
Systems biology

DeepREAL: a deep learning powered multi-scale

modeling framework for predicting out-of-distribution

ligand-induced GPCR activity

Tian Cai 1, Kyra Alyssa Abbu2, Yang Liu2 and Lei Xie1,2,3,*

1Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY 10016, USA, 2Department of

Computer Science, Hunter College, The City University of New York, New York, NY 10065, USA and 3Helen and Robert Appel

Alzheimer’s Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New

York, NY 10021, USA

*To whom correspondence should be addressed.

Associate Editor: Pier Luigi Martelli

Received on November 25, 2021; revised on February 18, 2022; editorial decision on March 5, 2022; accepted on March 10, 2022

Abstract

Motivation: Drug discovery has witnessed intensive exploration of predictive modeling of drug–target physical
interactions over two decades. However, a critical knowledge gap needs to be filled for correlating drug–target inter-
actions with clinical outcomes: predicting genome-wide receptor activities or function selectivity, especially agonist
versus antagonist, induced by novel chemicals. Two major obstacles compound the difficulty on this task: known
data of receptor activity is far too scarce to train a robust model in light of genome-scale applications, and real-world
applications need to deploy a model on data from various shifted distributions.

Results: To address these challenges, we have developed an end-to-end deep learning framework, DeepREAL, for
multi-scale modeling of genome-wide ligand-induced receptor activities. DeepREAL utilizes self-supervised learning
on tens of millions of protein sequences and pre-trained binary interaction classification to solve the data distribu-
tion shift and data scarcity problems. Extensive benchmark studies on G-protein coupled receptors (GPCRs), which
simulate real-world scenarios, demonstrate that DeepREAL achieves state-of-the-art performances in out-of-
distribution settings. DeepREAL can be extended to other gene families beyond GPCRs.

Availability and implementation: All data used are downloaded from Pfam (Mistry et al., 2020), GLASS (Chan et al.,
2015) and IUPHAR/BPS and the data from reference (Sakamuru et al., 2021). Readers are directed to their official
website for original data. Code is available on GitHub https://github.com/XieResearchGroup/DeepREAL.

Contact: lei.xie@hunter.cuny.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past two decades, drug discovery has been dominated by
target-based high-throughput compound screening. Unfortunately,
this ‘one-drug–one-gene’ approach has been costly and had a low
success rate due to our limited understanding of molecular and cel-
lular mechanisms of drug actions (DiMasi et al., 2016; Wong
et al., 2019). Drugs from the target-based screening often interact
with unexpected off-targets, leading to serious side effects (Lin
et al., 2019; Lynch III et al., 2017). Furthermore, a polypharmacol-
ogy approach is often needed to achieve desired therapeutic effi-
cacy and overcome drug resistance for complex diseases (Xie et al.,
2012). To predict drug phenotypic response at the organismal
level, it is necessary to not only elucidate genome-scale drug–target

interactions (DTIs) but also reveal how DTIs collectively modulate
a biological system.

The drug mode of action is a multi-scale process that starts with
drug binding to its targets, principally proteins. Then the drug can
act as an antagonist or an agonist to block or enhance downstream
biological processes, respectively. Therefore, it is critically important
to model the change of receptor activities or functional selectivity
upon the drug binding for understanding how the drug modulates
pathophysiological functions. The information on the receptor activ-
ity following the ligand binding will fill in a critical knowledge gap
in correlating DTIs to clinical outcomes. Although a great deal of
efforts have been devoted to predict genome-wide DTIs using deep
learning (Cai et al., 2021; Karimi et al., 2019; Wan and Zeng,
2016), few large-scale experimental and computational studies have
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been able to specify the ligand-induced receptor activity, i.e. the
functional selectivity of the ligand as an antagonist or an agonist
(Sakamuru et al., 2021).

In this research, we aim to predict not only whether any pairs of
proteins and chemicals interact with each other or not but also the
receptor activity upon the binding, especially, making reliable pre-
dictions for understudied ‘dark’ proteins that do not have any ligand
annotations (Oprea, 2019) and novel chemicals whose structures
are different from those in the training data. To our knowledge,
only a recent work has used chemical features to train an independ-
ent machine learning model for each individual Opioid receptor for
predicting their receptor activity (Sakamuru et al., 2021).
Unfortunately, labeled data for the receptor activity are scarce. Only
a limited number of receptors have sufficient function selectivity
data to train a robust machine learning model. Thus, the one-pro-
tein–one-model approach cannot be extended to majority of pro-
teins that have few or no labeled data (Sakamuru et al., 2021). An
early work applied a neural network model to predict multiple inter-
action types for annotated proteins (Wang and Zeng, 2013).
However, this work neither included antagonist/agonist as predic-
tion tasks nor was tested for dark proteins. It is a challenging task to
predict the function for dark proteins in general using machine
learning. Conventional machine learning methods assume that the
distribution of unseen data and training data is identically and inde-
pendently distributed (IID). This assumption may not hold for the
dark proteins that are dissimilar from those in the training data. In
other words, many dark proteins are out-of-distribution (OOD) in
terms of the training samples. Similarly, unseen novel chemicals
whose structures are different from those in the training set are also
OOD cases. To address the data scarcity and OOD challenges, we
have developed an artificial intelligence (AI)-powered multi-scale
modeling framework, DeepREAL, to simulate the multi-scale drug
actions and predict the ligand-induced receptor activity for dark
proteins and novel chemicals. We first apply self-supervised learning
to train a protein sequence model for a universal protein sequence
embedding on a genome scale. This allows us to detect subtle rela-
tionships between dark proteins and ligand-annotated proteins as
demonstrated in other studies (Cai et al., 2021; Rao et al., 2019;
Rives et al., 2021). We then train a binary classification deep learn-
ing model to predict whether a chemical binds to a protein and ex-
tract a latent presentation of DTIs. Because there is a large amount
of binary interaction data, it is possible to train a robust deep learn-
ing model. Finally, we integrate chemical embedding model, se-
quence embedding model and DTI latent representation model to
train an end-to-end deep learning model for predicting the ligand-
induced receptor activity using limited data. In the rigorous bench-
mark studies on GPCRs, which simulate real-world applications,
DeepREAL significantly improves the generalization ability in the
OOD setting compared with the state-of-the-art methods (Cai et al.,
2021; Sakamuru et al., 2021; Wang and Zeng, 2013).

The contributions of DeepREAL can be summarized in twofolds:

1. DeepREAL aims to address an unsolved but important challeng-

ing problem for drug discovery: robustly predicting genome-

wide ligand-induced receptor activities or function selectivity

under various data distribution shifts.

2. DeepREAL is based on a new multi-stage deep transfer learning

architecture that combines binary DTI pre-training and embed-

ding with a three-way receptor activity fine-tuning to address

OOD challenges using sparse receptor activity data.

2 Materials and methods

2.1 Data
Four datasets were used in this study. Pfam, v33.1 (Mistry et al.,
2020) was used to pre-train protein descriptors. GPCR–ligand bind-
ing binary data were obtained from GLASS, v2019.2 (Chan et al.,
2015). Agonist/antagonist data were downloaded from the
International Union of Basic and Clinical Pharmacology/British

Pharmacological Society (IUPHAR/BPS) Guide to Pharmacology,
v2020.5. Additional Opioid receptor activity data were from the
study by Sakamuru et al. (2021). The protein descriptor pre-training
exactly followed DISAE (Cai et al., 2021). In brief, DISAE built up a
distilled triplet sequence dictionary for the whole Pfam proteins
based on multiple sequence alignments (MSA). Every input protein
was mapped to its distilled triplets representation according to the
protein dictionary, as illustrated in Figure 1. Chemical-protein pairs
with the receptor activity annotation was treated as positive in the
binary DTI setting and combined with GLASS for the binary classifi-
cation pre-training. In terms of pre-training, only Stage 1 protein de-
scriptor pre-training was self-supervised as described in the study by
Cai et al. (2021). Stage 2 uses CLASS data for supervised pre-train-
ing. IUPHAR/BPS combined with Sakamuru et al. (2021) Opioid
data were used in the final Stage 3 three-way classification. Detailed
data statistics is found in Table 1.

2.2 State-of-the-art baselines
We compared DeepREAL with Random Forest (RF) models for
three Opiod receptors (Sakamuru et al., 2021) that used PubChem
fingerprints (ftp://ftp.ncbi.nlm.nih.-gov/pubchem/specifications/pub-
chem_fingerprints.txt) (Bolton et al., 2008) as features. To our
knowledge, the RF/protein baseline was the first and only work for
the ligand-induced receptor activity prediction. Keeping other
hyper-parameters the same as those in the study by Sakamuru et al.
(2021), the RF depth was tuned to find the best performance model
for each Opioid receptor. An example performance curve is shown
in Supplementary Figure S6. For each experiment, one Random
Forest is trained for each Opioid receptor. An average RF test per-
formance was calculated by weighting the sample size of each
Opioid receptor. When evaluating the variance of model perform-
ance, different random seeds were used.

Another baseline model is similar to restricted Boltzmann machines
from an earlier work (Wang and Zeng, 2013) which is designed to pre-
dict DTI types. We built a multi-task deep learning model that con-
sisted of two layer vanilla MLP (Goodfellow et al., 2016) for every
single target, i.e. one Opioid receptor, with the same number of hidden
units and the same definitions of visible units (Goodfellow et al., 2016)
by optimizing the average cross entropy loss of the model for each tar-
get. The constructed multi-task MLP for a multidimensional DTI net-
work was associated with the same parameters. The input feature was
also PubChem fingerprints (Bolton et al., 2008).

2.3 DeepREAL framework
2.3.1 Architecture

DeepREAL has a novel three-stage framework. There are four major
modules in DeepREAL model: protein sequence embedding, chem-
ical structure descriptor, binary interaction learner and multi-class
receptor activity classifier as shown in Supplementary Figure S1.
Under this framework, the state-of-the-art model DISAE (Cai et al.,
2021) was employed as the backbone for learning DTI embeddings,
which includes ALBERT- (Lan et al., 2019) based protein descrip-
tor, and attentive pooling- (Santos et al., 2016) based binary inter-
action learner. Different from DISAE that uses neuro-fingerprint for
the chemical representation, the chemical descriptor in DeepREAL
is state-of-the-art unpretrained graph neural network GIN (Xu
et al., 2018).

The unique component of multi-class receptor activity classifier
includes two sub-modules. A three-way interaction learner uses the
same architecture as the binary interaction learner. After concate-
nating all related embeddings, the concatenated tensor goes through
a ResNET (He et al., 2015) layer and MLP (Hastie et al., 2019)
transformation to generate the final logit vector used in cross en-
tropy loss calculation (Hu et al., 2019).

2.3.2 Information flow of DeepREAL

The knowledge transfer across stages is realized by sharing weights
on the first three modules in DeepREAL architecture, i.e. protein de-
scriptor, chemical descriptor and binary interaction learner. Protein
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descriptor first goes through Stage 1 sequence pre-training in a self-
supervised fashion. The pre-trained sequence embeddings are then
transferred to Stage 2 binary pre-training. Together with initialized
chemical descriptor, a binary interaction learner learns to predict
whether or not a protein and a chemical would interact in a super-
vised learning manner. The learned weights of these three modules
are all transferred to Stage 3. In Stage 3, the three modules are first
duplicated: one copy has frozen weights whereas the other copy
updates its weights for n epochs with multi-class-learner on
DeepREAL receptor activity information in a supervised learning
manner, where n is a hyper-parameter as shown in Supplementary
Table S1. In our experiments, we find that a small n such as 50
would help to improve model generalization performance when the
training data size was smaller. This phenomenon is due to the fact

that a complete model with a large number of trainable parameters
is capable of memorizing a small training set, resulting in over-
fitting and poor generalization. More frozen weights would limit the
over-fitting and put more pressures on the multi-class-learner to
learn a robust representation.

As illustrated in Supplementary Figure S1, the protein embed-
ding vector, chemical embedding vector and binary interaction
embedding vector that is the output of binary pre-trained module
are fine-tuned via a three-way receptor activity learner that also
learns a three-way receptor activity embedding. Seven embedding
vectors, which include the protein embedding, the chemical embed-
ding and the binary interaction embedding, both fine-tuned and fro-
zen after the pre-training, along with the three-way receptor activity
embedding, are concatenated and fed into a ResNET (He et al.,

Fig. 1. Illustration of DeepREAL. (A) Given a chemical and a protein sequence as inputs, DeepREAL will predict not only if the chemical is the ligand of the protein but also

the ligand-induced receptor activity. (B) DeepREAL is an end-to-end deep learning model trained using three stages of pre-training and fine-tuning. See text for details

Table 1. Training, validation and testing data used in this study

Unique protein Unique chemical Agonist Antagonist Not-binding Binding (OOD TEST imbalance ratio control)

not-binding:agonist:antagonist

IUPHAR 450 13 126 14 412 14 488 144 500 28 900 5:1:1

Opioid receptors related 3 2483 2920 2996 29 580 5916

GLASS 689 181 114 — — 70 089 270 545 —
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2015) followed by a MLP (Hastie et al., 2019) to make the final
three-way classification.

The three-stage model is designed to train sequentially and separ-
ately. Only optimized weights are transferred. The Stage 1 optimiza-
tion procedure has been described in Cai et al. (2021). Stages 2 and
3 optimizations are both driven by a cross-entropy loss in a stochas-
tic manner using Adam (Kingma and Ba, 2014).

2.3.3 Pre-training implementation and module frozen strategy

A key element of success in multi-stage pre-training is to transfer
knowledge. A major challenge in the three-stage pipeline is to pre-
vent the previously learned knowledge from being lost during the
weight update in the subsequent stage. DISAE has reported the bene-
fits of a frozen mechanism. This strategy is adopted in DeepREAL
Stages 2 and 3 as well. In Stage 2, following the experience of
DISAE, part of the transformer (Vaswani et al., 2017) layers is fro-
zen. In Stage 3, the binary pre-trained modules are duplicated to
have one copy always frozen and the other copy fine-tuned for only
n epochs. Without tuning, n is empirically set to 50 in the Opioid re-
ceptor focused experiments, while on the complete DeepREAL re-
ceptor dataset involving 450 proteins, n is set as infinity until the
model converges.

2.3.4 Data splitting for training and testing

In terms of data splitting, IID setting splits the data randomly as
conventional cross-validations, except for the Opioid-context
experiments where all three Opioid proteins are ensured to appear
in both training and testing datasets. The OOD data split is carried
out using a spectral clustering algorithm (Luxburg, 2007) based on
pair-wise chemical similarity measured by Tanimoto coefficient and
sequence similarity measured by sequence identity. The similarity
distributions could be found in Supplementary Figure S3. In our
experiments, the Stage 2 binary training is always carried out with
the same data. The pairwise scores in Supplementary Figure S3 are
measured for each pair of a chemical from training and a chemical
from test as well as a protein from training and a protein from test.
For more than 95% chemicals in the test set, less than 2% chemicals
in the training set have Tanimoto coefficient larger than 0.6.

Because we studied several OOD and IID scenarios, in each scen-
ario the number of proteins in the testing set is different.

1. IUPHAR OOD-protein-distribution-shift. The split is made

upon protein similarity. 49 out of 450 proteins in the test set.

Proteins in the training and testing set have no overlaps. As

shown in Supplementary Figure S3, majority of proteins in the

testing test are not similar to those in the training set with the se-

quence identity less than 10%.

2. IUPHAR IID setting. Data are randomly split. 298 out of 450

proteins are in the test set. 246 out of the 298 proteins in the test

set are also in the training set, but there are no overlapped

protein-chemical pairs between training and testing set.

3. Opioid OOD-chemical-distribution-shift. The split is made upon

pair-wise chemical similarity between chemicals in the training

set and chemicals in the test set as shown in Supplementary

Figure S3, where only around 0.6% of chemicals in the testing

set are similar to those in the training set with Tanimoto coeffi-

cient larger than 0.6. All three Opioid proteins are in the test set.

4. Opioid IID. Data are randomly split. All three Opioid proteins

in the test set.

2.4 Ensemble model for novel receptor activity

prediction
We build an ensemble of three DeepREAL models independently
trained with different random seeds. The ensemble model is used to
perform predictions on novel relations. Top predictions are selected
by filtering out predictions agreed by all the three models in the
ensemble.

3 Results and discussion

3.1 Overview of methods
Given a chemical structure and the sequence of a receptor protein,
DeepREAL will predict whether the chemical is an agonist or an an-
tagonist if it binds to the receptor, or not bind to it at all (Fig. 1A).
As an end-to-end learning framework, the DeepReal is a three-way
classifier: not-binding/agonist/antagonist. Intuitively, DeepREAL
leverages large datasets to hierarchically inform predictions on the
receptor activity whose labeled data are scarce along a three-stage
pre-training-fine-tuning pipeline as illustrated in Figure 1B. In Stage
1, protein descriptor was pre-trained using Pfam (Mistry et al.,
2020) data. In Stage 2, a binary DTI classifier was then pre-trained
using GLASS (Chan et al., 2015) and IUPHAR binary data
(Armstrong et al., 2019). Finally, in Stage 3, three-way classification
on the receptor activity was fine-tuned using the outputs of Stages 1
and 2 as inputs with IUPHAR antagonist/agonist data (Armstrong
et al., 2019).

The Stage 1 self-supervised sequence embedding was based on
DISAE (Cai et al., 2021). DISAE distilled the protein sequence into
an ordered list of triplets by excluding evolutionarily unimportant
positions from a multiple sequence alignment. Then long range resi-
due interactions were learned via the self-attention in a transformer
module. A self-supervised masked language modeling approach was
used to train sequence embeddings. By pre-training protein sequen-
ces on whole Pfam in Stage 1, DeepREAL equipped itself with
genome-scale protein representations that captured novel relation-
ships between proteins beyond sequence homology as demonstrated
by several studies (Cai et al., 2021; Rao et al., 2019; Rives et al.,
2021). The second stage was a binary DTI pre-training which pre-
dicts binding/not-binding. By pre-training on a large scale of binary
DTI data in Stage 2, DeepREAL builds knowledge of chemical–pro-
tein interactions which is the initial step in the ligand binding event
and generates DTI embeddings. Finally, in Stage 3, information
learned from sequence embeddings and DTI embeddings were trans-
ferred into predicting receptor activities using a small amount of
data. This hierarchy design maintained knowledge learned from het-
erogeneous resources and enhanced model robustness when facing
shifted data distribution during the deployment. The model was
trained in an end-to-end fashion without feature engineering. The
embedding from the pre-training is not fixed, but can be fine-tuned
by the subsequent training stage. More details of DeepREAL design
and implementation could be found in Methods section. Detailed
model architecture is in Supplementary Figure S1 and
Supplementary Table S1.

It notes that DeepREAL is an extension of DISAE (Cai et al.,
2021) but with several major new contributions. DISAE is a general-
purpose protein language model and has been applied to predict
chemical-protein interactions (Cai et al., 2021), while DeepREAL is
a framework designed to tackle a different task that has not been
explored: predicting out-of-distribution ligand-induced receptor ac-
tivity (agonist versus antagonist). This task cannot be solved by the
original DISAE architecture (Cai et al., 2021). In the DeepREAL
framework, DISAE was mainly used as Stage 1 pre-training. In add-
ition, DeepREAL included two more components beyond DISAE:
Stage 2 DTI interaction embedding and Stage 3 three-way
classification.

As shown in Table 1, 689 unique human GPCRs was used for
the Stage 2 DTI pre-training. These GPCRs consist of six Pfam fami-
lies: PF00001, PF00002, PF00003, PF052496, PF01534 and
PF02101. Among them, 450 GPCRs have known labeled receptor
activity data, and was used for the Stage 3 fine-tuning. Among
180 000 ligands of GPCRs, only 3303 ligands have known agonist/
antagonist activities. Moreover, majority GPCRs have less than 100
ligands that are labeled with receptor activities, as shown in
Supplementary Figure S2. Only 3 Opioid receptors (P35372—Mu
Opioid receptor, P41145—Kappa Opioid receptor, P41143—Delta
Opioid receptor) have more than 300 chemicals with known recep-
tor activities. Thus, the labeled receptor activity data are not large
enough to train a robust machine learning model on the basis of a
single protein for most GPCRs.
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To evaluate DeepREAL performance in light of real-world appli-
cations for dark proteins and novel chemicals, both data preprocess-
ing and controlled experiment are designed to simulate various
scenarios of data distribution shifts and to answer the following
questions.

Q1: Is the pre-training helpful to improve the performance of recep-

tor activity prediction using a small amount of data?

Q2: When DeepREAL is applied to unseen dark proteins that have

low sequence similarity to those in the training data, what is the

OOD generalization performance of DeepREAL?

Q3: When DeepREAL is used to predict unseen novel chemicals that

are significantly different from those in the training data, what

is the OOD generalization performance of DeepREAL?

Q4: When the test set label (agonist/antagonist/not-binding) distri-

bution is close to reality and imbalanced compared to the train-

ing data, what is the generalization performance of

DeepREAL?

Q5: How does DeepREAL perform compared to the state-of-the-art

baseline models in both OOD and IID settings for predicting

Opioid receptor activity?

We used three metrics, AUC–ROC, MCC and Cohen’s kappa to
evaluate the performance of various models under different settings.

3.2 Pre-training enables DeepREAL to generalize

genome-scale receptor activity predictions using a

relatively small dataset
Pre-training has been demonstrated to be effective in several recent
works (Karimi et al., 2019; Wan and Zeng, 2016) for predicting
protein–ligand interactions. DeepREAL used Stages 1 and 2 as pre-
trainings for learning knowledge in the protein sequence space and
binary interaction space, respectively. To answer Q1, the same
model architecture is trained on the same IID and OOD settings
using four procedures: (i) from total scratch without any pre-train-
ing, i.e. Stage 3 only, (ii) going through Stage 1 whole Pfam pre-
training but not the Stage 2 binary DTI classification pre-training,
which is equivalent to the DISAE model (Cai et al., 2021), (iii) going
through only Stage 2 but not Stage 1 and (iv) complete three-stage
pre-training/fine-tuning as DeepREAL. As shown in Figures 2 and 3
on the evaluation cross three classes (no-binding, agonist, antagon-
ist), the model without any pre-training (i.e. only Stage 3) has the
worst performance. Stages 1 or 2 both boosts performance and the
complete three-stage pipeline yields the best performance. From the
by-class evaluation for antagonist or agonist as shown in Figures 4

and 5, the precision and recall of DeepREAL is mostly higher than
other variants in IID, protein OOD and chemical OOD settings.
Furthermore, the training curves of DeepREAL in Figures 4 and 5
converges faster than other variants in most cases. The advantage of
pre-training is particularly apparent in chemical distribution shift
OOD in the cross-class and the by-class evaluation as shown in
Figures 3–5. The chemical OOD is a more challenging OOD setting
than other settings, where both chemical structure distribution and
label ratio balance shift (more details in the following section).
DISAE and the only-Stage 3 model have lower Cohen’s kappa,
ROC–AUC, MCC than DeepREAL and the Stage2þStage3 model.
The latter two models have relative close performance, suggesting
that DTI pre-training plays a more important role than the sequence
pre-training in the current training procedure. It may be because the
whole-Pfam information learned at Stage 1 is more difficult to trans-
fer to Stage 3, as supported by the observation shown in Figures 4
and 5. It will be interesting to use other advanced training proce-
dures such as prompting (Gao et al., 2020) or design different archi-
tectures [e.g. using skip connections (Dosovitskiy et al., 2020; He
et al., 2015), etc.].

3.3 DeepREAL is robust in various shifted distribution

scenarios
Q2, Q3, Q4 are three typical shifted distribution scenarios in real-
world applications, i.e. the OOD generalization challenge.
DeepREAL proves robust in each of the settings. It makes
DeepREAL applicable to explore dark chemical genomics space.

Q2 focuses on the distribution shift coming from proteins. It is a
dominant challenge when applying DeepREAL to a genome-scale
given majority of proteins are dark without any receptor activity
data. In this setting, 450 proteins and their associated interaction
data are split into an OOD train/test sets such that the sequence sim-
ilarities between proteins in the testing set and those in the training
set are less than 10% (Supplementary Fig. S3). As shown in
Figure 2, although the performance drops compared with the easier
IID setting, the ROC-AUC score is still at 0.766, while existing
state-of-the-art RF-based one-protein-one-model (RF/protein) ap-
proach (Sakamuru et al., 2021) and multi-task neural network
model (Wang and Zeng, 2013) are totally unable to make reliable
predictions in the protein OOD setting.

In a similar fashion, by splitting the data based on the chemical
similarity measured by Tanimoto coefficient, DeepREAL is eval-
uated in the setting of chemical distribution shift to answer Q3.
Only Opioid receptors are used in the evaluation because only
Opioid receptors have sufficient large numbers of labeled chemicals
to generate OOD training/testing dataset, as shown in
Supplementary Figure S2. In addition, we would like to reduce the

Fig. 2. Performance comparison of DeepREAL with its variants in (A) protein OOD and (B) protein IID settings. The performance is evaluated by multiple gene families in the

IUPHAR database
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impact of the OOD from receptors. The advantage of DeepREAL is
apparent over other configurations including DISAE, as shown in
Figures 3 and 6A in the chemical OOD setting. It notes that only
around 0.6% of chemicals in the testing set are similar to those in
the training set with Tanimoto coefficient larger than 0.6, as shown
in Supplementary Figure S3.

Although it is expected that a machine learning model performs
the best when positive and negative data are balanced, the unseen
binding/not-binding cases are imbalanced in reality, which has an
estimated ratio of 1:5 (Lim et al., 2016). The ratio of 1:5 is based on
the estimated value in the published work (Lim et al., 2016) when
considering the chemical genomics space (millions of chemicals
paired with thousands of proteins) as a whole, which is the same
scenario as this manuscript. The ratio is lower than the observations
from many compound screenings because a large number of
potential off-targets are not taken into account in the existing
target-based screening. It should be noted that the purpose here is to
compare the use of imbalanced test data with the use of balanced
ones, which is a common practice in most existing studies. Hence, to
answer Q4 about label distribution shift, for all experiments the
number of not-binding samples in the test set is about five times as
large as that of the agonist/antagonist data while training data are
balanced for each class. For a comparison, a balanced test set is also
evaluated. In general, DeepREAL evaluated by the balanced test set
in the IID setting, which represents conventional cross-validations,
outperforms that evaluated by the imbalanced data. However, in
both protein and chemical OOD settings that simulates a real appli-
cation, DeepREAL evaluated by the imbalanced data performs the
best, as shown in Figures 2 and 3. These observations suggest that
the cross-validation in an IID setting is often over-optimistic and
DeepREAL is more robust in a realistic application. To see if differ-
ent imbalanced ratio will affect the result, we performed additional
experiments with a ratio of 10:1. As shown in Supplementary Figure
S4, the change of ratio will not change the results significantly.

3.4 DeepREAL significantly outperforms state-of-the-art

models
To compare DeepREAL with the leading machine learning model
(RF/protein) (Sakamuru et al., 2021) that can only predict Opioid
receptor activities as well as an earlier multi-task neural network
model (Wang and Zeng, 2013). Only Opioid receptors are used in
the comparison due to two reasons. First, the baseline models can be
only trained using chemicals as input. Second, only Opioid receptors
have sufficient large numbers of labeled chemicals for training the
baseline model (Supplementary Fig. S2). If we include other pro-
teins, the baseline model may have significant disadvantages.

Opioid receptor dataset is split in two different ways for IID and
OOD experiments as described in the previous section. In both IID
and OOD settings, DeepREAL significantly outperforms the

baselines in terms of precision and recall, as shown in Figure 6.
Furthermore, the performance drop of DeepREAL from the IID set-
ting to the OOD setting is less significant than that of the baseline.
To prove the statistical significance of DeepREAL performance
against the RF/protein baseline, the same training is repeated for five
times under Opioid context with different random seeds. As shown
in Supplementary Figure S5, the P-value of the hypothesis that the
two models have the same average ROC-AUC is close to 0.0.

3.5 Application of DeepREAL to cocaine interacting

proteins
We performed a screening for G-protein coupled receptors (GPCRs)
that interact with cocaine and its analogs using trained DeepREAL
model. Cocaine target, cocaine analogs and top ranked predictions
could be found in Supplementary Tables S2–S4. 14 cocaine interact-
ing GPCRs were collected from Fant et al. (2019). We collected 18
cocaine analogs and made predictions on them paired with the 14
targets. Among 14 proteins that we tested, cocaine or cocaine
analogue was predicted as an agonist for glutamate metabotropic
receptor 2 (GRM2) and 5-hydroxytryptamine receptor subtype
6 (5-HT6). As supporting evidences, Yang et al. (2017) have showed
that GRM2 deletion decreases sensitivity to cocaine reward in rats.
5-HT6 antagonist blocks cocaine-induced DA release and cocaine
self-administration, suggesting cocaine probably is a agonist for
5-HT6 (Valentini et al., 2013). Our model also predicted cocaine’s
antagonist activity against 5-HT2C, delta-Opioid receptor and
Cannabinoid Receptor 2 (CNR2). Injection of the 5-HT2C receptor
agonist reduces cocaine self-administration in rats, suggesting co-
caine is a potential antagonist for 5-HT2C receptor (Fletcher et al.,
2004). Similarly, dual kappa-delta Opioid receptor agonist blocks
cocaine reward behavior intimating cocaine’s antagonist role for
delta Opioid receptor (Váradi et al., 2015). Research shows CNR2
agonist dose-dependently inhibits cocaine self-administration, thus
indicating cocaine negatively regulates CNR2’s activity (Xi et al.,
2011). Overall, our predictions are largely consistent with existing
experimental evidences.

4 Conclusion

This article proposed a deep learning framework DeepREAL that
expands the traditional DTI task to predicting ligand-induced recep-
tor activities of dark proteins and novel chemicals under various
OOD settings. DeepREAL has several unique features. First, unlike
the existing method that requires training one model for one protein
and applying the trained model on the same protein, DeepREAL
needs only to train only one model to make predictions on any pro-
teins with improved accuracy. Second, DeepREAL has improved
generalization power when facing all major types of data distribu-
tion shifts during deployment, making it robust in real-world

Fig. 3. Performance comparison of DeepREAL with its variants in (A) chemical OOD and (B) chemical IID settings. The performance is evaluated only by Opioid receptors
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applications. Finally, by utilizing large unlabeled sequence data and
rich binary bioassay data, DeepREAL models receptor activities on
a multi-scale to alleviate data scarcity problem. Together,
DeepREAL significantly outperforms existing algorithms for pre-
dicting ligand-induced receptor activities. The novelty of DeepREAL
lies in the prediction of receptor activities for dark proteins (Stage 3)

using pre-trained protein sequence embedding (Stage 1) and binary
DTI embedding (Stage 2). The incorporation of Stages 1 and 2 pre-
training is motivated to achieve the OOD generalization in Stage 3.
Additionally, the excellent performance of Stage 3 is not solely rely-
ing on the pre-training of Stages 1 and 2. The end-to-end model
architecture as illustrated in Supplementary Figure S1 is designed to

Fig. 4. Training curves of DeepREAL and its variants when measured by the precision for predicting agonists or antagonists. The x-axis is number of training epochs. The y-

axis is precision
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ensure that knowledge transferred over stages will not be lost and
get well utilized. Although DeepREAL was only tested using
GPCRs, especially, Opioid receptors due to limited labeled data, it
can be extended to other gene families when the ligand-induced re-
ceptor activity data are available.

The performance of DeepREAL can be further improved along
several directions. For example, unsupervised pre-training of
chemical space could improve DeepREAL’s ability to detect novel
chemicals (Hu et al., 2019; Liu et al., 2021). The sequence embed-
ding method DISAE used in this study still has room for

improvement. Incorporating structure information into the pro-
tein sequence embedding could help the downstream prediction
tasks for ligand binding and receptor activity. In addition, it may
not perform well for small families similar to AlphaFold2
(Jumper et al., 2021). It remains an open question to reliably pre-
diction the structure and function of dark proteins from a small
family. It will also interesting to test other state-of-the-art se-
quence embedding methods such as ESM (Rives et al., 2021),
ProtBERT (Elnaggar et al., 2021) and TAPE (Rao et al., 2019).
We only predict two classes of receptor activity: agonist versus

Fig. 5. Training curves of DeepREAL and its variants when measured by the recall for predicting agonists or antagonists. The x-axis is number of training epochs. The y-axis is

recall
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antagonist. In fact, the receptor activity is more complex than

two mutually exclusive classes. There are other subtle activity
classes such as partial agonist. A multi-class model could be a
more suitable choice and subject to future studies. In practice,

detecting if an unseen case is OOD is an important but challeng-
ing problem. Few methods have been developed for protein or
chemical data for the OOD detection. It is another direction for

future works. Furthermore, there are more scenarios of distribu-
tion shift worth study such as compounding protein and chemical

distribution shifts with various label distribution shifts for stress
testing. In addition to the imbalanced ratio of binding/non-
binding cases, the ratio of agonist/antagonist could vary a lot for

different proteins and there is no generally known trend which
one is more prevalent. This question remains unanswered, and
will be addressed in the future.
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