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PARP inhibitors (PARPi) have been demonstrated to exhibit profound anti-
tumour activity in individuals whose cancers have a defect in the homolo-
gous recombination DNA repair pathway. Here, we describe the current
consensus as to how PARPi work and how drug resistance to these agents
emerges. We discuss the need to refine the current repertoire of clinical-
grade companion biomarkers to be used with PARPi, so that patient
stratification can be improved, the early emergence of drug resistance can
be detected and dose-limiting toxicity can be predicted. We also highlight
current thoughts about how PARPi resistance might be treated.
1. What do we know?
1.1. PARP1 function
The target of clinical PARPi, PARP1 (poly[ADP-ribose] polymerase 1), is clas-
sically known for its role as a sensor of DNA damage and mediator of DNA
repair. PARP1 mediates these effects via its ability to synthesise branched poly-
(ADP-ribose) (PAR) chains on substrate proteins (PARylation) and also itself
(autoPARylation) [1,2]. For example, PARP1 plays a major role in promoting
the repair of single-strand DNA breaks (SSB), including unligated Okazaki frag-
ments that escape processing by the DNA repair enzymes FEN1 and LIG1 [3,4].
As part of its repair functions, PARP1 binds to damaged DNA, including SSBs,
via N-terminal zinc-finger (ZnF) domains [5,6]. DNA binding invokes a confor-
mational change in PARP1 that causes the release of an autoinhibitory
interaction between the helical domain (HD) and the catalytic ADP-ribosyl
transferase domain (ART); this, in turn, allows the PARP1 cofactor, NAD+ to
access ART. The subsequent PARylation of substrate proteins involved in
DNA repair enables their retention at the site of DNA damage, the relaxation
of chromatin structure to increase access for DNA repair machinery and the
repair of damaged DNA [7]. For example, PARylation leads to the recruitment
of XRCC1, which in turn leads to the XRCC1-mediated recruitment of single-
strand break repair (SSBR) proteins including DNA ligase 3 (LIG3) and DNA
polymerase β (Polβ) [8,9]. PARP1 also autoPARylates, an event that drives its
dissociation from DNA [1,2,10]. The PARylation status of PARP1 is also con-
trolled by PAR glycohydrolase (PARG) and ARH3 whose activity enhances
the retention of PARP1 on DNA [11,12].

PARP1 is also activated upon binding to double-strand DNA breaks (DSBs)
and plays a role in the rapid recruitment and activation of the DNA-damage-
sensing MRE11 and NBS1 components of the MRN (MRE11-RAD50-NBS1)
complex to DSBs; the MRN complex generates 30 single-stranded DNA
(ssDNA) overhangs required for homologous recombination (HR) [13]. The
activity of Ataxia telangiectasia mutated (ATM), a major activator of DSB
repair pathways, is also controlled by an interaction with PAR chains [14,15].
In addition, the BRCT domain of BRCA1 recognises PAR chains and PARP1
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activity plays an important role in the recruitment of BRCA1
to DSBs [16]. Finally, PARP1 has also been implicated in the
suppression of DSB repair by non-homologous end joining
(c-NHEJ); PARP1 PARylates the Ku70/80 NHEJ complex,
decreasing its affinity for DNA [17]. Additionally, by compet-
ing with the Ku70/80 complex for access to the DNA ends,
PARP1 may also act to suppress c-NHEJ and promote
alternative NHEJ (alt-NHEJ, also known as microhomology
end joining or theta-mediated end joining) [18].
/journal/rsob
Open
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1.2. PARP1 inhibitors and cancer synthetic lethality
Figure 1 illustrates the mechanisms of anti-tumour activity of
PARPi. Existing clinical PARP1 inhibitors bind the catalytic
domain of PARP1 and prevent PARylation by structurally
mimicking nicotinamide, the by-product of the PARylation
reaction [19–21]. In addition to preventing PARylation, clini-
cally-approved PARPi (such as olaparib, niraparib, rucaparib
and talazoparib) extend the retention of PARP1 at the site of
DNA damage (PARP1 trapping), an effect probably caused by
PARPi inducing a conformational change in the structure
of PARP1 that increases the avidity of the ZnF for DNA
[22–24]. Similar to other ‘trapped’ DNA-associated proteins,
trapped PARP1, can be removed from DNA by the p97
segregase [25]. The importance of PARP1 trapping in PARPi-
induced cytotoxicity is perhaps best illustrated by the obser-
vation that genetic deletion of PARP1 or mutation of PARP1
ZnF domains causes profound PARPi resistance [23,26,27].

One model to explain the cytotoxicity caused by PARPi
suggests that PARP1 becomes trapped by PARPi at unligated
Okazaki fragments, with the result that cells undergo mitosis
with persistent SSBs and trapped PARP1 [3]. In the sub-
sequent S phase, trapped PARP1 forms a replication barrier,
leading to fork stalling and collapse, an event which
normally requires homologous recombination (HR) for suc-
cessful repair [28]. HR is controlled by a series of tumour
suppressor proteins including BRCA1, BRCA2, PALB2,
RAD51C and RAD51D. A further iteration of this mechanistic
model suggests that defects in BRCA1/2 themselves (and
their associated DNA recombinase, RAD51) cause an
accumulation of post-replicative ssDNA gaps; when com-
bined with the increase in post-replicative ssDNA gaps
caused by PARPi, the RPA exhaustion that ensues causes
cell death [29,30]. In addition, other DNA lesions enhance
PARPi sensitivity, such as those caused by the processing of
genomic uracil [31] or DNA alkylation [32]. These DNA
lesions are processed to form PARP1 binding sites, which
in the presence of PARPi, cause increased PARP1 trapping
and enhanced PARPi sensitivity [24].

Recent work has also highlighted a contribution of the
immune system to the antitumour efficacy of PARPi. For
example, the DNA damage that PARPi elicit has been
shown to cause the generation of cytosolic DNA, which in
turn is recognized by the cyclic GMP-AMP (cGAMP) synthe-
tase (cGAS) DNA sensor; cGAS recognition of cytosolic
DNA activates stimulator of interferon genes (STING) signal-
ling, type-I interferon and pro-inflammatory chemokine
production and CD4+ and CD8+ T cells [33–37]. Importantly,
the anti-tumour activity of PARPi in tumour-bearing mice is
impaired by CD8+ T-cell depletion, or by neutralization with
an anti-CD8 antibody [34,35], suggesting that the adaptive
immune system also plays a role in PARPi efficacy.
The synthetic lethality between BRCA1, BRCA2 and
PARPi seen in pre-clinical models [38,39], also extends to
clinical synthetic lethality [40], with PARPi now forming
part of the standard-of-care approaches for the treatment of
breast, ovarian, prostate or pancreatic cancers with defects
in DNA repair by homologous recombination [41]. For
example, in gynaecological cancers, the PARPi olaparib is
approved for use according to four criteria: (i) as a mainten-
ance treatment for patients with deleterious or suspected
germline or somatic BRCA1/2-mutated advanced cancer
patients who are in complete or partial response to first-line
platinum-based chemotherapy (a clinical indication that HR
is defective); (ii) as a combination maintenance treatment
used in combination with the VEGF inhibitor bevacizumab,
in those with HR defective cancer who are in complete or
partial response to first-line platinum-based chemotherapy,
where homologous recombination deficiency (HRD) is
defined by either a deleterious or suspected deleterious
BRCA1/2 mutation and/or an FDA-approved diagnostic
that estimates the presence of cancer-associated genomic
rearrangements normally associated with HRD; (iii) for the
maintenance treatment of patients who are in complete
or partial response to platinum-based chemotherapy and
(iv) for the treatment of adult patients with deleterious
or suspected deleterious germline BRCA1/2-mutated
(gBRCAm) advanced ovarian cancer who have been treated
with three or more prior lines of chemotherapy [42]. The
use of olaparib is slightly distinct in breast, prostate and pan-
creatic cancers, but still focuses on patients who have HR
defective cancers, defined either by the presence of deleter-
ious BRCA1 or BRCA2 mutations or in the case of prostate
cancers, by the presence of deleterious mutations in any
one of a panel of genes that control HR [42]. For example,
the recently reported OlympiA phase III trial demonstrated
the utility of olaparib when used as an adjuvant treatment
following standard-of-care chemotherapy in women with
BRCA1 or BRCA2 mutant, HER2-negative, early breast
cancer [43]. Additional PARPi (talazoparib (Pfizer), rucaparib
(Clovis Oncology), niraparib (GlaxoSmithKline) and
pamiparib (BeiGene) [44]) are also approved for the treatment
of cancer, while others (e.g. AZD5305 (AstraZeneca) [45]) are
still in clinical development. Future improvements to PARPi
could include increased PARP1 specificity to circumvent
off-target toxicity [45], decreased PgP efflux to decrease like-
lihood of this resistance mechanism [46] (see below) and
modifications that increase tumour cell-selective PARP1 trap-
ping [22].

1.3. PARP1 inhibitor resistance
Despite PARPi being able to elicit significant and sustained
anti-tumour responses in some patients, PARPi resistance is a
growing clinical problem, particularly in patients with
advanced disease [41]. For example, in the Study 10 trial
(NCT01482715 – Rucaparib in Patients With gBRCA Mutation
Ovarian Cancer), 59.5% of germline BRCA1/2-mutant high
grade ovarian cancer patients achieved an investigator-
assessed confirmed RECIST response to rucaparib, while
40.5% of patients exhibited de novo resistance [47]. As well as
de novo resistance (e.g. no detectable clinical response to
PARPi in patients expected to respond due to the presence of
a BRCA1/2 mutation), acquired PARPi resistance is also an
issue. In some patients, the cause of PARPi resistance is
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Figure 1. Mechanisms of anti-tumour activity of PARPi. (a) PARP1 recognizes DNA lesions, such as single-stranded breaks (SSBs). DNA binding induces confor-
mational changes in PARP1, including a change in an autoinhibitory interaction between the helical (HD) and catalytic (ART) domains; this in turn enables
NAD+ to access the catalytic site where it initiates PARylation. PARPi bind the ART domain and inhibit catalytic activity but also alter the conformation of
PARP1, trapping PARP1 at the site of DNA damage. Trapped PARP1 forms a replication barrier, leading to fork stalling and collapse. When there is a homologous
recombination (HR) defect, error-prone DNA repair pathways are used to repair and restart the replication fork, events that can lead to increased genomic instability
and loss of fitness. (b) Recent work suggests that unligated Okazaki fragments can form persistent SSBs that are bound by PARP1. In addition, defects in BRCA1/2
also lead to an increase in post-replicative SSBs. When PARP1 is trapped at post-replicative SSBs, this eventually poses an obstacle for the replication fork during the
subsequent S phase. (c) The DNA damage induced by PARPi causes the generation of cytosolic DNA, which activates the cyclic GMP-AMP (cGAMP) synthetase (cGAS)
DNA sensor. This in turn activates stimulator of interferon genes (STING) signalling and the production of type-I interferons and pro-inflammatory chemokines (e.g.
CXCL10, CCL5) which, alongside the presentation of neoantigens created upon genomic instability, results in the activation of CD4+ and CD8+ T cells.
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reversion mutation in either BRCA1, BRCA2, RAD51C,
RAD51D or PALB2 [48–54]. These reversion mutations, orig-
inally identified in patients with platinum-salt resistance
[55,56], are secondary, additional, mutations (i.e. mutations
other than the original pathogenic mutation in the gene) that
restore the normal open reading frame of the tumour suppres-
sor gene and encode somewhat functional proteins that are able
to repair the DNA damage caused by PARPi [48]. Pre-clinical
studies have also identified other candidate mechanisms of
PARPi resistance. For example, in the absence of BRCA1, HR
functionality can be restored by the further loss of DNA end
resection inhibitors (e.g. 53BP1, REV7, Shieldin), enabling the
resection ofDNA ends necessary to initiate RAD51 recruitment
[46,57,58]. BRCA1 and BRCA2 also play important roles in pro-
tecting stalledDNA replication forks and in the absence of their
function, stalled forks are extensively degraded by nucleases
such as MRE11 and MUS81, leading to fork collapse [59,60].
PARPi resistance can also be caused by inhibited recruitment
of MRE11 and MUS81 [61,62], or increased fork stability via
FANCD2 overexpression [63,64].
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PARP inhibitor resistance can also occur via upregulation
of ABC-family drug efflux pumps that reduce the cellular
concentration of PARPi [65]. Although originally identified
in a mouse model of BRCA1-mutant cancer [65], ABCB1
gene fusions that enhance activity have been observed in
treatment-refractory breast and ovarian cancers, implying
this could also be a cause of clinical PARPi resistance [66,67].
ing.org/journal/rsob
Open

Biol.
2. What don’t we know?
Both pre-clinical and clinical investigation have taught us
much about how PARPi work and where they might be best
used. However, there are still a number of issues that if
addressed, could further refine the clinical use of this class of
drugs. Two of the key issues, which focus on biomarkers and
how PARPi resistance might be targeted, are discussed below.
12:220118
3. Which biomarkers are required to refine
the best use of PARPi?

At present the biomarkers used to direct the use of PARPi
focus on the presence of a deleterious BRCA1 or BRCA2
mutation, a deleterious mutation in other tumour suppressor
genes that have been implicated in homologous recombina-
tion [68–70], prior platinum sensitivity or the presence in
the tumour DNA of a genomic scar of HRD. While these bio-
markers have utility, there is a clear need to refine the full
package of biomarkers that are used to direct the use of this
class of drugs (figure 2). We highlight five areas where
additional biomarkers could be of use.

3.1. Making the distinction between different BRCA1
and BRCA2 mutations and different HR-associated
genes

At present, the presence of any deleterious mutation in either
BRCA1 or BRCA2 is sufficient to select a patient for PARPi
therapy. Already there is pre-clinical evidence to suggest
some pathogenic BRCA1 mutations are hypomorphs and
cause less cellular PARPi sensitivity than others [71–74],
although it is not yet known whether the distinctive effect
of different BRCA1 or BRCA2 mutations extends to distinct
clinical responses. Furthermore, there is also the suggestion
that some pathogenic BRCA1 or BRCA2 mutations are less
likely to revert than others (particularly those in splice sites
or those that are pathogenic missense mutations [26]). This
implies that giving all deleterious BRCA1/2 mutations equal
weight in terms of predicting response and resistance might
be short-sighted. Further work (both clinical and pre-clinical)
is clearly required to clarify the relative impact each has on
PARPi sensitivity and the possibility of resistance. Likewise,
although the concept of BRCAness (cancers that phenocopy
cancers with BRCA1/2 mutations [68,75,76]) has proven
useful in extending the use of PARPi beyond those individ-
uals with BRCA1 or BRCA2 mutant cancers to those with a
homologous recombination defect caused by some other
means (e.g. mutation in PALB2, RAD51C, RAD51D), there
is the implicit assumption that each of these other defects
causes a similar extent of PARPi sensitivity as for a deleter-
ious BRCA1 or BRCA2 mutation. Understanding whether
this is the case or not might also allow a refinement of the
effectiveness of biomarkers used to direct the use of PARPi.
3.2. Clinical-grade assays for identifying reversion
mutations

There is already evidence from the study of gynaecological
cancers that reversion mutations that are selected for by plati-
num treatment predict a poorer subsequent response to
PARPi [50] and therefore understanding the presence of
reversions prior to PARPi treatment is important. Reversions
have been detected in circulating tumour DNA from individ-
uals with clinical PARPi resistance [53,54,77,78]; if shown to
be present prior to the emergence of clinical resistance (e.g.
prior to the detection of a treatment-refractory lesion), detect-
ing reversions in ctDNA could be used to adapt therapy so
that resistant tumour cell clones could be targeted before
they start to dominate the tumour cell population. We there-
fore see the development of clinical-grade tests that assay
reversions as being critical. These could build on existing
DNA sequencing-based assays already applied in the retro-
spective analysis of clinical trials involving platinum salts
or PARPi [48–50,79].
3.3. Biomarkers that detect non-reversion mechanisms
of PARPi resistance

Although tumour-associated reversions are associated with
many cases of PARPi resistance, these are not detected in
all cases. Other mechanisms of PARPi resistance have been
identified from pre-clinical studies (as detailed above) but
as yet, there is only anecdotal evidence for their existence in
the clinical disease [26,80]. As such, robust, clinical grade
biomarkers that allow these candidate resistance mechanisms
to be detected are required. Ideally functional biomarkers
(e.g. of 53BP1-Shieldin pathway function or PARP1 trapping)
will also be available to interrogate non-mutational loss of
these pathways.
3.4. Biomarkers of HR function
With the exception of prior platinum sensitivity, all of the
existing clinically approved biomarkers used to stratify
patients for PARPi treatment seek to identify that there has
been an HR defect at some point in the history of cancer.
What these biomarkers do not indicate is that the HR defect
is present at the time of treatment. For example, HR defects
arising via promoter methylation of HR genes (e.g. of
BRCA1) may be reversed during the course of the disease.
Such tumours retain the historical mutational signature of
HRD, but have restored HR function and thus are not sensi-
tive to PARP or platinum treatment [81–84]. Efforts are being
made to convert a research-used assay of functional HRD,
nuclear RAD51, into a clinical grade test which could esti-
mate HR function [85,86]. It seems reasonable to think that
such a biomarker might not be used in isolation but would
be most powerful when used as part of an algorithm that
also includes information from the other aforementioned
biomarkers.
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3.5. Biomarkers that predict dose-limiting toxicity
At present, biomarkers that predict dose-limiting toxicity do
not exist. It seems possible that PARP1 trapping in myeloid
cells explains (at least in part) the haematological toxicities
seen with PARPi [45,87]. Given this, biomarkers that allow
PARP1 trapping to be measured in patient samples might
be of use and could predict those more likely to eventually
show dose limiting toxicity before it occurs (e.g. those with
elevated PARP1 trapping in lymphocytes).

4. How can we prevent or delay PARPi
resistance?

At present, the treatment options for patients who develop
PARP inhibitor resistance are limited and tend not to involve
a targeted approach based upon the particular molecular
make-up of resistant disease. Furthermore, approaches that
are proven to delay the emergence of resistance do not
exist. Here we highlight three areas of research that could
inform how PARPi resistance is managed clinically.
4.1. Targeting PARPi resistance when caused
by reversion

The study of reversions has suggested that some of the new
DNA sequences formed by reversions could encode antigenic
neopeptides [48]. This could suggest that therapeutic
approaches that activate immune responses to these neopep-
tides could target reversion-mediated resistance. To this end,
future work should establish whether neopeptide antigens
are presented by class I MHC, and whether a robust and
specific T-cell response can be induced against these neopep-
tides. If this proves to be the case, it may be possible to design
vaccines based on candidate neopeptides predicted to occur
upon reversion and to use these to prevent or delay
BRCA1/2 revertant tumour outgrowth.

4.2. Targeting PARPi resistance when caused by non-
reversion-based mechanisms

Pre-clinical studies have suggested that PARPi resistance in
BRCA1 mutant cancers could emerge via loss of DNA end
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resection inhibitors (e.g. 53BP1, REV7, Shieldin) and the res-
toration of DNA resection (see earlier). Recent work suggests
that while loss of these end resection inhibitors causes PARPi
resistance, it also imparts upon tumour cells enhanced sensi-
tivity to either ATR inhibitors [88], ionizing radiation [57],
Polθ inhibitors [89,90] or LIG3 inhibition [30]. To fully realise
the potential of using these approaches to either delay or
target PARPi once it has occurred, biomarkers that identify
these non-reversion-based mechanisms of resistance are
required, so that patients can receive an appropriate treat-
ment (see earlier).
l/rsob
Open

Biol.12:220118
4.3. Using drug combination approaches to target
PARPi resistance

One approach to improving the overall efficacy of cancer treat-
ments is to use these in combination with other treatments.
Historically, PARPi have generally been combined with other
drugs that target DDR defects, including DNA damaging che-
motherapies [91–95]. However, the clinical experience with
such combinations has not been wholly positive, with dose-
limiting toxicity being an issue [96–100]. What has been
more profitable has been to combine PARPi with drugs that
have different mechanism of action. When the drugs involved
in combinations have different mechanisms of action, the
possibility of resistance-mechanisms emerging that cause
resistance to both agents (cross resistance) is minimized and
thus the overall efficacy of treatment could be improved
[101]. It is possible that this is the case with the approved
bevacizumab/olaparib combination used in ovarian cancers,
although some have suggested that this combination works
because VEGF inhibition causes a HR defect [102–104].

Whether the combination of PARPi with additional
agents that target other, mechanistically independent, drivers
in cancer turn out to be effective remains to be seen. To this
end, a series of clinical trials are currently underway where
PARPi are used in combination with agents that target
PI3 K/AKT (NCT04729387, NCT02208375, NCT04586335,
NCT03586661, NCT02338622, NCT01623349), MEK1/2
(NCT03162627) signalling, and other pathways. For example,
in metastatic, castration-resistant, prostate cancer (mCRPC),
where PARPi are already approved for use in those with
tumoural mutations in a series of BRCAness genes [69,105],
androgen signalling inhibitors such as abiraterone acetate (a
CYP17 inhibitor) and enzalutamide (an androgen receptor
antagonist) are also part of the standard-of-care [106]. A
phase I trial has already established the safety and tolerable
dose of the PARPi niraparib when used in combination
with abiraterone acetate plus prednisone (AAP) [107]. This
combination is now being investigated further in a larger ran-
domized placebo-controlled, phase 3 study in patients with
mCRPC (MAGNITUDE; NCT03748641). Similarly, recent
data from the PROpel Phase III trial indicate that the combi-
nation of olaparib plus abiraterone acetate deliver an
improvement in radiographic progression-free survival
(rPFS) as a first line treatment for men mCRPC, when
compared to standard-of-care abiraterone [108]. Whether
the drugs in this combination act synergistically or indepen-
dently on different vulnerabilities in the same cancer
remains to be seen. HR defects are relatively common in
mCRPC as is the addiction to androgen signalling,
suggesting that if the two drug types act independently,
clinical benefit could be achieved as tumour clones with
resistance mechanisms to one agent (such as reversion
mutation in a HR gene) might still exhibit sensitivity to the
second agent (targeting the androgen signalling addiction).
Alternatively, it is possible that some synergistic interaction
between the two drug classes contributes to the therapeutic
effect; some studies have shown that using AR signalling
inhibitors cause reduced expression of HR-associated genes,
including BRCA1, RAD54 L and RMI2 [109] and that loss of
AR signalling reduces ATM signalling and MRE11 foci
formation [110], effects that could be synthetic lethal with
PARPi.
5. Concluding remarks
Over 50 years have passed since the first description of PARP1
function, 20 years since clinical trials using PARPi were
initiated and close to eight years have passed since the first
clinical approval of a PARPi [111–114]. Yet still, there is
much to be discovered about PARPi that could refine how
these drugs are used clinically. Some of these discoveries
will no doubt come from pre-clinical work, but we also foresee
a greater contribution to this field coming from ‘reverse trans-
lation’ where clinical observations made in people receiving
PARPi as part of their cancer treatment tells us much about
how these drugs work, and where we might better use these
in the future. While we have summarized some of the key
questions pertaining to refining the clinical use of PARPi,
there are also other areas of research we have not covered.
For example, how PARPi treatment influences the behaviour
of patients’ immune systems is very likely to have an impact
on the overall clinical efficacy of these drugs [115,116] and no
doubt further studies of those receiving PARPi will highlight
how other bodily systems influence therapeutic responses.
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