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Abstract

Modeling bifurcations in single-cell transcriptomics data has become an

increasingly popular field of research. Several methods have been proposed to Invited Referees
infer bifurcation structure from such data, but all rely on heuristic 1 2
non-probabilistic inference. Here we propose the first generative, fully

probabilistic model for such inference based on a Bayesian hierarchical mixture version 1 o' W'
of factor analyzers. Our model exhibits competitive performance on large published report report

datasets despite implementing full Markov-Chain Monte Carlo sampling, and its 15 Mar 2017

unique hierarchical prior structure enables automatic determination of genes
driving the bifurcation process. We additionally propose an Empirical-Bayes
like extension that deals with the high levels of zero-inflation in single-cell
RNA-seq data and quantify when such models are useful. We apply or model to
both real and simulated single-cell gene expression data and compare the
results to existing pseudotime methods. Finally, we discuss both the merits and
weaknesses of such a unified, probabilistic approach in the context practical
bioinformatics analyses.
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Introduction

Trajectory analysis of single-cell RNA-seq (scRNA-seq) data
has become a popular method that attempts to infer lost temporal
information, such as a cell’s differentiation state'>. Such analyses
reconstruct a measure of a cell’s progression through some biologi-
cal process, known as a pseudotime. Recently, attention has turned
to modeling bifurcations where, part-way along such trajectories,
cells undergo some fate decision and branch into two or more
distinct cell types.

Several methods have been proposed to infer bifurcation structure
from single-cell data. Wishbone® constructs a k-nearest neighbor
graph and uses shortest paths from a root cell to define pseudot-
imes, using inconsistencies over multiple paths to detect bifurca-
tions. Diffusion Pseudotime (DPT)” similarly constructs a transition
matrix where each entry may be interpreted as a diffusion distance
between two cells. Bifurcations are inferred by identifying the
anti-correlation structure of random walks from both a root cell and
its maximally distant cell. While DPT arguably has a probabilistic
interpretation, neither method specifies a fully generative model
that incorporates measurement noise, while both infer bifurcations
retrospectively after constructing pseudotimes. A further algorithm
Monocle’ learns pseudotimes based on dimensionality reduction
using the DDRTree algorithm® and provides post-hoc inference of
genes involved in the bifurcation process using generalized linear
models.

Here we propose a Bayesian hierarchical mixture of
factor analyzers for inferring bifurcations from single-cell data.
Factor analysis and its close relative principal component analy-
sis (PCA) are frequently used in the context of single-cell gene
expression modeling, both for visualization and trajectory infer-
ence (see e.g. 7,8). Since developmental bifurcations involve two
related processes, it is therefore natural to extend such models to
involve a mixture of two factor analyzers in a Bayesian hierarchical
setting that relates expression patterns between branches.

The model we propose is unique compared to existing bifurcation
inference methods methods in the following: (1) by specifying a
fully generative probabilistic model we incorporate measurement
noise into inference and provide full uncertainty estimates for all
parameters; (2) we simultaneously infer cell “pseudotimes” and
branching structure as opposed to post-hoc branching inference
as is typically performed; and (3) our hierarchical shrinkage prior
structure automatically detects features involved in the bifurcation,
providing statistical support for detecting which genes drive fate
decisions.

In the following, we introduce our model and apply it to both
synthetic datasets and demonstrate its consistency with existing
algorithms on real single-cell data. We further propose a zero-
inflated variant that takes into account zero-inflation, and quan-
tify the levels of dropout at which such models are beneficial. We
highlight the multiple natural solutions to bifurcation inference
when using gene expression data alone and finally discuss both the
merits and drawbacks of using such a unified probabilistic model.

Methods

Statistical model

We begin with an N x G matrix of suitably normalized gene expres-
sion measurements for N cells and G genes, where y, denotes the i
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row vector corresponding to the expression measurement of cell i.
We assign a pseudotime 7, to each cell, along with a binary variable
7, indicating to which of B branches cell i belongs:

¥,= b if cell i on branch b (D)
withb € 1,..., B.

The pseudotime #; is a surrogate measure of a cell’s progression
along a trajectory while it is the behavior of the genes - given by
the factor loading matrix - that changes between the branches.
We therefore introduce B factor loading matrices A, = [¢, k,],
b e 1,..., B for each branch modeled.

The likelihood of a given cell’s gene expression measurement
conditional on all the parameters is then given by

-1
yill(’A}/i’ti’TN Normal(e, +k, 7,711 )
where 1 is the G x G identity matrix.

We motivate the prior structure as follows: if the bifurcation
processes share some common elements then the behavior of a
non-negligible subset of the genes will be (near) identical across
branches. It is therefore reasonable that the factor loading gradi-
ents k, should be similar to each other unless the data suggests
otherwise. We therefore place a prior of the form

kY/ ~Normal(6,x'1,) 3)

where @ denotes a common factor gradient across branches. This
has similar elements to Automatic Relevance Determination (ARD)
models with the difference that rather than shrinking regression
coefficients to zero to induce sparsity, we shrink factor loading
gradients towards a common value to induce similar behavior
between mixture components. We can then inspect the posterior
precision to identify genes involved in the bifurcation: if X, is
very large then the model is sure that k ~ k, and gene g is not
involved in the bifurcation; however, if y_ is relatively small then
|k,, — k| > 0 and the model indicates that g is involved in the
bifurcation.

With these considerations the overall model is given by the
following hierarchical (M)ixtures of (F)actor (A)nalysers (MFA)
specification:

w ~ Dirichlet(1/B,...,1/ B)
; ~ Categorical(w)
7 ~ Normal(7, r;/l)
ﬂg ~ Normal(@, r;l)
¥ ~ Gamma(a,, fy)
- )
¢y~ Normal(7,7, l)
ky, - Normal(8,x 1)
t; ~ Normal(0,1)
7 ~ Gamma(a, £)

-1
Y ~ Normal(c;,i + k;,ill-,T 1)
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where W, 8, Ty, T, T., 0, P, o and J are hyperparameters fixed
by the user. By default we set the non-informative prior
a, = B, =107 to maximize how informative the posterior of y is
in identifying genes that show differential expression across the
branches.

As the model exhibits complete conditional conjugacy, inference
was performed using Gibbs sampling (Supplementary File 1).
Details of computer software (MFA) implementing these methods
is given in Software availability’.

Modeling zero-inflation

Single-cell data is known to exhibit dropout where the failure to
reverse-transcribe lowly expressed mRNA results in zero counts in
the expression matrix. The issue has been extensively studied in the
context of sScCRNA-seq, resulting in algorithms that take into account
the resulting zero inflation, such as ZIFA” or SCDE'".

We can incorporate tractable zero-inflation into our model by con-
sidering a per-gene dropout probability given by

N
. _ A
p(dropout in gene g)=exp _FE Xig (3)

i=1

where x, is the unobserved true expression of gene g in cell i and
A is a global dropout parameter estimated in an Empirical-Bayes
manner. This exponential model empirically fits multiple scRNA-
seq datasets well (Supplementary File 1). Incorporating this
zero-inflated likelihood modifies the model in 4 to

-1
X; ~ Normal(c},l_ + k;,i 7 1)

. A
hl.g ~ Bemoulll(exp(fﬁgxig ]) (6)
x, ifh,=0
TeT 0 ifh, =1

While incorporating zero-inflation in the likelihood leads to a
less-misspecified model, we must perform inference on an addi-
tional N, parameters, where N, is the number of zero measure-
ments in the expression matrix. For single cell RNA-seq data this
can be as high as 90% of all measurements, leading to a significant
additional computational burden.

Furthermore, such a dropout model assumes a per-gene dropout
probability dependent on the mean latent expression, though in
reality the dropout probability would depend on the latent expres-
sion itself. This compromise allows us to estimate the parameter
A by fitting for each gene the proportion of cells expressed versus
the mean expression.

Multiple solutions to bifurcation inference

It is common in bifurcation inference methods to specify additional
information aside to gene expression data alone. For example, Wish-
bone requires the specification of a root cell that signifies the begin-
ning of pseudotime. DPT also allows for the specification of a root
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cell or picks the furthest from a random cell if unspecified. Monocle
equivalently allows re-fitting of the pseudotimes with the constraint
that one of the inferred “states” is the initial or root state.

We argue that such requirements are necessary due to a fundamen-
tal invariance in the gene expression of bifurcating cells. Figure 1
shows a conceptual model of three end-states (1-3) and a gene that
is expressed in one end state (2), but not the others. We can envis-
age three possible bifurcation routes here: state 1 is the initial state
that bifurcates to 2 & 3 (1 — 2, 3), or equivalently 3 — 1, 2 or 2
— 1, 3. If 1 or 3 is the initial state then the gene exhibits differen-
tial expression across the branches, while if we start at 2 the gene
exhibits concordant expression across the branches. Note that for a
bifurcation we require some genes that show differential expression
between the branches and some that show concordant expression -
lacking the former would give a non-branching trajectory and lack-
ing the latter would give separate cell types.

The above reasons that in a single-gene case the initial state is indis-
tinguishable from the gene expression alone. We can easily general-
ize this to the multiple-gene case, due to the fact that the labels in
Figure 1 are statistically non-identifiable. The equivalent geomet-
ric argument is that you can ‘spin’ Figure 1 about B for each gene
(and optionally invert the expression to give two states of non-zero
expression).

While in algorithms, such as Wishbone and DPT, this non-
identifiability is solved by setting an initial cell or state, the equiva-
lent in our model is the correct initialization of the pseudotimes.
PCA is applied to the data before inference and the principal
component that best corresponds to the trajectory based on the
expression of known genes is used to initialize the pseudotimes. Such
trajectories correspond to local modes in the posterior space that
are sufficiently narrow the probability of the Gibbs sampler moving
to another local mode is negligible. A future extension that would
solve this non-identifiability would involve placing priors on the
behavior of certain genes across the branches, which combined
with more efficient inference would pick out the ‘true’ trajectory.

Please note that an earlier version of this article can be found on
bioRxiv (doi: 10.1101/076547).

Results

Synthetic datasets

We first demonstrate our method on a synthetic ‘toy’ dataset of 300
bifurcating cells and 60 genes, half of which exhibit differential
behavior across the bifurcation and half of which show similar
behavior.

Our synthetically generated data is mildly mis-specified with respect
to our model to demonstrate robustness when using real genomic
data. For example, the generated gene behavior across pseudotime
is sigmoidal, which we have previously successfully used to model
real single-cell datasets'!-'”.

Pseudotimes were inferred using Gibbs sampling (Supplementary
File 1) for 10° iterations. PCA representations of the synthetic
data can be seen in Figures 2A and B, showing the characteristic ¥
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Figure 1. Multiple solutions to bifurcation inference. Starting with three cell states, we would like to infer a bifurcation process from one to
the other two. If a single gene is up-regulated in one of the states, yet down-regulated in the other two, then clearly any state may act as the
beginning of the trajectory. For example, if we start in state 1 then the gene is up-regulated along state 2 and stays constant in state 3; if we
start in state 2 then the gene is down-regulated in states 1 & 3; if we start in state 3 then the gene is up-regulated in state 2 and remains down-
regulated in state 1. However, due to the non-identifiability this is true if we add additional genes that are up-regulated in one or two of the
cell states. The equivalent geometric argument is that we can build the transcriptomic profiles across all genes by spinning the figure about
B (with possible inversion) and “adding” that gene. No matter how many additional genes we add, any one of the three states can act as the
root state or beginning of pseudotime. Therefore, in the absence of any additional information there are always three equally valid solutions

to bifurcation inference from gene expression data alone.

shape associated with bifurcating data, colored by both maximum
a posteriori (MAP) pseudotime and branch assignment estimates,
respectively. We compared the Pearson correlation of the estimated
pseudotimes to the true pseudotimes (Figure 2C) for both MFA,
PC1 (the first principal component of the data), Monocle and
Diffusion Pseudotime, giving values of 0.98, 0.98, 0.98 and 0.99
(to 2 s.f.), respectively. Broad benchmarking of pseudotime
algorithms to “ground-truth” data is difficult, due to the
inherent assumptions that are necessary about how genes expres-
sion evolves along trajectories. However, such toy examples
demonstrates the consistency of multiple algorithms on our toy
dataset.

One weakness of our model is that it assumes gene expression
changes as a linear function of time. This allows us to perform
fast conjugate Gibbs sampling, but is highly unrealistic for real
data. The synthetic data generated is based on sigmoidal changes

across pseudotime, which being nonlinear is already mildly
mis-specified with respect to our model. However, genes may
also exhibit transient behavior, in which they are briefly down- or
up-regulated before returning to their initial state. We sought to
quantify the robustness of MFA to transient gene expression by
performing extensive simulations. Specifically, we generated
synthetic datasets with 0%, 20%,..., 80% of genes exhibit-
ing transient expression, and inferred the pseudotimes using
DPT, MFA and Monocle 2. This was repeated 20 times for each
percentage of transient genes. The results can be seen in
Figure 2F. The performance of MFA remains competitive up to
around 40% of genes exhibiting transient expression, after which
DPT and Monocle 2 perform significantly better. However, MFA
is highly consistent with DPT and Monocle 2 on the two real
datasets examined (Figure 4 and Figure 5), implying the occurrence
of transient expression is limited enough in practice for the linearity
assumption to be feasible.
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Figure 2. Probabilistic inference of bifurcations in synthetic data. A Principal component analysis representation of a toy dataset for 300
cells and 60 genes, colored by the maximum a posteriori (MAP) pseudotime estimates. B Equivalent representation as (A) color by the MAP
branch estimate. C Equivalent representation showing whether each branch was assigned correctly. Due to the non-identifiability of mixture
components, we map component indices from true to inferred such that the agreement is maximized. D The inverse MAP estimates of y
largely identify which genes in the dataset exhibit different behavior across the two branches. E Comparison of different pseudotime inference
algorithms to the ground truth pseudotime on this particular dataset. The algorithms MFA, PC1 (principal component 1), Monocle and DPT
had correlations of 0.98, 0.98, 0.98, 0.99 (to 2 s.f.), respectively. F The correlation of inferred pseudotimes to ground truth depending on
the proportion of genes in the dataset exhibiting transient behavior. MFA shows competitive performance up to around 40% of genes begin
transient despite an inherent linear assumption.
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One notable difference between MFA and existing bifurcation
inference algorithms is in the pre-bifurcation branch assignment.
Algorithms, such as Wishbone and DPT, will assign a separate
branch to cells preceding the bifurcation. However, MFA will
typically assign pre-bifurcation cells to one of the two branches
modeled, with the other branch beginning at the bifurcation. A
bifurcation process consists of two temporal processes that have a
common origin but differing end points. Thus, due to nonidentifi-
ability, cells pre-bifurcation can equally be said to be on one branch
with the second beginning at the bifurcation point. Importantly, no
matter how we assign the branches under this regime, the observed
behavior of genes as a function of both pseudotime and branch
assignment will be consistent, which is necessary for biological
insight.

Wellcome Open Research 2017, 2:19 Last updated: 18 MAY 2017

Benefits of modeling zero-inflation

Single-cell RNA-seq data is known to exhibit dropout, where a
failure to reverse transcribe lowly-expressed mRNA results in
zero counts. We have created a variant of MFA that employs
an Empirical-Bayes like approach to account for such dropout
(see Methods). However, a zero count for a particular gene in a
particular cell may also be a true zero where no mRNA in the
cell is present.

We expect such true zeros to be useful for pseudotime inference.
Figure 3A shows a conceptual model where a gene is up-regulated
along pseudotime with two cells exhibiting dropout. The true
zeros (in blue) help pseudotime inference as the low-expression
implies they are at the beginning of pseudotime. However,
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Figure 3. Effects of modeling zero-inflation. A Zero counts observed in single-cell RNA-seq data may be attributed to either true zeros, where
no mRNA of a given gene is produced in a cell, or dropout, where there is a failure to reverse-transcribe the low levels of starting material.
Alternatively, a count is registered and the gene is amplified. In theory not accounting for dropouts will reduce the accuracy of pseudotime
inference the two red counts at pseudotimes of 4 and 6 would be ordered with the blue counts. However, in practice it is impossible to
distinguish between dropouts and true zeros. B The percentage of counts with zero expression across 50 replicates for each value of A
used in dropout simulations. C The Pearson correlation to true pseudotime using both the non-zero-inflated and zero-inflated variants of MFA
as a function of A used to generate the dataset. Accounting for zero-inflation shows marginal benefits if only a small percentage counts are
dropouts. However, for high dropout percentages (> 80%) the algorithm has to “impute” such a large percentage of the data that correlations

to the true pseudotime reduce to near-zero.
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the cells exhibiting dropout (in red) would potentially impede
pseudotime inference as MFA would order them with the true zero
cells at the beginning of the trajectory.

Accounting for such dropouts involves modifying the model so that
zero counts are likely if the underlying latent expression is low.
Therefore, the red dropout cells in Figure 3A would be effectively
imputed (via Gibbs updates) upwards towards the mean expression
line, increasing the accuracy of pseudotime inference. However, as
there is no way to distinguish between true zeros and dropouts, we
also “impute” the expression of the true zeros, which may itself
decrease the accuracy of pseudotime inference.

We sought to quantify the benefits of modeling zero inflation
against the drawbacks of losing the information contained in “true
zeros”. We created multiple synthetic datasets (Supplementary
File 1), while varying the dropout parameter A € {0.02, 0.05, 0.1,
I, 10, o}, where A = 0.02 has the largest levels of dropout, while
A = oo has no dropout, only true zeros. This was repeated 50 times
for each A, and the proportion of zero counts in each dataset can
be seen in Figure 3B. We subsequently re-inferred the pseudotimes
using MFA with both the zero-inflated and standard variants.

The resulting correlations with the true pseudotimes across the
range of A and MFA variants can be seen in Figure 3C. At very
high levels of dropout (A = 0.02, where > 80% of counts are zeros)
the zero-inflated variant performs considerably worse than the
non-zero-inflated variant, with virtually no correspondence to the
true pseudotimes compared to p = 0.75. We suggest this is due
to the inference procedure, effectively imputing such a large pro-
portion of the data that there are too many degrees of freedom to
effectively infer the trajectory. For the remaining values of A the
zero-inflated variant infers pseudotimes largely comparable to
those of the non-zero inflated version, with marginal improvements
in accuracy when there is moderate dropout (A = 1, 10). We con-
clude that incorporating zero-inflation into pseudotime inference is
sensible, but the variable quality across the (unknown in practice)
dropout range along with considerable additional computational
cost render it unnecessary for most practical purposes.

Application to single-cell RNA-seq data

We next applied our method to previously published single-cell
RNA-seq data of 4,423 hematopoietic progenitor/stem cells,
differentiating into myeloid and erythroid precursors'’.

To reduce the dataset to a computationally feasible size we used
only genes expressed in at least 20% of cells with a variance in
normalized expression greater than 5. We performed Gibbs sam-
pling for 4 x 10* iterations using default hyperparameter val-
ues, except for 7, = 7, = 1, and initialized the pseudotimes to the
second principal component of the data. The results can be seen
in Figures 4(A and B). The MAP pseudotime estimates clearly
recapitulates the trajectory in the data, as shown using a tSNE
representation from 3, while the MAP estimates of , detects the
branching structure in the data, consistent with previous methods.

We went on to analyze the genes suggested by the model to be
involved in the bifurcation process. Figure 4C shows the inverse
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posterior mean of Xy with larger values indicating more evidence
that gene g is involved in the bifurcation process. For illustration
purposes, we plot the expression of ELANE and CAR2, which the
model suggests will show differential behavior across the bifur-
cation, along with RPL26, which the model suggests will show
common behavior (Figure 4D).

We next sought to compare the performance of MFA to existing
bifurcation inference algorithms, in particular Wishbone, DPT and
Monocle (v2), along with the second principal component of the
data (PC2), which we noted from exploratory analyses was highly
correlated with the existing Wishbone values. We sub-sampled
down to 1,000 cells for Monocle comparisons for computational
convenience and used the previously published results for Wish-
bone (from 3). The root cell for DPT was selected as the cell with
the minimum value for the second principal component and simi-
larly the root state for Monocle was chosen such that it contained
that cell. Otherwise, algorithms were run with default parameters.

The comparison of the inferred pseudotimes with that MFA can be
seen in Figure 4E. There is high correlations with PC2 (p = 0.54),
Wishbone (p = 0.83), and DPT (p = 0.78). However, there is
virtually no correlation with Monocle (p = 0.01), though as this low
correlation only occurs with Monocle we assume it is not an issue
with MFA. We also sought to compare branch allocations across
the algorithms, which is difficult due to the non-identifiability
of the statistical models involved. Figure 4F shows a tSNE rep-
resentation of the cells colored by branch allocation for each of
Wishbone, Monocle and DPT. We see that MFA is largely consist-
ent with Wishbone and DPT, detecting a bifurcation at the “pinch”
in the tSNE plot, but as with the pseudotimes there is barely any
correspondence in branch allocations with Monocle (which, as
of version 2, does not allow pre-specification of the number of
branches to model).

Application to single-cell mass-cytometry data

We next applied MFA to single-cell mass cytometry data, track-
ing the differentiation of 22,850 monocytes and erythrocytes from
hematopoietic stem and progenitor cells across 12 markers as
published in 14 and previously analyzed in 3. For computational
convenience with all algorithms, we sub-sampled the data down
to 2,000 randomly chosen cells, with the exception of Monocle,
which we subsequently sub-sampled further down to 1,000 cells.
We found that due to the small number of proteins measured there
was too much freedom for the MFA model to infer mixtures using
the default parameter settings. We therefore had to encourage large
levels of similarity across the two branches by setting a,= 5% 103
and §,= 1.

The results can be seen in Figure 5. Figure 5A shows a tSNE rep-
resentation (as published in 3) showing the inferred MAP pseudo-
times correctly following the left-right trajectory, while Figure 5B
correctly shows the MAP y values identifying a bifurcation at the
“pinch” in the plot.

We subsequently compared the inferred pseudotimes and
branching to those found using the alternative algorithms. We
found good correspondence to all other methods (Figure 5C),
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Figure 4. Inference of bifurcations in scRNA-seq data of 4,423 hematopoietic progenitor/stem cells differentiating into myeloid and
erythroid precursors®. A tSNE representation colored by the maximum a posteriori (MAP) pseudotime. B Equivalent plot as A colored by
MAP v (branch assignment). C Inverse map y showing both the 20 largest and 20 smallest values indicating which genes do and do not show
differential behavior across the bifurcation. D tSNE representation of the dataset colored by gene expression. Both ELANE and CAR2 were
predicted by the inverse y values to show differing expression across the branches, while RPL26 was predicted to show similar expression.
E Scatter plots of pseudotime values compared to those inferred by PC2, Wishbone, Monocle, and DPT. These had Pearson correlations of
0.54, 0.83, 0.01, and 0.78, respectively. F tSNE representations of the dataset colored by branch allocation of alternative algorithms shows
good agreement with Wishbone and DPT.
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Figure 5. Inference of bifurcations in single-cell mass cytometry data of a subsample of 2,000 hematopoietic progenitor/stem
cells differentiating into monocyte and erythrocyte progenitors®. A A tSNE representation colored by the maximum a posteriori (MAP)
pseudotime. B Equivalent plot as A colored by MAP y(branch assignment). C Scatter plots of MFA pseudotime compared to PC2, Wishbone,
Monocle, and DPT, with Pearson correlations of 0.84, 0.86, 0.80 and 0.69 respectively. D tSNE representation colored by branch assignment
of Wishbone, Monocle, and DPT. As of version 2, Monocle does not allow for the number of branches to be selected a priori and typically
returns a large number. For the convenience of visualization we therefore only display the 30% most frequent states and group the remaining
infrequent ones into “Other”. The figures suggest a good agreement of branch assignment of MFA with Wishbone and DPT, and moderate
agreement with Monocle.
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with Pearson correlations of 0.84, 0.86, 0.80 and 0.69 for PC2,
Wishbone, Monocle, and DPT, respectively. We further com-
pared the branch assignment of MFA to those of the alternative
algorithms (Figure 5D). As of version 2, Monocle does not allow
for the number of branches to be selected a priori and typically
returns a large number. For the convenience of visualization we
therefore only display the 30% most frequent states and group
the remaining infrequent ones into “Other”. We find good agree-
ment between MFA and Monocle and DPT, and similarities with
the Monocle assignments (MFA branch 2 loosely corresponds to
Monocle branch 17).

Discussion

In this paper we have presented a Bayesian hierarchical mixture
of factor analyzers for inference of bifurcating trajectories in
single-cell data. Our model is unique compared to existing efforts
in that it (a) is fully generative, incorporating measurement noise
into inference, (b) jointly infers both the pseudotimes and branches
compared to post-hoc inference of branch detection, and (c) jointly
infers which genes are differentially regulated across the branches.
We also proposed an extension that accounts for the high levels of
zero-inflation present in single-cell RNA-seq data. We applied our
model to a range of synthetic and real datasets and demonstrated it
performs competitively with existing methods.

There is a natural trade-off in designing such models between
flexibility and practicality. The implicit assumption of MFA that
gene expression develops linearly across pseudotime allows for
fast Markov-Chain Monte Carlo sampling and joint inference of
branch structure. However, it is potentially highly mis-specified:
the predicted expression can become negative leading to erroneous
inference (see Supplementary File 1). A solution to this would be
to not explicitly assume a strongly parametric form of gene
expression and consider nonparametric methods. However, such
methods are often overly flexible, requiring either additional cap-
ture information to correctly infer pseudotimes' or hard-setting
the pseudotimes prior to inferring the branching structure'c.
As such there is a natural trade-off between the expressivity of
such models and being able to perform valid statistical inference
that fully incorporates parameter variation without additional
constraints or “tweaking”.

Supplementary material

Wellcome Open Research 2017, 2:19 Last updated: 18 MAY 2017

There are several extensions that can be applied to our model. While
the model performs well on large single cell RNA-seq datasets, it
could be scaled up further using Stochastic Variational Inference'’,
which due to the model’s conditionally conjugate structure could
be implemented without resorting to approximations. As mentioned
previously, one main weakness of the model is the unrealistic
assumption of linear changes in expression over pseudotime,
leading to severe model specification. One could therefore con-
sider alternative nonlinear functions, such as sigmoids (previously
used in 8), or nonparametric models such as Gaussian Process
Latent Variable Models (previously used in 15,18), with appropri-
ate structural constraints.
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doi:10.21956/wellcomeopenres.11959.r21991

v

Luca Pinello
Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA,
USA

Campbell and Yau present a probabilistic method called MFA to infer bifurcating trajectories and
differentially regulated genes across branches from single cell transcriptomic data.

The method is based on a Bayesian hierarchical mixture of factor analyzers. The authors also discuss an
extension of this method to deal with dropout events commonly observed in scRNA-seq datasets.
Although they claim that the model obtained with this procedure is less misspecified, the computational
requirements associated with it may be a burden, especially for very sparse gene expression matrices
and unnecessary for practical purposes.

MFA is evaluated on a synthetic dataset, scRNA-seq and mass cytometry data and compared with
existing methods, although limited to Wishbone, Monocle2 and Diffusion Pseudotime.

Overall, the manuscript is well written, the results clearly described and the source code provided.

It may be helpful to consider/clarify the following points to improve the manuscript:

1. The computational requirements of MFA are not discussed in depth and running times are not
reported. Please add a table comparing the execution times of the different methods tested using
the full datasets presented and not the down-sampled versions. If a method fails to run in
reasonable time, just report this fact (and if possible show the speed-up of MFA using
down-sampled datasets).

2. For different datasets, different values of (hyper)parameters are used but no clear guidelines are
provided to the user in how to set those values. Please explain the rationale and if possible clear
metrics that the users can use for tuning those parameters.

3. “PCA is applied to the data before inference and the principal component that best corresponds to
the trajectory based on the expression of known genes is used to initialize the pseudotimes”.
Please explain how to initialize the pseudo-time in absence of known genes.

4. | agree with Dr. Gitter about adding a short intro to factor analysis before jumping to equation 2.

5. Please describe (or better show with a synthetic dataset) how MFA performs when more than one
branching point is present. For example, using the synthetic dataset presented in Rizvi et al 2017
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Nat Biotech (see Figure 2).

6. The authors claim that explicitly modeling the dropout events doesn’t always justify the
computational cost. | think it may be worth to test this idea on real datasets, especially droplet
based (drop-seq, in-drop or 10x genomics) in which this problem is more pronounced. Good
candidate datasets to show how the method performs in those settings are presented in van Dijk et
al.m where their imputation strategy clearly improve pseudotime estimations or Zheng et al. 2016

Nat Comm.
7. Application to scRNA-seq:

1) What is the running time without down-sampling? How comparable are the results with or
without down-sampling?

2) Two genes (ELANE and CAR2) are presented to illustrate the bifurcation process, what other
genes are significant by this analysis? It may be worth to show in a sup table the ranking obtained
for each branch using MFA (are ELANE and CARZ2 on top?).

3) “The comparison of the inferred pseudotimes with that MFA can be seen in Figure 4E. There is
high correlations with PC2 (p = 0.54), Wishbone (p = 0.83), and DPT (p = 0.78).” Please describe
more explicitly how the correlation is calculated taking into account the fact that different
approaches may have different number of branches (and that some genes may be relevant only in
a sub-branch).

8. Application to mass-cytometry data:

1) Please report the results and running time using the whole dataset. If a method fails to runin a
reasonable time exclude it from the comparison.

2) Custom parameters used (see point 2)

9. In the plot where multiple cells are displayed as circles, it may be worth to remove the black border
to improve the perception of the density (for example Figure 2e or Figure 4e).
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Pe'er D: MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell
RNA-sequencing data. BioRxiv. 2017.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes
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If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
Referee Expertise: Single cell (epi)genomics, genome editing (see more on www.pinellolab.org)

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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doi:10.21956/wellcomeopenres.11959.r21016
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Anthony Gitter
Department of Biostatistics and Medical Informatics, University of Wisconsin—-Madison, Madison, WI, USA

This manuscript presents Mixtures of Factor Analysers (MFA), a hierarchical Bayesian model for studying
the branching structure in single-cell RNA-seq and mass cytometry data. Single-cell RNA-seq can
provide snapshots of cells progressing through dynamic biological processes, many of which exhibit
branching structure in which the expression levels of one subset of cells diverges from the others. These
types of dynamic behaviors are encountered not only in differentiation but also in stimulus response and
other processes, which has sparked a need to computationally model the overall branching structure of
the process, how cells progress through the process, and how gene expression levels of some genes
differ along the branches. These and related inference problems are what MFA aims to solve.

MFA is a generative probabilistic model that uses factor analysis to model the expression properties of
branches in a single-cell RNA-seq dataset. A prior is used to encourage similar factor loading gradients in
each branch. An optional extension models the dropout phenomenon in which technical artifacts can
cause non-zero mMRNA abundances to be reported as zeros. MFA is compared with several popular
existing algorithms that are not generative probabilistic models: Wishbone, Diffusion Pseudotime, and
Monocle 2. These comparisons are conducted in a fair manner on simulated and real data. The
assessment of the benchmarking is balanced, as is the overall conclusion that in most cases MFA is
competitive with these existing approaches even if there is not evidence that it definitively outperforms
them by some quantitative metric.

The balanced discussion is a strength of the manuscript overall. Figures 2E and 3C both show the
scenarios in which MFA's performance degrades with respect to dropout levels or the fraction of transient
genes. The authors conclude that in many practical analyses the extension for incorporating zero-inflation
is not worth the added computational cost. They also present the limitations of their linear model and offer
suggestions for improving the scalability of the inference and the linearity assumption.

The open source software is another asset and follows the best practices for scientific code. The code is
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available in GitHub, and an archival version has been deposited in Zenodo. The Zenodo version's title
states that it is the "Bioconductor-ready version", and providing the mfa R package through Bioconductor
would indeed further enhance its utility.

Overall, the manuscript is easy to read, and the model is technically sound and well-motivated. | have
only minor comments that may improve the accessibility to a broader audience and help clarify some
points.

Minor comments:

* The Methods section assumes that the reader is already familiar with factor analysis, as this technique is
not explained. It would be helpful to introduce the approach and the meaning of ¢ and k in this biological
context.

* There has been other related work on branching trajectories in single-cell datasets. A few examples
include:

® SLICER (DOI:10.1186/513059-016-0975-3) '

® TSCAN (DOI:10.1093/nar/gkw430) 2

® Topslam (DOI:10.1101/057778) °

® \Mpath (DOI:10.1038/ncomms11988) *
Very briefly discussing some of these methods and expanding the discussion of how GPfates (reference
16, DOI:10.1126/sciimmunol.aal2192)° relates to MFA would help readers understand MFA's advantages
and disadvantages. | do not think it is necessary to benchmark against additional algorithms.

* The parameter B, the number of branches, appears to be user-defined, but this is not explicitly stated in
the text. It would help users to offer guidance on selecting this crucial parameter.

* The sensitivity to the hyperparameter values is not assessed. It is not clear what model behavior was
observed when modeling the mass cytometry dataset that led to the decision to use non-default values for
alpha_x and beta_x and how users should make those decisions on new datasets.

*  understand the mathematical invariance presented in Figure 1, but the biological argument is not
intuitive. In the bifurcation 2 -> 1,3 states 1 and 3 have the same expression level, which would suggest
that this single gene does not exhibit branching behavior. Rather, it switches from a high to low state in all
cases.

* The simulation with 300 bifurcating cells and 60 genes may have been too simple. Even the first
principal component of the data recovers the true pseudotimes well. All of the methods perform extremely
well, making it difficult to assess their relative performances.

* | expected that the red cells along the lower curve in Figure 2B would be labeled as False in Figure 2C.
Visually, the branch point appears to occur around 15 on the PC1 axis.

* Running Monocle 2 on a smaller set of sub-sampled cells than the other methods could put it at a
disadvantage. The scalability of MFA is not discussed or related to the runtimes of the other methods.
Could MFA run on the full mass cytometry dataset in a reasonable amount of time or is sub-sampling
required?

* There are a few potential typos:
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Abstract: "apply or model" -> "apply our model"

Abstract: "context practical" -> "context of practical"

Supplement page 2: The identity matrix symbol in the line of Equation 1 for k is not correct
Supplement page 4: Presumably the p(dropout in gene g) equation in the text should also have a
1/N term to match Equation 18

Supplement page 7: "conduisive" -> "conducive"
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