circular argument that multiple binding sites in one sequence
can artificially create a core, we repeated the same analysis
with only the genes with a single binding motif occurrence in
the upstream region of the reference species with essentially
no change in the significance of the cores (Additional data file
4). We also repeated the same analysis, masking the region of
the sequences that align with the reference species and again
found that, despite a decrease of the size of the core, these
cores (if existing) are significant (data not shown).

Promoter alignments

For each gene in a battery, the repeat masked sequences were
retrieved as described above. The reference sequences were
aligned to the ortholgous sequences in a pairwise fashion
using Blastz with default parameters [33]. Positions within a
significant alignment (score cutoff K above 3,000) were
masked in the orthologous sequences.

This procedure was repeated for all the species studied and
for all the regulatory networks analyzed. This procedure was
also done on the background composed of the 2,000 ran-
domly picked sequences. The same over-representation anal-
ysis as described above was performed on these datasets.

Abbreviations
ChIP: chromatin immunoprecipitation; TF: transcription fac-
tor; TSS: transcription start site.
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