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Abstract

In recent years, more than 60 small RNAs (sRNAs) have been identified in the gram-positive human pathogen Listeria
monocytogenes, but their putative roles and mechanisms of action remain largely unknown. The sRNA LhrA was recently
shown to be a post-transcriptional regulator of a single gene, lmo0850, which encodes a small protein of unknown function.
LhrA controls the translation and degradation of the lmo0850 mRNA by an antisense mechanism, and it depends on the
RNA chaperone Hfq for efficient binding to its target. In the present study, we sought to gain more insight into the
functional role of LhrA in L. monocytogenes. To this end, we determined the effects of LhrA on global-wide gene expression.
We observed that nearly 300 genes in L. monocytogenes are either positively or negatively affected by LhrA. Among these
genes, we identified lmo0302 and chiA as direct targets of LhrA, thus establishing LhrA as a multiple target regulator.
Lmo0302 encodes a hypothetical protein with no known function, whereas chiA encodes one of two chitinases present in L.
monocytogenes. We show here that LhrA acts as a post-transcriptional regulator of lmo0302 and chiA by interfering with
ribosome recruitment, and we provide evidence that both LhrA and Hfq act to down-regulate the expression of lmo0302
and chiA. Furthermore, in vitro binding experiments show that Hfq stimulates the base pairing of LhrA to chiA mRNA. Finally,
we demonstrate that LhrA has a negative effect on the chitinolytic activity of L. monocytogenes. In marked contrast to this,
we found that Hfq has a stimulating effect on the chitinolytic activity, suggesting that Hfq plays multiple roles in the
complex regulatory pathways controlling the chitinases of L. monocytogenes.
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Introduction

Small RNAs (sRNAs) in bacteria play regulatory roles in a wide

range of physiological processes, such as virulence [1,2], iron

homeostasis [3], cell envelope stress [4] and sugar metabolism [5].

Many sRNAs act as post-transcriptional regulators by base pairing

to specific target mRNAs, thereby affecting their translation and/

or stability [6,7]. A single sRNA may target multiple mRNAs and

typically binds to short complementary regions overlapping the

ribosome-binding site and/or start codon. In these cases, sRNA-

mRNA pairing prevents the ribosome from binding to the mRNA,

resulting in repression of translation and rapid degradation of the

mRNA. Although base-paring sRNAs are primarily known as

negative regulators, some sRNAs have been found to exert a

positive effect on gene expression. In these cases, sRNAs may

activate translation by liberating the ribosome-binding site from an

inhibitory stem-loop structure situated at the 59 mRNA region

[6,8]. Alternatively, sRNA binding to the 59 mRNA region may

lead to processing and/or stabilization of the mRNA [9,10].

The gram-positive human pathogen Listeria monocytogenes survives

and multiplies in many different environments, including soil and

water, food processing environments and the eukaryotic host cell

cytosol [11]. Controlled expression of genes supporting the growth

and survival of L. monocytogenes under diverse and rapidly changing

conditions is likely to involve the action of regulatory sRNAs. Thus

far, more than 60 sRNAs have been identified in L. monocytogenes

[12–14], and a subset of these interact with the RNA chaperone

Hfq [15]. In L. monocytogenes, Hfq contributes to stress tolerance

and pathogenesis in mice [16], and similar roles for Hfq has been

found in other pathogens, including Salmonella [17], Vibrio cholerae

[18], Pseudomonas aeruginosa [19] and Francisella tularensis [20]. In

general, Hfq has a stabilizing effect on sRNAs and facilitates the

base pairing between sRNAs and their target mRNAs [21,22]. In

the gram-negative bacteria E. coli and Salmonella, all trans-acting

base pairing sRNAs characterized thus far require Hfq for their

function. In contrast to this, the base pairing sRNAs identified in

gram-positive bacteria appear to act independently of Hfq, with

the sRNA LhrA in L. monocytogenes being the only exception

identified so far [23]. LhrA consists of 268 nucleotides and was first

identified in co-immunoprecipitation experiments using antibodies

directed against Hfq [15]. LhrA accumulates during growth in rich

media and like most Hfq-binding base pairing sRNAs in E. coli and

Salmonella, the stability of LhrA is strongly affected by Hfq. Using a

computational approach in combination with in vivo and in vitro

experiments, we previously showed that LhrA binds specifically to

the 59-end of the lmo0850 mRNA, encoding a small protein of
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unknown function, to repress translation and stimulate degrada-

tion of lmo0850 mRNA in an Hfq-dependent manner [23]. These

findings demonstrated that LhrA acts as an Hfq-dependent anti-

sense RNA, however, the functional role of LhrA in L. monocytogenes

remained unclear.

In this work, we studied the effects of LhrA on global gene

expression in L. monocytogenes EGD-e by a comparative microarray

analysis of wild type and DlhrA mutant strains. We found that lack

of lhrA results in the altered expression of approximately 300 genes

and we further demonstrate a direct effect of LhrA on two genes:

lmo0302, encoding a hypothetical protein with no known function,

and the chitinase-encoding gene chiA. The chitinases ChiA and

ChiB of L. monocytogenes catalyze the hydrolysis of the carbohydrate

polymer chitin, a highly abundant carbon and nitrogen source

found in the environment [24,25]. Furthermore, chiA and chiB

contribute to the pathogenesis of L. monocytogenes in mice, possibly

through the recognition of glycoproteins or other carbohydrate

moieties present in the infected host [26]. Here, we show that

LhrA acts to down regulate the expression of lmo0302 and chiA at

the post-transcriptional level in an Hfq-dependent manner,

demonstrating that LhrA is a multiple target regulator in

L. monocytogenes.

Results

Dissecting the lhrA promoter region
sRNAs are often highly regulated at the transcriptional level,

and identification of the environmental signals and transcription

factors controlling their expression may provide important clues to

their biological function. Upon growth in rich media, LhrA

accumulates in an Hfq-dependent manner at the entry into

stationary phase, suggesting that LhrA plays a role in the transition

from actively growing to resting cells ([15,23]). To gain further

insight into the transcriptional regulation of lhrA, we performed a

lhrA promoter deletion analysis. To this end, truncated versions of

the lhrA promoter were fused to a promoter-less lacZ gene in the

transcriptional fusion vector pTCV-lac. The lhrA promoter

fragments range from position 2157, 283, 261, 236 or 229,

to position +71, relative to the transcriptional start site of lhrA

(Figure 1A). The lhrA-lacZ fusion plasmids were introduced into

the L. monocytogenes EGD-e wild type strain and the level of specific

b-galactosidase activity was determined during growth in rich

medium (Figure 1B). Very high and comparable levels of b-

galactosidase activity were recorded throughout growth for all

constructs containing deletions of the lhrA promoter region down

to position 261. The construct plhr36-lacZ, containing the core

promoter sequence of lhrA, displayed a 5 fold lower level of activity

throughout growth (Figure 1B). Further deletion of the promoter

region was expected to abolish the promoter activity, and

accordingly, cells containing the construct plhr29-lacZ, which lacks

the 235 box, displayed background levels of activity (Figure 1B).

As a control experiment, the transcription start site and RNA level

of the various lhrA-lacZ transcripts were tested by primer extension

analysis using a lacZ-specific primer. For all lhrA-lacZ constructs,

only a single transcription start site was observed, corresponding to

the expected start site for lhrA, and furthermore, the level of lhrA-

lacZ transcript appeared constant throughout growth (data not

shown).

Collectively, these results show that LhrA is expressed

throughout growth from a highly active promoter, and that the

region located between position 261 and position 236 has a

stimulating effect on transcription. Within this region, we noticed a

sequence motif similar to that recognized by the response regulator

ResD (see Figure 1A), which is known to affect the transcription of

multiple genes in L. monocytogenes [27]. We therefore tested the

effect of ResD on transcription of plhrA36-lacZ and plhrA61-lacZ in

a DresD mutant background. No difference in b-galactosidase

activity was observed between the wild type and resD mutant strain

(data not shown) suggesting that expression of lhrA is not

stimulated by ResD. We also noticed the presence of an AT-rich

region between position 261 and position 236 (Figure 1A). In

Escherichia coli and Bacillus subtilis, AT-rich regions called UP

elements, which are located upstream of the235 region, are

known to facilitate binding of the RNA polymerase to a promoter,

resulting in an enhanced transcription activity [28–31]. The AT-

rich element located between position 261 and 236 in the lhrA

promoter region may play a similar role resulting in a highly

efficient transcription of lhrA. No other putative regulatory

elements were observed within this region.

Since lhrA appears to be transcribed at a relatively high and

constant level throughout growth, we hypothesized that the

growth phase dependent accumulation of LhrA observed in

Northern blots [15,23] is likely to be the result of a post-

transcriptional control mechanism. To test this hypothesis, we

compared the stability of LhrA in early stationary phase

(OD600 = 2.2) and early exponential phase cells (OD600 = 0.4)

(Figure 2A and 2B). In both cases, LhrA appears to be extremely

stable in the wild type background; however, in exponential cells,

the turnover of LhrA appears to be faster (half-life approximately

30 minutes) than in early stationary cells (half-life .60 minutes).

Regardless of the growth phase, the stability of LhrA is clearly

facilitated by the Hfq protein. Thus, it appears that the level of

LhrA is controlled mainly at the post-transcriptional level.

LhrA affects gene expression on a global level
To learn more about the physiological role of LhrA, we

performed a genome-wide transcriptome comparison of wild type

and DlhrA mutant cells grown in rich growth medium until early

stationary phase. Under these conditions, the transcript level of

284 genes differed significantly in the DlhrA strain in comparison

to the wild type strain ($1.5 fold; adjusted P,0.05). Of these, 191

genes were expressed at a lower level in the mutant strain (Table

S1) whereas 93 genes were expressed at a higher level compared

to the wild type strain (Table S2). In general, with the exception

of genes encoding ribosomal proteins, no functional groups were

overrepresented, suggesting that LhrA does not target any one

specific group of genes under these growth conditions. The

normal response to reaching stationary phase is characterized by

a down-regulation of ribosome numbers in order to conserve

energy [32], so a decreased level of ribosomal gene expression in

the DlhrA strain may indicate that the timing of the stationary

response is compromised in the absence of LhrA, although no

differences in growth of the two strains could be observed, as

described previously [23]. When comparing our transcriptomic

data with the results from other genome-wide expression

experiments in L. monocytogenes, we noticed an overlap with genes

identified as belonging to the sB regulon [12,33]. As indicated in

Tables S1 and S2, approximately one half of the genes identified

as being differentially expressed in the DlhrA mutant (131 out of

285 genes), have also been found to be affected in a DsigB strain.

Strikingly, there is a high degree of inverse correlation between

the effects of LhrA and sB on gene expression, suggesting a

putative link between the two regulons, although it should be

noted, that data on the sB regulon in L. monocytogenes strain

10403S was used for the comparison presented in Table S1 and

S2.

To validate the microarray data, several genes were analyzed

by quantitative RT-PCR (TaqMan) or Northern blotting (Figure

A Small RNA in Listeria monocytogenes
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S1 and Tables S1 and S2). In general, the results obtained by

qRT-PCR and Northern blotting were consistent with the

microarray data, however, some of the effects observed by

microarrays could not be verified by other methods. These

include the genes glpD and pflA, which based on the microarray

analysis were expected to be positively affected by LhrA (Figure

S1 and Table S1). Furthermore, we have previously shown that

LhrA acts to destabilize the lmo0850 mRNA [23], but to our

surprise, lmo0850 was not identified as being affected by LhrA in

our microarray analysis. The reasons for these discrepancies are

currently unknown.

Identification of genes directly targeted by LhrA.
Hfq-dependent sRNAs typically act by binding to the 59-region

of target mRNAs, leading to repression of translation initiation

and degradation of the mRNA. To identify genes directly

controlled by LhrA, we therefore searched for potential base-

pairing between the 59-regions of mRNAs, showing at least a 2-

fold increased abundance in the DlhrA mutant strain (Table S2),

and the single stranded region in LhrA, shown to be important for

base-pairing to the 59-region of the lmo0850 mRNA [23]. The

three best candidates are presented in Table 1. In all three cases,

LhrA is proposed to pair with the Shine Dalgarno (SD) sequence

Figure 1. Promoter deletion analysis of lhrA. (A) DNA sequence showing the lhrA promoter region. The 235 and 210 regions are boxed, and +1
corresponds to the transcriptional start site of LhrA. The truncated lhrA promoter fragments fused to lacZ range from 229, 236, 261, 283 or 2157,
to +71, as indicated in the sequence. A putative binding site for ResD, identified by searching the Bacillus subtilis DBTBS Release 5 website (http://
dbtbs.hgc.jp/) [50], is boxed. (B) Specific b-galactosidase activity of wild type cells containing transcriptional lhrA-lacZ fusions. Samples were drawn at
the indicated time points through out growth. At 4 hours, the cells were in the mid-exponential growth phase; the 6 hour sample corresponds to late
exponential growth phase cells, and the 8 and 24 hour samples correspond to early and late stationary phase cells, respectively. Means and standard
error of the means from three independent experiments performed in duplicate are shown.
doi:10.1371/journal.pone.0019019.g001

A Small RNA in Listeria monocytogenes

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e19019



and/or translational start site (AUG), which is likely to cause

translational repression. To test whether LhrA affects the

expression of these candidates, in-frame translational fusions to

lacZ were constructed in the vector pCK-lac. The resulting lacZ

fusion vectors were transferred into wild type, Dhfq and DlhrA

mutant cells, and b-galactosidase activity was measured during

growth in rich medium. The lmo0880-lacZ fusion was found to be

expressed throughout growth at similar levels in all three strains

tested (data not shown), suggesting that this gene may not be a

direct target of LhrA and therefore was not considered further in

the present study. In contrast, the lmo0302-lacZ fusion was

expressed at a higher level in the DlhrA and Dhfq mutant strains,

suggesting that LhrA acts to down regulate the expression of

lmo0302 in an Hfq-dependent manner (see Figure 3A).

According to the genome sequence of L. monocytogenes EGD-e,

lmo0302 is the first gene in an operon consisting of two genes,

lmo302 and lmo0303. The lmo0302 gene is predicted to encode a

hypothetical protein of 94 amino acids, whereas lmo0303 encodes a

putatively secreted, lysine rich protein of 184 amino acids. The

results of the microarray analysis suggested that both lmo0302 and

lmo0303 are negatively affected by LhrA (2.5 fold and 2.2 fold,

respectively, see Table S2). To map the 59-end of the putative

lmo0302-lmo0303 transcript, we performed a primer extension

analysis, using total RNA purified from early stationary phase cells

(Figure 3B). For the DlhrA and Dhfq mutant strains, we observed

two bands corresponding to putative 59-ends mapping to position

238 and –34 relative to the translation start site for lmo0302.

Putative 210 and 235 sequences are located 8 bp upstream of

position 238 (Figure 3B) suggesting that transcription of lmo0302

starts at this site. Furthermore, the primer extension analysis

clearly showed that the level of transcription is higher in the DlhrA

and Dhfq mutant strains, relative to the wild type.

To study the expression of the lmo0303 gene, which is expected

to be co-transcribed with lmo0302, we performed a Northern blot

experiment using a radio-labeled probe directed against lmo0303

RNA. We observed a single transcript of around 1000 nucleotides,

which could be expected to encompass both genes (Figure 3C).

Furthermore, we note that the level of the lmo0302-lmo0303

transcript was clearly higher in the DlhrA mutant relative to the

wild type strain in both exponential phase and stationary phase

cells. Identical results were obtained when using a probe directed

against lmo0302 mRNA (data not shown). From these results we

conclude that LhrA acts to down-regulate lmo0302 and lmo0303 at

the RNA level. To investigate whether this regulatory effect occurs

at the level of transcription initiation, the lmo0302 promoter region

was fused to lacZ in the transcriptional fusion vector pTCV-lac.

The resulting plasmid was introduced into the wild type, DlhrA and

Dhfq mutant strains, and the b-galactosidase activity was measured

throughout growth in rich medium. The three strains displayed no

difference in b-galactosidase activity (Figure 3A), suggesting that

the regulation of lmo0302 and lmo0303 by LhrA and Hfq indeed

occurs at the post-transcriptional level.

According to the predicted interaction between LhrA and

lmo0302 mRNA, LhrA binds to a region overlapping the SD

region as well as the start codon (Table 1). To investigate if LhrA

inhibits the formation of a translation initiation complex on the

lmo0302 mRNA, we performed a toeprint experiment (Figure 3D).

Figure 2. The stability of LhrA depends on the growth phase
and the presence of Hfq. Northern blot analysis of LhrA and 5S rRNA
(control). Total RNA samples were prepared from wild type and Dhfq
mutant cells grown to early stationary phase (A) or mid-exponential
phase (B) and treated with rifampicin. Cells were harvested 2 minutes
before (22) and at indicated time points (in minutes) after rifampicin
treatment. The experiment was repeated twice with similar results.
Northern blots were quantified using ImageQuant by measuring the
amount of radioactivity in each band. The numbers given are relative to
the amount observed in the wild type strain at time 22 minutes.
Relative expression levels were corrected with respect to the levels of
5S rRNA.
doi:10.1371/journal.pone.0019019.g002

Table 1. Putative LhrA target genes.

Gene Function
Fold of regulation
(DlhrA/wt) Potential base pairinga

lmo0302 Hypothetical protein of
unknown function

2.5 lmo0302 mRNA 59-CAUAG-GAGAUGAAUAGAUGAUGAAAAAAA-39

:|: ||||||||| || :|::|| ||

LhrA 39-CGGUUACUCUACUUA-CUUUUGUUUAUUAC-59

lmo0880 Putative cell wall associated protein
precursor (LPXTG motif)

2.0 lmo0880 mRNA 59-UUUUAA-GGGG-GAAUG-AAACAAAAUGAA-39

::|| |:|| ||||| ||||||| :

LhrA 39-CCGGUUACUCUACUUACUUUUGUUUAUUAC-59

chiA (lmo1883) Chitinase ChiA 3.3 chiA mRNA 59-AGUAGAUGAAUGGAAAACAAGUAAUGGUUGG-39

|||||||| ||||||||||||||:||

LhrA 39-UACUCUACUUA-CUUUUGUUUAUUACUAAAA-59

aStart codons (AUG) are indicated in bold. In the predicted duplex formed by chiA mRNA and LhrA, the underlined nucleotides in LhrA were substituted from UGUU to
ACAA in the mutant version LhrA-Mut3*.

doi:10.1371/journal.pone.0019019.t001
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An in vitro transcribed lmo0302 mRNA fragment was incubated

with 30S ribosomes in the absence or presence of uncharged

tRNAfMet followed by primer extension. In the presence of

tRNAfMet, specific binding of 30S ribosomes to the lmo0302

mRNA generates a toeprint signal downstream from the start

codon (Figure 3D, lane 3). When LhrA was added, the toeprint

signal was clearly diminished (Figure 3D, lane 4), demonstrating

that LhrA efficiently prevents the formation of a translation

initiation complex at the lmo0302 mRNA.

The third candidate predicted to base pair with LhrA, the chiA

mRNA, was identified previously in a computational search for

putative LhrA target genes [23]. In our previous study, we

constructed a translational fusion of chiA (lmo1883) to lacZ in pCK-

lac, but no detectable b-galactosidase activity was recorded, and

the chiA gene was not investigated any further [23]. However,

according to the microarray analysis, the expression of chiA is 3.3

fold higher in a DlhrA mutant strain relative to the wild type,

suggesting that LhrA has a negative effect on the level of chiA

Figure 3. LhrA inhibits the expression of lmo0302-lmo0303. (A) Specific b-galactosidase activity of wild type, Dhfq and DlhrA cells containing a
translational (pCK-lac) or transcriptional (pTCV-lac) lmo0302-lacZ fusion. Cells were harvested in the mid-exponential growth phase (OD600 = 0.4).
Means and standard error of the means from three independent experiments performed in duplicate are shown. (B) Primer extension analysis
showing the transcription start site of lmo0302 and the effect of Hfq and LhrA on lmo0302 expression. Lane 1: wild type; lane 2: Dhfq; lane 3: DlhrA.
Samples were drawn from early stationary phase cells (OD600 = 1.0 plus 3 hours). The experiment was repeated twice with similar results. (C) Northern
blot analysis showing the steady state levels of lmo0302-lmo0303 mRNA in wild type and DlhrA mutant cells, using a probe directed against lmo0302.
The results from two independent experiments (1 and 2) are shown. Samples were drawn in the mid-exponential growth phase and in the early
stationary growth phase. The experiment was repeated twice with similar results. Northern blots were quantified using ImageQuant by measuring
the amount of radioactivity in each band. Numbers given are relative to the amount found in the EGD wild type strain (exponential phase,
experiment 1). Relative expression levels were corrected with respect to the levels of 5S rRNA. (D) Toeprint experiment of lmo0302 RNA in the
absence or presence of LhrA. In vitro transcribed lmo0302 RNA was mixed with 30S ribosomes in the absence or presence of 10 fold excess of LhrA.
Lanes 1 and 2 correspond to control reactions containing lmo0302 RNA only, in the absence (lane 1) or presence (lane 2) of 30S ribosomes. Lane 3: In
the presence of lmo0302 RNA, 30S ribosomes and tRNAfMet, a specific toeprint is generated approximately 14 nucleotides downstream from the
lmo0302 start codon (AUG). Lane 4: The addition of LhrA diminishes the formation of the lmo0302 toeprint signal. The experiment was repeated twice
with similar results.
doi:10.1371/journal.pone.0019019.g003
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mRNA. To investigate this in more detail, we performed a

Northern blot analysis to evaluate the expression of chiA mRNA in

wild type and DlhrA cells during growth in rich medium. As shown

in Figure 4A, the expression of chiA is very low in the wild type

strain, irrespective of the growth phase tested. Likewise, the

expression of chiA in the DlhrA mutant strain is minimal in

exponentially growing cells, however, at the entry into stationary

phase, the level of chiA mRNA increases (Figure 4A). Thus, LhrA

indeed has a negative affect the level of chiA mRNA.

LhrA shows extensive complementarity to the translation

initiation region the 59-end of chiA mRNA (see Table 1). To test

whether LhrA binds to this region in the chiA mRNA, we

performed gel mobility shift assays (Figure 4B). In these

experiments, a 59-end-labelled in vitro-transcribed chiA RNA was

mixed with different concentrations of wild type LhrA or mutant

LhrA-Mut3* carrying four nucleotide substitutions within the

region predicted to interact with chiA RNA (see Table 1 and [23]

for details). The binding experiments were performed in the

absence or presence of Hfq. In the absence of Hfq, less than half of

the chiA RNA had shifted at the highest concentration of wild type

LhrA, whereas in the presence of Hfq, almost all of the chiA RNA

had shifted (Figure 4B, left panel). When adding LhrA-Mut3*,

RNA duplex formation was clearly diminished, both in the

absence and presence of Hfq (Figure 4B, right panel). These results

show that LhrA interacts with the 59-end of the chiA mRNA, and

that Hfq promotes the formation of an LhrA-chiA RNA duplex. To

further investigate this issue, we conducted a time course

experiment in which a 59-end-labelled chiA RNA fragment was

mixed with 5-fold excess LhrA or LhrA-Mut3*, in the absence or

presence of Hfq (Figure 4C). The results clearly show that Hfq

Figure 4. LhrA specifically targets the chiA mRNA. (A) Northern blot analysis of chiA expression in wild type and DlhrA mutant cells grown in
BHI medium. The results from two independent experiments (1 and 2) are shown. Samples were drawn in the mid-exponential growth phase and in
the early stationary growth phase. Northern blots were quantified using ImageQuant by measuring the amount of radioactivity in each band.
Numbers given are relative to the amount found in the EGD wild type strain (exponential phase, experiment 1). Relative expression levels were
corrected with respect to the levels of 5S rRNA. (B) In vitro binding assay of LhrA and chiA RNA in the absence (2) or presence (+) of Hfq. In all
samples, end-labelled in vitro transcribed chiA RNA was used, and in vitro transcribed LhrA (left part) or LhrA-Mut3* (right part) was added to the
indicated final concentrations. The experiment was repeated twice with similar results. Quantification of the gelshifts was carried out using
ImageQuant by measuring the amount of RNA that had shifted in each lane. The numbers presented in the figure are relative to the total amount of
unshifted RNA found in the first lane, from the left. (C) Time course experiment showing the association of chiA RNA with LhrA (left part) or LhrA-
Mut3* (right part). The experiments were carried out with end-labelled in vitro transcribed chiA RNA mixed with in vitro transcribed LhrA or LhrA-
Mut3*, in the absence (2) or presence (+) of Hfq. The samples were incubated at 37uC for 0, 2, 5, 10 or 20 minutes and then loaded onto a gel. The
experiment was repeated twice with similar results. Quantification of the bands was carried out as described for 4B. (D) Toeprint experiment of chiA
RNA in the absence or presence of LhrA. Lanes 1 and 2 correspond to control reactions containing chiA RNA only, in the absence (lane 1) or presence
(lane 2) of 30S ribosomes. Lane 3: In the presence of chiA RNA, 30S ribosomes and tRNAfMet, a specific toeprint is generated approximately 18
nucleotides downstream from the chiA start codon (AUG). Lane 4: The addition of LhrA diminishes the formation of the chiA toeprint signal. The
experiment was repeated twice with similar results.
doi:10.1371/journal.pone.0019019.g004

A Small RNA in Listeria monocytogenes
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stimulates the rate of association between LhrA and chiA RNA,

and that substitutions in LhrA predicted to disrupt this interaction

diminishes RNA duplex formation.

Since LhrA binds to a region overlapping the start codon on the

chiA mRNA (see Table 1), we performed a toeprint experiment to

investigate the effect of LhrA on the formation of a translation

initiation complex. In the presence of both 30S and tRNAfMet a

distinct toeprint signal was observed downstream from the start

codon (Figure 4D, lane 3). The formation of the toeprint was

strongly inhibited by the addition of LhrA RNA (Figure 4D, lane

4), showing that binding of LhrA to chiA mRNA efficiently blocks

the formation of a translation initiation complex.

LhrA and Hfq affect the chitinolytic activity of L.
monocytogenes

L. monocytogenes contains two genes encoding chitinases, chiA and

chiB, and a single gene (lmo2467) encoding a putative chitin

binding protein [24]. The chitinase activity of L. monocytogenes

EGD-e has been shown to depend on both chiA and chiB, and both

chitinases contribute to growth in the livers and spleens of mice,

with chiA playing the most significant role in L. monocytogenes

virulence [26]. Expression of the chitinase genes is induced in the

presence of chitin [34]. In order to study the effect of LhrA on chiA

and chiB expression under conditions known to stimulate chitinase

activity, we performed a Northern blot on RNA isolated from late

exponential and early stationary phase cells grown in LB medium

containing chitin (Figure 5A, lanes 7–12). In agreement with the

results presented previously [34] the chiA and chiB mRNAs are

readily detected in the wild type strain in the presence of chitin.

We note that chiA expression is higher in the DlhrA and Dhfq

mutant strains in comparison to the wild type strain, in particular

in the early stationary phase cells (Figure 5A, lanes 7–9, lower

band), whereas the effect of Hfq and LhrA on chiB expression

appears to be minimal (upper band). These results demonstrate

that LhrA and Hfq act to repress the expression of chiA, also in the

presence of the substrate of the chitinases.

In order to study the contribution of LhrA and Hfq to the

chitinolytic activity of L. monocytogenes, bacterial suspensions of the

wild type, DlhrA and Dhfq mutant strains were spotted on LB agar

plates supplemented with chitin (Figure 5B). We observed that the

chitinolytic activity of the DlhrA mutant strain is slightly higher

compared to that of the wild type strain. The average zone size of

the wild type strain (1.5 mm, SD = 0.4) was found to be

significantly smaller (P,0.01) compared to the average zone size

of the DlhrA mutant strain (1.9 mm, SD = 0.4). This result shows

that the regulatory effect of LhrA on chiA indeed serves to decrease

the chitinolytic activity of L. monocytogenes. Surprisingly, we found

that the clearing zone for the Dhfq mutant was markedly reduced

when compared to the wild type strain (Figure 5B). Since Hfq acts

to down-regulate the chiA levels in the presence of chitin

(Figure 5A) we expected Hfq to display a negative effect on the

chitinolytic activity to approximately the same extent as LhrA. In

contrast to our expectations, the average zone diameter of the Dhfq

mutant (0.9 mm, SD = 0.3) was significantly smaller (P,0.01)

compared to that of the wild type strain. Thus, it appears that Hfq

has a stimulating effect on the chitinolytic activity of L.

monocytogenes, which is not reflected at the RNA level.

Discussion

In the present work we studied the role of the Hfq-binding

sRNA LhrA in L. monocytogenes. We demonstrate that LhrA is

expressed throughout growth in rich medium from a highly active

promoter, and that LhrA is more stable in stationary phase cells in

comparison to exponentially growing cells. Furthermore, we show

that LhrA affects the expression of approximately 300 genes in

early stationary phase cells ($1.5 fold; adjusted P,0.05), and we

provide evidence that two additional genes, lmo0302 and chiA, are

a direct target for LhrA, extending the regulatory capacity of LhrA

to multiple target genes.

To identify genes affected by LhrA, we compared the total gene

expression of a DlhrA mutant and wild type strain by microarray

analysis. These types of analyses are often complicated by

secondary effects resulting from regulation of primary targets.

Furthermore, deletion of lhrA, which is one of the most abundant

RNAs in stationary phase cells [12], may have indirect effects on

other Hfq-dependent processes in L. monocytogenes. We also note

that several genes encoding regulatory proteins were among those

differentially expressed in the DlhrA strain (Table S1 and Table

S2), and that some of the observed differences could potentially be

due to differences in the regulation of entry into stationary phase

between the strains tested. Thus, the LhrA-mediated regulation of

284 genes in L. monocytogenes is most likely the result of both direct

and indirect effects. In order to find genes directly targeted by

LhrA, we searched the 59-region of putative mRNAs encoded by

the genes down-regulated at least 2 fold by LhrA for potential

RNA-duplex formation. By this strategy, we expected to find

mRNAs that interact with LhrA, leading to repression of

translation initiation and degradation of the mRNA. Further

analyses of the top three candidates confirmed that LhrA down-

regulates the expression of the lmo0302-lmo0303 operon and of

chiA. Using in vivo and in vitro analyses, we showed that LhrA acts to

prevent the formation of a translation initiation complex at the 59-

end of the lmo0302-lmo0303 and chiA mRNAs, resulting in a

decrease in the mRNA levels. We observed that the expression of

these genes is affected by the RNA chaperone Hfq as well, and

that Hfq stimulates the base-pairing between LhrA and chiA

mRNA.

Some Hfq-binding sRNAs act by binding to the coding region

of mRNAs, as exemplified by MicC in Salmonella [35], or by

binding to the 59-region more upstream from the translational

start site, resulting in activation of translation, as shown for DsrA

in E. coli [36,37]. We therefore searched within the coding region

as well as the far 59-upstream regions of genes affected at least 2-

fold by LhrA for potential base-pairing with LhrA, but no obvious

targets were identified. Curiously, we note that approximately half

of the genes identified in the microarray analysis were found in

other studies to belong to the sB regulon, suggesting a regulatory

link between LhrA and the alternative stress sigma factor sB. In

L. monocytogenes, sB plays an important role in stress tolerance and

virulence, and several sRNA-encoding genes are known to depend

on sB for their expression, including sbrA [14] and sbrE (rli47)

[12,13], but the level of LhrA is not affected by sB (our

unpublished data). Further studies will be needed in order to

clarify the extensive regulatory networks involving sB and sRNAs

in L. monocytogenes.

Our studies revealed a role for LhrA in controlling the

chitinase ChiA in L. monocytogenes. Chitin is a polymer of b-1, 4-

N-acetyl-glucosamine (GlcNAc) and the second most abundant

polysaccharide in nature [38]. Chitin is primarily degraded by

chitinases, which are produced by a wide range of living

organisms, including bacteria. In general, bacterial chitinases

are associated with carbon and nitrogen acquisition, however in

some pathogens, chitinases and chitin-binding proteins have

been linked to bacterial pathogenesis, although chitin is not

present in mammalian hosts. In Vibrio cholerae, the chitin-binding

protein GbpA interacts with intestinal mucin and contributes to

bacterial colonization of the intestine [39,40], and in Legionella
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pneumophila, a chitinase was shown to promote bacterial

persistence in the lung [41]. In L. monocytogenes, the chitin-

binding protein Lmo2467 and the chitinases ChiA and ChiB

contribute to pathogenesis in mice, but appeared not to

influence bacterial invasion or replication within selected

mammalian cell lines [26]. The expression of chiA and chiB is

induced by the presence of chitin and depends on at least two

regulatory proteins: The central virulence regulator PrfA and

the alternative stress sigma factor sB [34]. Furthermore, glucose

has a negative effect on chiA and chiB expression, suggesting that

the chitinases are subject to catabolite repression [34]. We show

that LhrA acts as a post-transcriptional regulator of chiA thus

adding another layer of complexity to the gene regulatory

networks controlling the expression of chitinases in L. moncoy-

togenes. We have shown that LhrA acts to down-regulate the

expression of chiA by an antisense-mechanism. However, the

environmental signal and molecular mechanism leading to

alleviation of LhrA repression, remains to be determined. We

speculate that under specific growth conditions, the LhrA level

may decrease via repression of transcription of lhrA, and/or by

removal of cellular LhrA by degradation. Interestingly, the

utilization of chito-sugars by E. coli was recently shown to

involve a small Hfq-dependent sRNA named MicM [42], and a

similar sRNA, ChiX, was characterized in Salmonella [43].

Under normal growth conditions, MicM down-regulates its

target gene ybfM, encoding a chito-sugar porin. In the presence

of chitobiose, an RNA trap is produced from the chitobiose

operon. The RNA trap binds to MicM, leading to MicM

degradation and alleviation of repression of the YbfM chito-

sugar porin [42,43]. It is tempting to speculate that a similar

Figure 5. The effect of LhrA and Hfq on chiA and chiB. (A) Northern blot showing the levels of chiA and chiB mRNA in wild type (lanes 1, 4, 7,
10), DlhrA mutant (lanes 2, 5, 8, 11) and Dhfq mutant cells (lanes 3, 6, 9, 12) grown in LB medium (lanes 1–6) or LB medium supplemented with chitin
(lanes 7–12). Cells were harvested in the late exponential growth phase (lanes 1–3 and 7–9) or early stationary growth phase (lanes 4–6 and 10–12).
The experiment was repeated twice with similar results. As loading control, we probed for 16S rRNA. Northern blots were quantified using
ImageQuant by measuring the amount of radioactivity in each band. Numbers given are relative to the amount found in the EGD wild type strain
grown to exponential phase in the presence of chitin (lane 7). Relative expression levels were corrected with respect to the levels of 16S rRNA. (B)
Comparison of the chitinolytic activity of wild type, DlhrA and Dhfq mutant cells on agar plates containing chitin. Similar results were observed in ten
independent experiments.
doi:10.1371/journal.pone.0019019.g005
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mechanism could apply to the LhrA-chiA regulatory case, but if

so, what is the potential signal leading to alleviation of LhrA

repression? In the presence of chitin, the expression of chiA is

clearly down-regulated by LhrA, so the putative signal does not

appear to be linked directly to the substrate (chitin) or its

degradation products. Although both ChiA and ChiB contribute

to the chitinolytic activity of L. monocytogenes, the full range of

their potential substrates remains to be determined, including

the identification of host-related targets. Since only chiA, and not

chiB, is targeted by LhrA, we speculate that LhrA-regulation

could be linked to a ChiA-specific substrate in the external

environment, or possibly during infection, which would require

differential regulation of the two genes. This hypothesis is

supported by recent findings showing that a Salmonella

Typhimurium chitinase shows activity towards a N-acetyllacto-

samine-conjugate which is a model substrate to LAcNAc

terminating glycoproteins and glycolipids on vertebrate cells

[44]. Future work will focus on defining the mechanism leading

to de-repression of LhrA-regulated genes.

The role of LhrA as an antisense regulator of the expression

of lmo0850 [26], lmo0302-lmo0303 and chiA is closely linked to

the RNA chaperone Hfq. The stability and function of LhrA

depends on Hfq and the levels of all three target mRNAs are

diminished in the presence of Hfq. The formation of an RNA

duplex between LhrA and target mRNA is clearly stimulated by

the Hfq protein, as shown for lmo0850 [23] and chiA mRNA (this

study). We were therefore surprised to find that the Dhfq mutant

was less chitinolytic in comparison to wild type strain.

Importantly, this stimulatory effect of Hfq on the chitinolytic

activity of L. monocytogenes was not reflected at mRNA level of

chiA or chiB. This result points to a more complex role of Hfq in

L. monocytogenes and suggests that Hfq exerts a stimulating effect

on the protein level, activity and/or secretion of the chitinases

by a mechanism that may involve the action of other Hfq-

dependent sRNAs in L. monocytogenes.

Materials and Methods

Bacterials strains and growth media
Listeria monocytogenes EGD-e seroptype 1/2a was used as the wild

type strain; construction of the isogenic mutant derivatives Dhfq

and DlhrA were described in previous work [16,23]. The DresD

mutant strain was described previously [27]. All L. monocytogenes

strains were grown in either Brain Heart Infusion media (BHI,

Oxoid), at 37uC, or Luria broth (LB, Oxoid), at 30uC. The effect

of chitin was examined by supplementing LB with acid-hydrolyzed

chitin (2.5 g/L) (catalog nr. C9213; Sigma-Aldrich). Acid-

hydrolyzed/colloidal chitin was prepared as described previously

[34]. When appropriate, cultures were supplemented with

Kanamycin (50 mg/ml). For cloning purposes, E. coli TOP10

(Invitrogen) grown in LB medium was used.

Construction of lacZ fusions and b-galactosidase assays
For analysis of the lhrA promoter activity, DNA fragments

corresponding to various lengths of regions upstream of lhrA were

constructed by PCR using different LhrA forward primers in

combination with the reverse primer sRNA1-13, listed in Table

S3. The resulting PCR fragments were digested with EcoRI and

BamHI and ligated into the low-copy number promoter-less lacZ

transcriptional fusion vector pTCV-lac [45]. For the construction

of in-frame translational lacZ fusions, DNA fragments containing

59-regions of lmo0880 or lmo0302 were amplified by PCR using the

primers listed in Table S3. The resulting PCR fragments were

digested with EcoRI and BamHI and ligated into pCK-lac, a

derivative of pTCV-lac containing a lacZ gene without a Shine-

Dalgarno sequence or start codon allowing for translational

analysis of the gene in question. For construction of a

transcriptional fusion between lmo0302 and lacZ, the lmo0302

PCR fragment digested with EcoRI and BamHI was ligated into

pTCV-lac. b-galactosidase assay was carried out as described

previously [16].

RNA techniques
RNA used for microarray or TaqMan RT-PCR was purified

using the RNeasy mini or midi kit from Qiagen as described by the

manufacturer. Cells grown to early-stationary phase were first

treated with RNA protect as instructed by the manufacturer

(Qiagen) and subsequently disrupted by sonication on ice (3630

seconds, each round followed by a 30 second pause). For primer

extension analysis and Northern blotting experiments, total RNA

was extracted from L. monocytogenes using TRI reagent (MR

CGENE). Cells were disrupted using the FastPrep instrument and

RNA was purified as described previously [23]. The integrity of

the RNA was confirmed by agarose gel electrophoresis and the

concentration and purity was determined on a NanoDrop 2000.

Northern blotting and primer extension analysis on total RNA

purified from cells grown in BHI medium was performed as

previously described [23]. The primers used as probes for

Northern blotting on LhrA, 5S RNA, lmo0302, lmo0303 and chiA,

and primers used for primer extension analysis of lhrA-lacZ,

lmo0302 and chiA, are listed in Table S3. Northern blotting analysis

of chiA and chiB on total RNA purified from cells grown in LB

medium, with or without chitin, was performed at described

previously [34].

For gel shift experiments, the template for in vitro transcription of

chiA RNA was prepared by PCR using the primers listed in Table

S3. The 59-end corresponds to the putative transcription start site

from a sB dependent promoter, located 50 base pairs upstream of

the start codon [33]. Templates for in vitro transcription of LhrA

and LhrA-Mut3* were prepared as described previously [23]. In

each case, the 59-end primer contains a T7-RNA Polymerase

binding site for subsequent in vitro transcription. In vitro transcribed

RNA was prepared using the MegaScript kit from Ambion as

described by the manufacturer. Following transcription, the RNA

was separated on a denaturing polyacrylamide gel and the largest

transcript (identified by UV shadowing) was excised from the gel

and subsequently purified by electro-elution followed by phenol-

chloroform extraction. RNA to be used for 59-end labeling was

dephosphorylated using the KinaseMax kit from Ambion as

described by the manufacturer. The purity and concentration of in

vitro transcribed RNA was determined using a NanoDrop 2000.

Gelshifts were conducted as previously described [23]. Briefly, 40

fmol 59-end labeled chiA RNA was incubated in a total of 10 ml

without or with 0.8, 4, 20 or 100 nM unlabelled LhrA or LhrA-

Mut3* in the absence or presence of 2.5 mM Hfq and 10 mg of

non-specific tRNA. The samples were incubated 20 min at 37uC
followed by 10 min on ice and subsequently separated on a 5%

non-denaturing polyacrylamide gel at 4uC with the current

running. For time-course experiments, 40 fmol 59-end labeled

chiA RNA was mixed with 20 nM LhrA in the presence or absence

of 2.5 mM Hfq and incubated at 37uC for 0, 2, 5, 10 or 20

minutes. The samples were then loaded onto a 5% non-denaturing

polyacrylamide gel at 4uC with the current running.

For toeprinting experiments, in vitro transcribed lmo0302 RNA

and chiA RNA was prepared using the primers listed in Table S3.

Toeprinting experiments were performed as described in [23]

using 0.35 mM lmo0302 RNA or 0.05 mM chiA RNA; 10 fold

excess of in vitro transcribed LhrA (prepared as described for gel

A Small RNA in Listeria monocytogenes

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e19019



shift experiments), relative to lmo0302 or chiA RNA, and 0.4 pmol

of 59-end labelled lmo0302 or chiA primer (see Table S3).

Quantitative RT-PCR was essentially performed as described

previously [46]. Briefly, TaqMan primers and probes (Table S3)

were designed using Primer Express 2.0 software (Applied

Biosystems). qRT-PCR was performed using TaqMan one-step

RT-PCR master mix reagent, Multiscribe RT, and an ABI Prism

7000 sequence detection system (Applied Biosystems). Each qRT-

PCR experiment was run in triplicate. The housekeeping genes

rpoB and gap were used for normalization of absolute transcript

levels. Data analysis was conducted with ABI Prism 7000 SDS

software. Significant differences in RNA levels were determined by

ANOVA as described previously [46].

cDNA labeling and microarray hybridization
RNA was extracted from wild type and DlhrA cells grown in

BHI medium at 37uC to early stationary phase (OD600 = 1.0+3 -

hours) as described above. The experiment was conducted with

four biological replicates which were compared in pairs on four

microarray slides. cDNA from each strain was labeled twice with

Cy3 and twice with Cy5 to minimize any bias. cDNA labeling

was performed as previously described [46]. Briefly, cDNA

synthesis and labeling of total RNA were performed using the

SuperScript Plus indirect cDNA labeling system for DNA

microarrays (Invitrogen). 10 mg total RNA was mixed with 5 mg

random hexamers and incubated for 10 minutes at 70uC, with a

subsequent chill on ice for at least 5 minutes. Superscript III RT,

amino-modified deoxynucleoside triphophates, dithiothreitol,

RNaseOUT, and buffer was then added and the reaction mix

incubated at 42uC for 17 hours. RNA was hydrolyzed by the

addition of 10 ml 1 M NaOH and 10 ml 0.5 M EDTA, followed

by incubation at 65uC for 15 minutes. The mixture was

neutralized with 10 ml 1 M HCl and cDNA purified using the

Qiagen PCR purification kit. Labeling reactions with Alexa Fluor

555 or Alexa Fluor 647 fluorescent dyes were performed for 2 h

at room temperature. Differentially labeled cDNAs from the two

strains to be cohybridized were combined, dried in a Savant

SVC100 Speed-Vac (Farmingdale) and stored at 280uC until

hybridization.

Microarrays were constructed as previously described [47].

Briefly, 70-mer probes targeting 2,857 L. monocytogenes ORFs were

spotted onto Corning UltraGAPS slides (Corning Inc) at the

Microarray Core Facility at Cornell University.

Microarray hybridization was performed as described previous-

ly [46]. Spotted microarray slides were first incubated for 1 h in a

1% bovine serum albumin-5X SSC-0.1% sodium dodecyl sulfate

solution pre-warmed to 42uC. Subsequently, slides were washed

twice in 0.1X SSC and twice in filtered water and then dried. The

combined cDNA targets were reconstituted in 55 ml hybridization

buffer and denatured at 95uC for 5 minutes. Targets were applied

to microarray slides and overlaid with mSeries LifterSlips (Erie

Scientific) followed by overnight hybridization at 42uC. Slides

were then washed 5 minutes in 42uC pre-warmed 2X SSC plus

0.1% SDS, 5 minutes in 2X SCC, and 2.5 min in 0.2X SSC. After

a final wash in filtered water, slides were dried and scanned with a

GenePix 4000B scanner (Molecular Devices, Sunnyvale, CA).

Microarray data analysis
The median fluorescence intensity data for all probes on the

array were analyzed using LIMMA (linear models for microarray

analysis)[48]. The Empirical Bayes method employed in LIMMA

is used to borrow information across genes resulting in stable

analyses of small samples. This method also allow analysis of

datasets when values are missing due to low spot quality

parameters [48]. We first normalized the data on each array

using print-tip Lowess, followed by log2 conversion of the

normalized data. A correlation was determined for the signal

from duplicate spots of each probe. Significant differences were

determined by calculating a moderated t-statistic which is similar

to an ordinary t-statistic except that the standard errors have been

shrunk towards a common value using a Bayesian model. P-values

were calculated for each gene based on the moderated t-statistics

and adjusted with the Benjamini-Hochberg false discovery rate

correction for multiple tests. Differences in transcripts levels were

considered meaningful only when adjusted P,0.05 and fold

change $1.5 fold.

Gene set enrichment analysis (GSEA) [48] was used to identify

gene sets that were significantly overrepresented among genes up-

or down-regulated in the DlhrA mutant strain. GSEA was carried

out as described in [49].

Examination of chitinase activity
The chitinase activities of L. monocytogenes was measured as

previously described [34]. Wild type and mutant strains were

spotted on the same chitin agar plate. After incubation, the

clearing zone diameter was measured. Pair wise t-test was used for

comparisons between the size of the clearing zones of the wild type

and each mutant after 4 days of incubation. Zone diameters from

ten independent experiments were compared.

Supporting Information

Figure S1 Verification of microarray data by qRT-PCR.
See Table S1 and Table S2 for more details on the genes
tested.
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