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Abstract 

Sequential lineups are one of the most commonly used procedures in police departments across the USA. Although 
this procedure has been the target of much experimental research, there has been comparatively little work formally 
modeling it, especially the sequential nature of the judgments that it elicits. There are also important gaps in our 
understanding of how informative different types of judgments can be (binary responses vs. confidence ratings), and 
the severity of the inferential risks incurred when relying on different aggregate data structures. Couched in a signal 
detection theory (SDT) framework, the present work directly addresses these issues through a reanalysis of previously 
published data alongside model simulations. Model comparison results show that SDT modeling can provide elegant 
characterizations of extant data, despite some discrepancies across studies, which we attempt to address. Additional 
analyses compare the merits of sequential lineups (with and without a stopping rule) relative to showups and deline-
ate the conditions in which distinct modeling approaches can be informative. Finally, we identify critical issues with 
the removal of the stopping rule from sequential lineups as an approach to capture within-subject differences and 
sidestep the risk of aggregation biases.
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Since its formation in 1992, the Innocence Project (2021) 
has exonerated 232 people wrongfully convicted of a 
crime. Out of these successful exonerations, 63% involved 
mistaken eyewitness identifications from a lineup pro-
cedure. Given these numbers, it is important to under-
stand the factors that influence mistaken identifications 
in lineups, and evaluate the benefits and shortcomings 
that are associated with different procedures. Research 
into the causes of mistaken identifications has a long his-
tory in social and cognitive psychology (for a review, see 
Gronlund & Benjamin, 2018). However, it is only within 
the past decade or so that researchers began to make 
use of some of the formal modeling approaches available 
in their toolboxes (e.g., Goodsell et  al., 2010; Palmer & 
Brewer, 2012; Wetmore et al., 2017; Wixted et al., 2018).

The present work extends these endeavors to the case 
of sequential lineups, a procedure that has been the sub-
ject of a large number of empirical investigations (for 

a review of 72 such tests, see Steblay et  al., 2011b), but 
comparatively few theoretical, model-driven ones (e.g., 
Carlson et al., 2016; Dunn et al., 2010; Horry et al. 2012; 
Kaesler et  al., 2020; Palmer & Brewer, 2012; Wetmore 
et  al., 2017; Wilson et  al., 2019). The main motivation 
behind the present work is the realization that previ-
ous model-based analyses of the sequential lineups have 
failed to preserve the sequential nature of the judgments 
produced at level of the data (e.g., Kaesler et  al., 2020; 
Wilson et al., 2019) or the models themselves (e.g., Carl-
son et  al., 2016; Horry et  al., 2012). As it will become 
clear below, these issues are not inconsequential, as they 
can severely distort results.

The goal of the present work is to address these 
issues, bridge a number of existing knowledge gaps, and 
raise new concerns. This general goal will be achieved 
by applying a large family of models based on Signal 
Detection Theory (SDT) to the large-scale sequential 
lineup data reported by Wilson et  al. (2019) and Dunn 
et  al. (2022). These models will allow us to test a num-
ber of hypotheses regarding people’s discriminabil-
ity and response bias throughout the sequential lineup 
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procedure. They will also provide us with the necessary 
backdrop for addressing a number of issues, from the 
general ability to characterize sequential lineup data with 
SDT, to the inferential risks associated with the use of 
aggregate data.

The remainder of this manuscript is organized as fol-
lows: First, we will provide a brief introduction to sequen-
tial lineups and discuss how sequential lineup data have 
been modeled using SDT up to this point. This introduc-
tion will be followed by a reanalysis of Wilson et al.’s and 
Dunn et al.’s data, along with discussions on the different 
issues that arise in the context of each study. Altogether, 
our model analyses showcase the benefits of modeling 
sequential lineups with SDT—but also show how chal-
lenging the characterization of lineup data can be.

Sequential lineups
Experiments simulating lineup identifications follow a 
fairly standard format. Participants are shown a mock 
crime (usually in the form of a video) and are then pre-
sented a photograph array of (typically) six faces. The 
arrays either contain the face of the perpetrator (guilty 
suspect) of the mock crime or the perpetrator is replaced 
by an innocent lure. These arrays are referred to as tar-
get-present and target-absent lineups, respectively. When 
presented with either a target-present or a target-absent 
lineup, participants can produce the following response 
outcomes:1

•	 Target-Present Lineups:

•	Outcome TP1: Correct identification of the guilty 
suspect (Hit),

•	Outcome TP2: Incorrect identification of a lure 
(False Alarm),

•	Outcome TP3: Incorrect rejection of the lineup 
(Miss),

•	 Target-Absent Lineups:

•	Outcome TA1: Incorrect identification of a known 
lure (False Alarm),

•	Outcome TA2: Incorrect identification of a lure 
standing for the designated innocent suspect (False 
Alarm),

•	Outcome TA3: Correct rejection of the lineup 
(Correct Rejection).

By comparing these outcomes across different proce-
dures and/or conditions, researchers are able to draw 
conclusions as to how various factors (such as lineup 
presentation, instructions) may affect identification 
performance.

Sequential lineups are among the most commonly 
used eyewitness identification procedures. In a sequen-
tial lineup, faces are presented one at a time to an eye-
witness, with each face being subjected to a binary “yes” 
or “no” judgment at the time of their presentation. If no 
face is recognized by the time the last face is shown (i.e., 
the witness responded “no” to all faces), the lineup is said 
to be rejected. In the USA, for our purposes, a sequen-
tial lineup is typically terminated once a “yes” decision 
is made on a single face. This stopping rule, along with 
the impossibility of revising previous “no” judgments, 
can be expected to affect people’s reluctance to make a 
positive identification at any given point. But this reluc-
tance might change across the sequence, perhaps due to 
the prospect that no identification might be made by the 
time the sequence ends (see Baumann et al., 2020; Lee & 
Courey, 2021). This possibility is corroborated by numer-
ous eyewitness identification studies reporting sequence 
position effects (Goodsell et  al., 2010; Gronlund et  al., 
2009; Meisters et al., 2018; Neuschatz et al., 2016).

The distinctive characteristics of sequential lineups 
(e.g., single-face presentation, stopping rule) have moti-
vated researchers to compare them with other proce-
dures, such as simultaneous lineups (in which all faces are 
shown at once) or the showup procedure (where only one 
face is presented in the entire procedure). Lindsay and 
Wells (1985) were among the first to directly compare 
the performance of simultaneous and sequential lineups, 
concluding that sequential lineups provided better pro-
tection against lure (innocent suspect) identifications in 
target-absent lineups than simultaneous lineups did, with 
little effect on guilty suspect identifications in target-
present lineups. Meta-analyses by Steblay et  al. (2001) 
and Steblay et  al. (2011b) reported that sequential line-
ups consistently produced similar correct identifications 
and lower false identifications when compared to simul-
taneous lineups. More recently, however, the superior-
ity of sequential lineups over simultaneous lineups has 
been called into question, with researchers claiming that 
sequential lineups do not induce more accurate identifi-
cations, just less identifications overall (for a review, see 
Gronlund et al., 2015). A parallel discussion has focused 
on the comparison between different kinds of sequential 
lineup procedures and the impact of enforcing multiple 
viewing laps before a decision is made (e.g., Steblay et al., 
2011a; Horry et  al., 2015; Seale-Carlisle et  al., 2019). 
Regardless of the claims being made in these debates, 
one thing is clear: The comparison between different 

1  Some studies create target-absent lineups by replacing the suspect with a 
specific “designated innocent suspect” chosen to be a close match to the per-
petrator, but we will ignore this nuance for now (i.e., the distinction between 
outcomes TA1 and TA2 is not made), for the sake of simplicity.
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eyewitness identification procedures requires a formal 
characterization of the mnemonic and decision-making 
processes taking place in each of them. But if these for-
mal characterizations are to inform practices in the US 
justice system and beyond, then it is necessary to evalu-
ate their theoretical and empirical merits in a compre-
hensive manner.

Models of sequential lineup identifications
Recent modeling efforts in the field of eyewitness iden-
tification have been couched on signal detection theory 
(SDT; Green & Swets, 1966; Kellen & Klauer, 2018; Mac-
millan & Creelman, 2005). According to SDT, the clas-
sification of different classes of stimuli (e.g., faces) can 
be characterized in terms of a comparison between the 
latent strength values of the stimuli and a response cri-
terion. In the context of recognition memory—and eye-
witness identification—when a stimulus is presented 
to a decision-maker, she compares the latent memory 
strength (also referred to as familiarity) of that stimu-
lus with a previously established response criterion τ0 . 
If the memory strength is greater than the criterion, an 
affirmative response is made, such as “old” or “yes.” 
If it is below the criterion, then a negative response 
such as “new” or “no” is produced. The value taken by 
the response criterion indicates how conservative/lib-
eral the decision-maker is, with larger values indicating 
greater conservatism (i.e., reduced willingness to respond 
“yes”). Different classes of stimuli (targets versus lures) 
are described in terms of different latent strength distri-
butions. The top panel of Fig. 1 provides an illustration, 
in which the latent strength distributions are assumed 
to be Gaussian. The ability to discriminate between two 
classes of stimuli is represented by their relative distance 
(i.e., their degree of overlap). The greater the distance 
(i.e., the smaller the overlap), the more discriminable the 
two stimulus classes are. Beyond binary (i.e., yes/no; 
old/new) responses, SDT can characterize responses 
on a confidence rating scale (e.g., ranging from “very 
sure no” to “very sure yes”) by introducing a set 
of ordered confidence criteria, such as the τ−1 ≤ τ0 ≤ τ1 
criteria illustrated in Fig. 1. Varying the binary criterion 
τ0 (or taking the confidence criteria as its proxies) leads 
to joint changes in the hit and false alarm rates, a func-
tional relationship commonly known as a Receiver Oper-
ating Characteristic (ROC) function. The bottom panel of 
Fig. 1 provides an example of a ROC function.

One of the key benefits of modeling data with SDT 
is the fact that it provides us with a principled way to 
test a number of substantive hypotheses. More specifi-
cally, it allows us to test whether differences in observed 
responses can be attributed to (1) differences in discrimi-
nability, (2) shifts in the response criterion, (3) or both. 

This ability, which cannot be achieved by means of naïve 
summary statistics (see Rotello et al., 2015), has been put 
to use in eyewitness identification research (Dunn et al., 
2022; Kaesler et  al., 2020; Wilson et  al., 2019; Wixted 
et al., 2017). Many of these SDT model implementations 
have focused on testing a prominent hypothesis in eye-
witness research known as the diagnostic feature detec-
tion (DFD) hypothesis (Wixted & Mickes, 2014).

The DFD hypothesis argues that participants can use 
the features of the different faces in the lineup to learn 
how to better discriminate between targets and lures. In 
SDT terms, this learning process is expected to reduce 
the overlap between the latent strength distributions 

Fig. 1  Top panel: Illustration of the Gaussian SDT model. The vertical 
lines represent the response criterion τ0 and the confidence criteria 
τ−1 and τ1 . Bottom panel: Example of a ROC function for the case of 
single-item recognition
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for these stimulus classes (Wixted & Mickes, 2014). In 
the case of simultaneous lineups, witnesses view and 
directly compare multiple faces before making a judg-
ment. This situation allows them to identify and ignore 
the features that are similar among all the faces (e.g., 
brown hair, if all lineup members have it) and focus in on 
unique, or diagnostic, features that can provide the most 
aid in making a correct decision (e.g., the specific shape 
of the perpetrator’s eyes). This opportunity to learn how 
to better discriminate is partially compromised in the 
case of sequential lineups, given that witnesses only get 
to see one face at a time. At most, the witness can learn 
about the diagnosticity of features as the lineup sequence 
unfolds. However, there is the risk that the target is 
missed when presented earlier on, as well as the risk that 
the witness will incorrectly identify someone before hav-
ing the opportunity to encounter the target. There is also 
the issue that memory discriminability tends to dimin-
ish along a sequence of judgments (e.g., Criss et al., 2011; 
Osth et  al., 2018), a phenomenon that, if present in the 
context of sequential lineups, might counteract the 
improvements predicted by the DFD hypothesis.

Because of the different learning opportunities that 
alternative procedures provide, the DFD hypothesis 
expects performance in simultaneous lineups to be bet-
ter than in sequential lineups, as well as showups. This 
prediction has become the subject of much empirical dis-
cussion recently (e.g., Carlson et al., 2019; Carlson et al., 
2021; Colloff & Wixted, 2020; Kaesler et al., 2020; Smith 
et  al., 2017; Wetmore et  al., 2017; Wixted & Mickes, 
2015). In the case of sequential lineups, the DFD hypoth-
esis expects discriminability to increase across sequence 
positions. This prediction was recently tested by Wilson 
et  al. (2019), who compared discriminability in the first 
sequence position with all the other positions. Their 
results were consistent with the predictions of the DFD 
hypothesis. A more recent experiment reported by Dunn 
et al. (2022) also produced consistent results.

Beyond differences in discriminability
Although the kind of learning postulated by the DFD 
hypothesis is expected to be somewhat limited in the 
case of sequential lineups, other kinds of learning are 
nevertheless possible. For instance, witnesses might 
learn about their ability to discriminate between targets 
and lures and use this knowledge to adjust the response 
criteria accordingly (e.g., Brown & Steyvers, 2005; Brown 

et  al., 2007; Osth & Dennis, 2015; Stretch & Wixted, 
1998). In a seminal paper, Treisman and Williams (1984) 
showed how a number of sequential dependencies found 
in people’s judgments can be attributed to trial-by-trial 
shifts in response criteria (see also Kac, 1962; Vickers & 
Lee, 1998). These shifts are governed by a learning pro-
cess that is sensitive to the latent strengths that were 
recently encountered, as well as long-term goals, such as 
maintaining a response criterion that imposes a certain 
amount of conservatism (e.g., Kantner & Lindsay, 2012, 
2014), or having a criterion that tracks a changing envi-
ronment (e.g., Baumann et al., 2020; Lee & Courey, 2021).

More recently, Turner et  al. (2011) showed how indi-
viduals can gradually learn about different latent strength 
distributions and use this continuously updated knowl-
edge to maintain a certain level of response bias. Their 
account is particularly relevant in the case of sequential 
lineup procedures, given the small number of judgments 
that witnesses can make, and the fact that a priori, the 
witness is uncertain of how difficult it will be to distin-
guish the target from the lures (e.g., how similar they are 
to the target). According to Turner et  al., participants 
begin by relying on their prior beliefs about how familiar 
targets and lures are expected to be. These prior beliefs 
can be easily constructed by the participant/eyewitness 
using a handful of sampled exemplars (for an overview, 
see Chater et al., 2020).

To better understand the learning processes proposed 
by Turner et  al. (2011), let us consider the toy example 
illustrated in Fig.  2. The prior belief representations for 
targets and lures, illustrated in the top panel of Fig.  2, 
are updated every time an item is judged. More specifi-
cally, the latent strength of the just-judged item is used 
to update the target or the lure distribution, depending 
on how the item was judged (i.e., old or new). Based on 
previous modeling work, we expect the expected latent 
strength of targets to be substantially greater than that 
of lures (e.g., Wixted et  al., 2018). One immediate con-
sequence of this fact is that, among the rejected items, 
targets will generally have greater latent strengths than 
lures (for a formal proof, see Kellen & Klauer, 2014). If 
we take into consideration the aforementioned studies 
showing how response criteria are a function of people’s 
beliefs regarding targets and lures, then it follows that 
the response criterion is expected to increase after the 

(See figure on next page.)
Fig. 2  Top panel: The believed distribution of latent strength values for targets (darker gray) and lures (lighter gray) up to the point in which the 
target (solid circle) or a lure (solid square) are encountered. Note that both latent strengths are below the response criterion (solid black line), which 
is set at the point of equal likelihood (i.e., where both distributions intersect). Middle panel: The updated believed distributions of latent strength 
values if the lure was encountered and rejected. Bottom panel: The updated believed distributions of latent strength values if the target was 
encountered and rejected instead. In both the middle and bottom panels, the prior response criterion (dotted red line) is given for reference
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Fig. 2  (See legend on previous page.)
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rejection of the target. This shift is illustrated in the panels 
of Fig. 2:2 

In the top panel of Fig. 2, the response criterion is set 
to 0.65, the value at which the two distributions intersect 
(likelihood ratio is 1). Now let us consider two scenar-
ios: One in which a lure is presented (solid square) and 
another where the target is presented (solid circle). Note 
that both items are below the response criterion and 
therefore will be rejected. The middle panel illustrates an 
updated lure distribution (target distribution remains the 
same) for the scenario in which the lure was rejected. As 
you can see, the change in the criterion is now set at 0.69, 
a barely noticeable difference. The bottom panel, which 
illustrates the updated lure distribution when the target 
was rejected instead, shows a much more considerable 
shift rightwards: The criterion is now 0.81, the new value 
at which both distributions intersect.3 Effects of this kind 
are expected to be small in typical recognition memory 
experiments, given that participants engage in many doz-
ens if not hundreds of test trials (for a recent empirical 
investigation, see Malmberg & Annis, 2012). The situ-
ation is quite different in most sequential lineups, with 
witnesses encountering up to six faces at most.

The possibility that different kinds of learning are tak-
ing place is something that should not be overlooked 
or downplayed. When specifying alternative models, 
researchers should try to develop a family of candidate 
models that covers all the different possibilities: are all, 
some, or none of these kinds of learning taking place? 
Failing to consider these different possibilities can lead 
to distorted results. This issue was recently raised by 
van den Berg et al. (2014) in the domain of visual work-
ing memory. They showed that the evidence for certain 
hypotheses (e.g., is the number of remembered items 
fixed?) can depend on how exactly the models being used 
happen to address other substantive issues (e.g., is work-
ing memory precision quantized?). In the case of sequen-
tial lineups, it is possible that the evidence for the DFD 
hypothesis that was originally reported by Wilson et  al. 
(2019) is dependent on the constraints that they imposed 
at the level of response criteria. In order to address this 
issue, one needs to consider a large family of SDT models 
that includes a factorial combination of hypotheses con-
cerning discriminability and response criteria.

Conditioning in sequential lineup data
The unique structure of sequential lineup data introduces 
interesting challenges in its comparison with other pro-
cedures and in the testing of hypotheses like the DFD. 
Typically, one could determine whether or not there are 
differences in discriminability between procedures by 
comparing the ROC functions constructed from the eye-
witnesses’ confidence rating judgments. A ROC func-
tion plots the relationship between false alarms (usually 
calculated by dividing the filler identification rate by the 
number of faces in the lineup) and hits in target-absent 
and target-present lineups, respectively. But as shown 
by Rotello and Chen (2016), the sequential lineup has 
unique features that preclude such an approach. In the 
case of single-stimulus recognition like a showup or 
simultaneous lineup, where only one final decision is 
required, changes in response criterion τ0 (e.g., becom-
ing more conservative or liberal) affect the expected pair 
of hit and false alarm rates. All possible pairs of values 
define a single monotonic ROC function (see the bottom 
panel of Fig. 1). This simple relationship no longer holds 
in the case of a sequential lineup procedure: A more lib-
eral criterion will likely lead to a “yes” response at one 
of the earlier sequence positions, often before the target 
is encountered. In contrast, a more conservative crite-
rion is likely to lead to no face or item being accepted 
at all. Unlike the ROC functions obtained in the case of 
single-item recognition, changes in response criteria in a 
sequential procedure yield a non-monotonic ROC func-
tion, as shown in the left panel of Fig. 3 (compare it with 
the bottom panel of Fig. 1). Moreover, as shown by Wil-
son et  al. (2019), the confidence ratings associated with 
“yes” responses at different target sequence positions 
yield a family of ROC functions (see the right panel of 
Fig. 3).

A key insight stemming from Rotello and Chen’s (2016) 
work is that one should not overlook the peculiarities of 
sequential lineup data. This point was furthered by Wil-
son et al. (2019) who showed that the confidence ratings 
obtained with such procedures yield a family of ROC 
functions when disaggregated by target position. These 
insights tell us that it is unwise to aggregate confidence 
ratings across sequence positions, especially when com-
paring ROCs obtained with different procedures. Doing 
so not only leads to a distorted representation of discrim-
inability (e.g., an underestimation of the ROCs associated 
with earlier sequence positions), but also overlooks the 
existing interplay between the different ROCs. After all, 
the overall response frequencies obtained across the dif-
ferent sequence positions are also a function of discrimi-
nability and response criteria as established by the SDT 
model.

3  Because these distributions represent beliefs about the latent strength dis-
tributions, the increase in overlap caused by the rejection of the target does 
not mean that discriminability is actually reduced. Only that individuals 
believe that their discriminability is lower than it actually is.

2  In this toy example, the density estimates were based on 25 samples each 
along with a rectangular kernel. These samples were taken from Gaussian dis-
tributions with parameters µT = 1 , µL = 0 , and σ 2

T = σ 2
L = 1 . The bandwidth 

value used was 0.75 and the update weight given to the updating item was .40 
(for details, see Turner et al., 2011).
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Unfortunately, the important lessons found in Rotello 
and Chen (2016) are not entirely reflected in some of the 
more recent attempts to model sequential lineups. Even 
though researchers have begun to establish models that 
explicitly capture the peculiarities of sequential lineups, 
the kinds of data structures that they often rely on still 
obfuscate them (e.g., Kaesler et  al., 2020; Wilson et  al., 
2019). To see this more clearly, let us consider a sequen-
tial lineup procedure in which sequences of I faces are 
presented. Assuming that lure faces are exchangeable, 
there are I + 1 possible sequences: namely the I target-
present lineup sequences in which the target takes posi-
tion i, plus one target-absent lineup sequence. If we only 
consider binary responses, the data from this procedure 
are comprised of I + 1 “category systems” with a total of 
(I + 1)× I degrees of freedom (i.e., non-redundant cate-
gories). Consider the data from Experiments 1 and 2 from 
Wilson et al. (2019), reported together in Table 1: Their 
lineup procedure, with sequences of I = 6 faces, yields a 
7× 7 data matrix (each of the seven columns correspond-
ing to a category system) with 7× 6 = 42 degrees of free-
dom. The frequencies reported in each column of Table 1 
correspond to responses conditioned on lineup type and 
sequence. If we decide to unpack “yes” responses in 
terms of K levels of confidence, then each category system 
is comprised of (I + 1)× (I × K + 1) categories, yielding 
a total of (I + 1)× I × K  degrees of freedom.

Wilson et  al. (2019) relied on a different condition-
ing when structuring their data. Specifically, they con-
ditioned on lineup type and sequence position. This 
means that for each position i, we have a category sys-
tem for each type of sequential lineup. In the case of tar-
get-present lineups, we have three categories: 1) “yes” 

judgments to targets, 2) “yes” judgments to lures, and 
3) “no” judgments. In the case of target-absent lineups, 
we have “yes” and “no” responses to lures. Under this 
conditioning, binary “yes”/“no” judgments yield I × 2 
category systems with a total of I × (2+ 1) degrees of 
freedom. If we unpack “yes” judgments into K levels of 
confidence, we end up with a total of I × (2+ 1)× K  
degrees of freedom. In the case of Wilson et  al. (2019), 
partitioning “yes” responses into five levels of confi-
dence resulted in a total of 6× (2+ 1)× 5 = 90 degrees 
of freedom (see their Table 4). Note how this number is 
less than half of the 210 degrees of freedom that would be 
obtained if one conditioned on lineup type  and sequence 
instead. This reduction in degrees of freedom indicates 
that some information is being lost. For instance, note 
that “yes” judgments to lures, conditional on position i 
in a target-present lineup, aggregate responses across all 
target-present lineups in which the target was present in 
positions j  = i . This aggregation compromises our ability 
to observe any differences between alternative sequences. 
Moreover, it forces the data to include the same single 
responses multiple times across the different category 
systems, which violates their (functional) independence.4

Confidence ratings
Confidence ratings play an important role in SDT mod-
eling (Green & Swets, 1966; Kellen & Klauer, 2018; Mac-
millan & Creelman, 2005), especially in its application 
to recognition memory (for recent reviews, see Rotello 

Fig. 3  Example of ROCs obtained in a sequential lineup procedure. Left panel: The predicted ROC function when varying response criterion τ0 and 
aggregating across sequence positions. Right panel: Confidence rating ROCs obtained for each sequence position

4  For example, the frequencies of “yes” judgments for lures in positions 3 and 
5 in target-present lineups include the “yes” judgments to lures in sequences 
where the target was presented in positions 1, 2, 4, and 6.
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2018, Wixted, 2020). They also play an increasingly 
vaunted role in the eyewitness literature (Wixted & Wells, 
2017). The ROC functions that can be produced from 
confidence ratings have allowed recognition memory 
researchers to obtain more “refined” SDT characteriza-
tions (i.e., all model parameters are estimated) that would 
not be possible on the basis of binary judgments unless 
certain experimental manipulations and selective influ-
ence assumptions were introduced (see Bröder & Schütz, 
2009; Dube & Rotello, 2012). Given that the application 
of SDT modeling in the context of eyewitness identifica-
tion is largely informed by its impressive track record, 
especially in the domain of recognition memory, it is not 
surprising to see a similar reliance on confidence ratings 
(e.g., Gronlund, et al., 2012; Gronlund et al., 2014; Wet-
more et  al., 2017; Wixted & Mickes, 2012; 2018). How-
ever, it is important to keep in mind that the challenges 
faced in these two domains are not quite the same—the 
data obtained from binary judgments in a sequential 
lineup are much richer. To see this, simply note that the 
(disaggregated) data coming from binary judgments in a 
sequential lineup, such as the one conducted by Wilson 

et  al. (2019; see Table  1), yield twenty-one times more 
degrees of freedom (42 vs. 2).

These differences suggest that confidence ratings might 
be unnecessary when it comes to modeling sequential 
lineups with SDT.5 The possibility of a “streamlined” 
SDT application based on binary judgments is interest-
ing in the sense that it could potentially alleviate some of 
the misfits that have been reported so far (e.g., Kaesler 
et  al., 2020, Wilson et  al., 2019). After all, the sequen-
tial lineup data being modeled arise from the aggrega-
tion of responses from multiple eyewitnesses, each with 
their own discriminability and response criteria. It is 
well known that the aggregation of said responses can 
introduce distortions that might not be well handled by 
the parametric SDT model being used (e.g., Kellen & 

Table 1  Choice frequencies from Experiments 1 and 2 of Wilson et al. (2019) and Dunn et al. (2022)

The frequencies in bold font correspond to the correct responses. The frequencies in italic correspond to acceptances of a lure after the rejection of the target. The 
underlined frequencies (when expanded into confidence levels) are those used in the plotting of receiver operating characteristic (ROC) functions (see the right panel 
of Fig. 3). Please note that the frequencies from Wilson et al. (2019) exclude 153 participants with missing data

Binary “yes”/“no” Judgments

Wilson et al. (2019)

Target position

Response 1 2 3 4 5 6 Absent

“yes” to Position 1 579 137 127 123 132 125 766

“yes” to Position 2 2 450 98 82 91 93 539

“yes” to Position 3 9 7 391 108 109 89 554

“yes” to Position 4 14 15 9 331 67 62 488

“yes” to Position 5 21 7 5 2 229 53 305

“yes” to Position 6 9 6 9 8 5 214 232

Reject all 75 74 52 45 63 65 1267
Total 709 696 691 699 696 701 4151

Dunn et al. (2022)

Target position

Response 1 2 3 4 5 6 Absent

“yes” to Position 1 701 119 104 122 90 106 185

“yes” to Position 2 8 626 68 75 68 62 94

“yes” to Position 3 7 10 631 72 47 91 99

“yes” to Position 4 11 10 12 532 63 63 86

“yes” to Position 5 17 12 6 6 485 53 87

“yes” to Position 6 15 12 11 9 10 421 79

Reject all 224 185 175 154 148 143 790
Total 983 974 1007 970 911 938 1420

5  Please note that even if confidence ratings are unnecessary from a param-
eter estimation standpoint, they are most certainly not uninteresting nor 
worthless. As recently reviewed by Wixted and Wells (2017), the rise of SDT 
modeling in the eyewitness identification literature has played a crucial role in 
highlighting the positive relationship between confidence and accuracy, a rela-
tionship that is often neglected or downplayed in the US legal system.
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Singmann, 2016; Morey et  al., 2008; Rabe et  al., 2021; 
Trippas et al., 2018). The fact that individuals can differ 
in the way that they engage with rating scales is likely to 
exacerbate this issue (see Hamilton, 1968; Henninger & 
Meiser, 2020; Tourangeau et al., 2000). We will therefore 
extend our modeling to confidence judgments following 
a successful implementation to binary judgments.

General modeling approach
In the analyses below, we will develop and test a large 
body of SDT models, each reflecting the different ways 
in which memory judgments can be affected by sequence 
position: One general hypothesis is that memory dis-
criminability is affected by sequence position, with the 
DFD hypothesis postulating that it should increase (Wil-
son et al., 2019; Wixted et al., 2017). Another hypothesis 
is that the positioning of the response criteria is not sta-
ble, being affected by the specific history of faces encoun-
tered by each eyewitness throughout the sequential 
lineup. Based on the modeling insights by Treisman and 
Williams (1984) and more recently Turner et  al. (2011), 
there is good reason to assume that response criteria, 
especially the criterion responsible for binary judgments, 
will increase after the rejection of the target (see also 
Dunn et al., 2022).

The different SDT models will be fit to the large-scale 
datasets reported by Wilson et al. (2019) and Dunn et al. 
(2022). Each of these studies will be considered in turn. 
The reason behind this “sequential” organization is that, 
beyond directly comparing different candidate models, 
we also report additional analyses addressing issues that 
are especially relevant in the context of each study.

In the case of Wilson et al. (2019), we are dealing with 
the first large-scale study that permits a full-fledged 
implementation of SDT models tailored to the sequen-
tial lineup procedure. This seminal status calls for an 
expanded set of analyses that address a number of foun-
dational modeling questions:

•	 Q1: Can we obtain adequate SDT characterizations 
from binary/confidence judgments?

•	 Q2: What are the limits of binary judgments in terms 
of estimation and hypothesis testing?

•	 Q3: What is the ability to detect differences in dis-
criminability as postulated by the DFD hypothesis? 
Is this ability a function of the flexibility given to 
response criteria?

•	 Q4: What are the merits of sequential lineups, rela-
tive to other procedures such as showups? And what 
is the impact of imposing a stopping rule?

The follow-up study by Dunn et  al. (2022), aside from 
reporting large study that attempts to replicate the results 

of Wilson et al. (2019) while imposing an actual stopping 
rule, raised a number of important issues regarding the 
use of aggregate data and its inferential risks. Our analy-
ses directly address these issues and provide answers to 
the following questions:

•	 Q5: Can aggregation biases produce spurious sup-
port for learning (in terms of discriminability and/or 
response criterion) throughout the sequential lineup?

•	 Q6: Can aggregation biases be sidestepped by remov-
ing the stopping rule from the sequential lineup pro-
cedure?

Revisiting Wilson et al. (2019)
In the two experiments reported by Wilson et al. (2019), 
participants engaged in a sequential lineup procedure. 
For each face presented, participants were asked whether 
it corresponded to the guilty suspect as well as their 
confidence in that judgment (using a scale ranging from 
− 100 to 100). Importantly, Wilson et al.’s procedure did 
not include a stopping rule, which meant that partici-
pants always evaluated every single face in the lineup. In 
order to address this deviation from standard practices, 
we excluded any participants’ responses beyond their 
first “yes” judgment; i.e., we emulated a stopping rule. 
Because both experiments used the same stimuli and 
implemented the exact same lineup procedure, we were 
able to collapse participants’ responses into a single data-
set, which is reported in Table 1.

Analysis of binary judgments
The SDT modeling of sequential lineup judgments can be 
cast as an extension of a yes–no task (for a previous treat-
ment, see Kaesler et al., 2020). Let S = s denote a given 
sequence of I faces that can include the target (guilty 
suspect) or not. For each position i in the sequence, with 
1 ≤ i ≤ I , the witness is requested to judge whether or 
not they recognize the face being presented to them. 
According to SDT, each presented face is associated with 
latent strength or familiarity value that was sampled inde-
pendently from a target distribution or a lure distribution 
(depending on whether the face is a target or a lure). Fol-
lowing previous work, we will assume that these target/
lure distributions are Gaussian with means µT ,i/µL,i and 
variances σ 2

T ,i/σ
2
L,i.

6 It is further assumed that the recogni-
tion judgment regarding the ith face in a given sequence s 
is based on the comparison of their latent strength value 

6  Depending on the model considered, at least one the lure distribution vari-
ances will be fixed to 1 without loss of generality. Also, we will set µL,i = −µT ,i 
across all models. According to this parametrization, the origin of the latent 
strength scale is exactly between the target and lure distributions. Our moti-
vation for choosing this specific parameterization will be made clear later on.
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with a response criterion τ0,i . Because a sequential lineup 
terminates as soon as the witness recognized a face, it fol-
lows that a “yes” response for ith face was preceded by 
i − 1 “no” responses.

For a given sequence s in a sequential lineup procedure, 
the probability of recognizing the face presented in posi-
tion i corresponds to:

with �(·) denoting the cumulative distribution function 
of the Standard Gaussian distribution. The subscripts [s, i] 
and [s, h] denote the latent strength distribution associated 
with the type of subject (target or lure) being presented in 
position i (or preceding position h) in a given sequence s.

In turn, the probability of rejecting all the faces in a 
given sequence s is given by:

The SDT model specified by Eqs.  1 and 2 provides a 
general testbed for different hypotheses, which can be 
specified in terms of a hierarchy or grouping of models 
imposing different parameter restrictions (e.g., Batch-
elder & Riefer, 1990). In the present analysis, we consid-
ered the models listed in Table  2. These models result 
from a factorial combination of different hypotheses con-
cerning response criteria and discriminability (for a simi-
lar approach, see van den Berg et al., 2014):

•	 Response Criteria
SDTτ1	� (fixed): The same response criterion 

τ0 is used across all sequence posi-
tions, regardless of the position of the 
target in the sequence.

SDTτ2	� (variation across sequence position): 
Response criterion τ0 is free to vary 
across sequence position (e.g., posi-
tion 1 versus position 5), but is invar-
iant across different sequences (e.g., 
target absent vs. target in position 
1). Note that the criterion is assumed 
to be unaffected by the type of faces 
previously encountered (i.e., whether 

(1)
P(“yes”, i, s) =

probability of "yes"

on position i

1−�
τ0,i − µs,i

σs,i

probability of "no"

in all previous positions

h<i

�
τ0,h − µs,h

σs,h
,

(2)
P(”no”, I , s) =

probability of "no"

for all positions
︷ ︸︸ ︷

I∏

i=1

�

(
τ0,i − µs,i

σs,i

)

.

or not the target was encountered 
before).

SDTτ3	� (variation due to target position): 
Response criterion τ0 can vary as a 
function of encountering the target in 
a previous sequence position. Let τ0,i 

be the response criterion for position 
i in a target-absent lineup. Now, let 
τ ∗0,i,h be the criterion for position i in 
a sequence s in which the target was 
encountered in a previous position 
h, with τ ∗0,i,h = τ0,i + δ exp(�(h− i)) . 
This specification is able to capture 
the type of short-term and long-term 
effects considered by Treisman and 
Williams (1984), with parameter δ 
quantifying the “effect” of previously 
encountering the target, and � modu-
lating its “decay” across the subse-
quent sequence positions.7 Figure  4 
illustrates the relationship between 
parameter values and predictions. 
For example, when δ > 0 , the previ-
ous encounter of a target leads to an 
increase in the response criterion, 
which in turn favors the occurrence 
of “no” responses in subsequent 
sequence positions. Finally, note that 
it is being assumed that the response 
criterion τ0 is invariant for all lures 
prior to encountering the target (this 
follows from the assumption that 
lures are exchangeable).

SDTτ4	� (variation across sequence position 
and due to target position): Response 
criterion τ0 can vary across sequence 
position (see SDTτ2 ) and as a func-
tion of a previous encounter with the 
target (see SDTτ3).

7  Alternatively, one could have specified different response criteria for the dif-
ferent sequences. The problem with that approach is that it would introduce 
fifteen additional parameters instead of just two.
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•	 Discriminability
SDT∅	� (fixed discriminability): Latent 

strength parameters of targets ( µT ,i , 
σ 2
T ,i ) and lures ( µL,i , σ 2

L,i ) are fixed 
across sequence positions.

SDTµ1	 (restricted change in means): Across 
sequence positions, the means of the 
latent strength distributions for tar-
gets ( µT ,i ) and lures ( µL,i ) can shift 
symmetrically around the origin of 
the scale (see Fig. 5). These symmetri-
cal shifts are in line with the notion 
of “differentiation” that has been pos-
tulated by many prominent memory 
models (e.g., McClelland & Chap-
pel, 1998; Shiffrin & Steyvers, 1997; 
for a review, see Criss & Koop, 2015). 
They can be achieved by introduc-
ing a factor αi , such that µT ,i = µTαi 
(with α1 = 1 ). In turn, symmetry is 
achieved by imposing the constraint 
that µL,i = −µT ,i (see Footnote  6). 
In this particular case, which follows 
Wilson et  al. (2019), shifts in means 
are restricted to only take place once, 
right after sequence position 1. This 
is achieved by assuming that αi = α , 
for i > 1 . Increases in discriminabil-
ity, as postulated by the DFD hypoth-
esis, are predicted when α > 1 . Please 
note that the motivation behind the 
restriction that αi = α , for i > 1 , is 

purely pragmatic; it is simply a way to 
capture a general pattern without hav-
ing to introduce too many additional 
parameters.

SDTσ1	� (restricted change in variances): Across 
sequence positions, the variances of 
the latent strength distributions of tar-
gets ( σ 2

T ,i ) and lures ( σ 2
L,i ) can change 

by a common factor ξi , such that 
σ 2
T ,i = ξi · σ

2
T and σ 2

L,i = ξi · σ
2
L , with 

ξ1 = 1 (see Fig.  5). This change cap-
tures the kinds of increase/decrease 
in “noise” that have been postulated 
in the literature (e.g., Criss et al., 2011; 
Osth et  al., 2018; Wixted & Mickes, 
2014). Similar to SDTµ1 , changes in 
variances are restricted to only take 
place right after sequence position 
1. This is achieved by assuming that 
ξi = ξ , for i > 1 . Increases in dis-
criminability, as postulated by the 
DFD hypothesis, are predicted when 
0 < ξ < 1 . As in the previous case, 
the restriction that ξi = ξ , for i > 1 , 
is an attempt to avoid models with an 
excessive number of free parameters.

SDTµ2	� (unrestricted change in means): Simi-
lar to SDTµ1 , the difference being that 
mean shifts can take place across all 
sequence positions.

SDTσ2	� (unrestricted change in variances): 
Similar to SDTσ1 , the difference being 
that changes in variance can take place 
across all sequence positions.

The factorial combination of these different assump-
tions results in 4 × 5 = 20 candidate models. One advan-
tage of this factorial approach is that it allows us to check 
whether or not the support for a given hypothesis is 
dependent on the other hypotheses being considered (for 
a discussion, see van den Berg et al., 2014).

Table 2 lists all the twenty models along with their per-
formance in terms of badness of fit (quantified by the 
G2 statistic) as well as in terms of the Akaike and Bayes-
ian information criteria (AIC and BIC, respectively), 
which penalize models for their flexibility using their 
respective numbers of free parameters as a proxy for the 

Fig. 4  Effect of previously encountering and rejecting the target on 
τ0 , as a function of parameters δ and � . Lag = 0 denotes the value of τ 
when the target is encountered
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latter (Myung & Pitt, 2004). Altogether, we see two clear 
results: First, there is very strong support for the hypoth-
esis that response criteria vary as a function of sequence 
position as well as target rejection. In comparison with 
the most restricted model, SDTτ1, 0 , badness of fit is dras-
tically reduced when allowing response criteria to vary 
(SDTτ4, 0 ). In contrast, when only allowing discrimina-
bility to vary across sequence positions, we obtained a 
much more modest reduction (SDTτ1,µ2).

These modeling results are corroborated by the left 
panel of Fig.  6, where we contrast the predictions of 
the best-performing model, SDTτ4, ∅ , with the observed 
choice proportions. They are also corroborated by 
Fig.  7, which contrasts the conditional probabilities 

of recognizing a lure on sequence position i in target-
absent lineups and target-present lineups when the tar-
get was previously rejected: The differences found in the 
data (Fig. 7, Left Panel) show that the probability of rec-
ognizing a lure is lower when the target was previously 
rejected, when compared to the lure rejection rates found 
in target-absent lineups (for similar results, see Dunn 
et  al., 2022). We also see that this difference tends to 
decrease across sequence positions. This general pattern 
is captured by the predictions of SDTτ4, ∅ (Fig.  7, Right 
Panel).8 Aside from its relative performance, the misfits 

Fig. 6  Left panel: Comparison of model predictions (SDTτ4, ∅ ) and the data. Right panel: Comparison of model predictions coming from the SDTτ2, ∅ 
and SDTτ4, ∅ models

Fig. 5  Illustration of how the latent strength distributions can change across sequence positions under different SDT models. The dashed lines 
indicate the origin of the latent strength scale

8  The mismatch between the observed and predicted conditional proportions 
in Fig. 7 can be attributed to the sampling variability in the data. As can be 
seen in Table  1, the frequency of “yes” responses post-target rejection are 
rather small (see the frequencies in italic).
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Table 2  Model selection results (Reanalysis of Wilson et al., 2019)

The best-performing values according to AIC and BIC are underlined and in bold font

Binary judgments

Model Parameters G2 AIC BIC

SDTτ1, ∅ 3 187 193 214

SDTτ1,µ1 4 182 190 218

SDTτ1, σ1 4 182 190 218

SDTτ1,µ2 8 152 168 225

SDTτ1, σ2 8 150 166 222

SDTτ2, ∅ 8 122 138 194

SDTτ2,µ1 9 120 138 202

SDTτ2, σ1 9 120 138 202

SDTτ2,µ2 13 118 144 236

SDTτ2, σ2 13 118 144 236

SDTτ3, ∅ 5 106 116 151

SDTτ3,µ1 6 104 116 159

SDTτ3, σ1 6 104 116 159

SDTτ3,µ2 10 72 92 163

SDTτ3, σ2 10 70 90 160

SDTτ4, ∅ 10 44 64 134
SDTτ4,µ1 11 43 65 143

SDTτ4, σ1 11 43 65 143

SDTτ4,µ2 15 40 70 175

SDTτ4, σ2 15 39 69 175

Confidence rating judgments

SDTτ4, ∅ 30 177 237 448
SDTτ4,µ1 31 177 239 457

SDTτ4, σ1 31 177 239 457

SDTτ4,µ2 36 174 246 499

SDTτ4, σ2 36 173 245 498

Fig. 7  Differences in the conditional probability of responding “yes” to a lure in sequence position i between target-present lineups (in which 
the target was previously rejected) and target-absent lineups. The different symbols/lines distinguish the preceding position taken by the target in 
target-present lineups (reanalysis of Wilson et al., 2019)
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produced by model SDTτ4, ∅ were not statistically signifi-
cant ( p = .08 ). This result is particularly impressive given 
the large sample size.

The second main result is that the support for a change 
in discriminability seems to hinge on the constraints 
imposed at the level of response criteria: Support is only 
found when the response criteria are fixed. For example, 
compare the performance differences between SDTτ1, ∅ 
and SDTτ1,µ1 , and between SDTτ4, ∅ and SDTτ4,µ1 . This 
result echoes previous modeling reports showing that 
the testing of specific components (e.g., discriminability) 
can be severely biased by the auxiliary constraints being 
imposed elsewhere (e.g., Barr et  al., 2013; Kellen et  al., 
2013b), especially when these constraints are known to 
increase misfits by a non-negligible amount (see May-
deu-Olivares & Cai, 2006). This aspect is relevant when 

considering the fact that the present lack of support for 
differences in discriminability runs counter to Wilson 
et  al.’s (2019) results with the same data. Aside from 
the fact that the data were structured differently and 
that they considered confidence ratings from the onset, 
we note that Wilson et  al.’s main result assumed that 
response criteria were either invariant across sequence 
positions or allowed to vary in a highly constrained man-
ner (namely, in the form of lockstep shifts).

The parameter estimates obtained with the three 
best-performing models (according to AIC and BIC) 
are reported in Table  3. A major discrepancy between 
the models can be found at the level of the σ 2

T  estimates: 
The σ 2

T  estimate obtained with the SDTτ4, 0 model 
is very close to 1, which is consistent with previous 
reports (Kaesler et al., 2020). In contrast, the SDTτ4,µ1 

Table 3  Parameter estimates for models SDTτ4, ∅ , SDTτ4,µ1 , and SDTτ4, σ1 (reanalysis of Wilson et al., 2019)

Binary judgments

SDTτ4,∅ SDTτ4,µ1 SDTτ4, σ1

µT 0.91 µT 0.66 µT 0.66

σ 2
T

1.03 σ 2
T

0.21 σ 2
T

0.21

τ0,1 − 0.01 α1 1 ξ1 1

τ0,2 0.09 α2−6 1.17 ξ2−6 0.73

τ0,3 − 0.07 τ0,1 0.24 τ0,1 0.24

τ0,4 − 0.09 τ0,2 0.23 τ0,2 0.19

τ0,5 0.06 τ0,3 0.08 τ0,3 0.07

τ0,6 0.11 τ0,4 0.06 τ0,4 0.05

δ 1.07 τ0,5 0.21 τ0,5 0.18

� 0.50 τ0,6 0.25 τ0,6 0.22

δ 1.07 δ 0.91

� 0.50 � 0.50

Confidence rating judgments

SDTτ4,∅ SDTτ4,µ1 SDTτ4, σ1

µT 0.77 µT 0.76 µT 0.76

σ 2
T

0.51 σ 2
T

0.51 σ 2
T

0.51

τ0,1 0.13 α1 1 ξ1 1

τ0,2 0.22 α2−6 1.02 ξ2−6 0.97

τ0,3 0.08 τ0,1 0.13 τ0,1 0.13

τ0,4 0.05 τ0,2 0.21 τ0,2 0.21

τ0,5 0.20 τ0,3 0.08 τ0,3 0.07

τ0,6 0.25 τ0,4 0.05 τ0,4 0.05

δ 1.04 τ0,5 0.20 τ0,5 0.19

� 0.49 τ0,6 0.25 τ0,6 0.24

ω 1.44 δ 1.05 δ 1.03

η − 0.03 � 0.49 � 0.49

γ 0.12 ω 1.37 ω 1.36

η − 0.04 η − 0.04

γ 0.11 γ 0.10
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and SDTτ4, σ1 models yielded much lower estimates, 
closer to the results originally reported by Wilson et al. 
(2019). We evaluated these parameter estimates by fit-
ting constrained versions of their respective models 
in which σ 2

T = σ 2
L = 1 . In all cases, the restriction led 

to negligible differences in misfit (e.g., for SDTτ4,µ1 , 
�G2

df=1 = 0.29 , p = .29 ). These results show that it is 
very difficult to reliably estimate σ 2

T
 with binary judg-

ments, despite the large sample size and the many 
degrees of freedom provided by the data. This situation 
raises the possibility that the present lack of support 
for the DFD hypothesis is due to our reliance on binary 
judgments. We will address this possibility later on.

Moreover, the visual inspection of the response cri-
teria estimates suggests that they vary in a non-mono-
tonic fashion across sequence positions. Forcing τ0 to 
be fixed across sequence positions invariably led to 
large, statistically significant increases in badness of fit 
(smallest �G2

df=6 = 30.88 , largest p < .001 ). In order 
to test the robustness of the non-monotonic pattern 
found, we evaluated the hypothesis that the response 
criteria are monotonically increasing across sequence 
positions, such that τ0,h ≤ τ0,i for all h < i.9 This hypoth-
esis was motivated by previous work suggesting that the 
probability of a “no” response is greater when preceded 
by another “no” response (e.g., Malmberg & Annis, 2012), 
along with the fact that by design, a typical sequential 
lineup judgment at position i implies the rejection of all 
preceding faces.10 

The difference in badness of fit between SDTτ4, ∅ and 
a restricted version enforcing monotonically increas-
ing criteria was considerable ( �G2

= 38.58 , p < .001).11  

We also tested the alternative hypothesis of monotoni-
cally decreasing criteria, a restriction that also led to 
statistically significant increases in misfit ( �G2

= 48.35 , 
p < .001 ). Altogether, these results suggest that the 
non-monotonic pattern found in the response criteria 
estimates cannot be dismissed as the mere outcome of 
sampling variability.

Regarding the effect of target rejections on response 
criteria, the � estimates obtained across the three 

best-performing models suggest that this effect decays as 
one progresses through the sequential lineup. This result 
is consistent with pattern observed in Fig.  7, where we 
see a diminishing decrease in “yes” responses for lures, 
when comparing target-present lineups (in which the 
target was previously rejected) and target-absent line-
ups. We tested this “decay hypothesis” by comparing the 
SDTτ4, 0 model with a restricted version in which � = 0 . 
The increase in misfit was considerable ( �G2

df=1 = 15.82 , 
p < .001 ), which corroborates the notion of a decaying 
effect.

Lastly, a methodological point regarding the overall 
evaluation of models: Although SDTτ4, ∅ clearly outper-
forms its competitors, this difference is barely visible 
when inspecting their predicted response probabilities. 
Consider the comparison between SDTτ2, ∅ and SDTτ4, ∅ , 
which differ dramatically in terms of badness of fit. 
As shown on the right panel of Fig.  6, their predictions 
barely differ. These differences only become clear (at least 
visually) when conditioning each response probability 
on the preceding responses, as shown in Fig. 7, in which 
models such as the SDTτ2, ∅ predict a constant zero dif-
ference. It should be noted that the conditional response 
probabilities being contrasted in Fig.  7 are discrete haz-
ard functions (Chechile, 2003). One of the attractive 
features of hazard functions is that they often reveal dif-
ferences between models that can be virtually indistin-
guishable otherwise (e.g., Chechile, 2006). The present 
case is another demonstration of their usefulness.

Analysis of confidence ratings
Although confidence judgments are not necessary for 
SDT parameters to be reliably estimated (e.g., Dube 
& Rotello, 2012; Kellen & Klauer, 2011), it is clear that 
this is not the case with sequential lineups. Despite the 
large sample size and the many degrees of freedom, the 
binary judgments in Wilson et al.’s (2019) data are yield-
ing unreliable σ 2

T estimates. This unfortunate situation is 
likely to have affected our evaluation of the DFD hypoth-
esis. In response, we extended our best-performing 
models so that they can accommodate confidence rating 
judgments.12 This is extension is achieved by introduc-
ing an ordered set of confidence criteria τk that take on 
more extreme values than the criterion τ0 responsible 
for the binary judgments (see the top panel of Fig.  1). 

11  As discussed in detail by Davis-Stober (2009), the sampling distribution 
of the G2 statistic, when testing linear order constraints such as monotonic-
ity, follows a mixture of χ2 distributions. Instead of determining the weights 
of this mixture, we simply note that the most conservative mixture distribu-
tion, which corresponds to a χdf=6 distribution, has a critical ( p = .05 ) value 
of 12.59.

12  There is no need to extend the other models, given that confidence ratings 
have no say on the hypotheses that they were designed to test (e.g., does the 
response criterion change across sequence positions?). However, there is the 
possibility that that allowing response criteria to vary freely across sequence 
positions compromises our ability to reliably detect differences in discrimina-
bility along the same variable. We will address (and dismiss) this concern later 
on.

10  Please note that this is not strictly true in Wilson et al.’s (2019) studies, 
as their lineup procedure did not enforce a stopping rule. But as mentioned 
earlier, in the present analysis we are only considering people’s judgments 
up to their first “yes” response (i.e., a stopping rule was emulated).

9  This constraint did not include the effect of target rejections; i.e., we did not 
impose any constraints on τ ∗

0,i,h.
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As previously discussed, the sequential lineup proce-
dure yields a family of confidence rating ROCs, each of 
them characterizing one of the guilty suspect sequence 
positions (see Fig.  3). The two studies reported by Wil-
son et  al. (2019) requested participants to express their 
confidence on a slider ranging from −100 to 100. In line 
with previous studies, we only considered the confi-
dence ratings for “yes” responses (e.g., Juslin et al., 1996; 
Mickes, 2015; Wixted et al., 2015), which we divided into 
four equally spaced intervals (0–25, 26–50, 51–75, and 
76–100). In light of the previous results showing that the 
response criterion changes across sequence positions, 
all of the models considered here will allow confidence 
criteria to vary freely across sequence positions (but see 
Footnote 12).

We decided to extend our models so that we could 
evaluate the effect of target rejection at the level of con-
fidence judgments. For K + 1 levels of confidence, with 
k = 1, . . . ,K  , let:

denote confidence criteria, with κi,m being nonnegative 
increments over τi . Confidence criteria τi,k are applied 
to the ith sequence position of target-absent lineups or 
target-present lineups up to the encountering the target.

In the case of target-present lineups in which the target 
was previously encountered in sequence position h, the 
confidence criteria for sequence position i are specified 
as follows:

with

According to this parameterization, increments κi,m 
can increase or decrease as a function of ρi,h ≥ 0 . In 
turn, ρi,h is defined as a function of an “effect” param-
eter ω and a “decay” parameter η , similar to the way we 
specified τ ∗i,h as a function of δ and � (see Fig. 4). Finally, 
parameter γ determines how the magnitude of the effects 
changes across confidence levels. When γ > 0 , the effect 
decreases as a function of the confidence level; when 
γ < 0 it decreases. Figure  8 illustrates how the crite-
ria are affected by the previous encounter of the target, 
as a function of ω , η , and γ . The motivation behind this 
parameterization is that it provides a convenient way to 

τk ,i = τ0,i +

k∑

m=1

κm,i

τ ∗k ,i,h = τ ∗0,i,h +

k∑

m=1

κ∗m,i,h,

κ∗m,i,h = κm,i · ρi,h exp(−γ ·m),

ρi,h = ω exp(η(h− i)).

investigate a number of effects while sidestepping the 
need for an unreasonably large number of parameters 
(for a similar approach, see Selker et  al., 2019). Relative 
to the model specifications used in the case of binary 
judgments, the total number of additional parameters is 
6× (K − 1)+ 3 , with the first term corresponding to the 
total number of increments κi,m and the second term to 
parameters ω , η , and γ . If we instead decided to specify 
completely unconstrained confidence criteria, we would 
need to introduce 21× (K − 1) parameters.

The model-fitting results are reported in Tables 2 and 3. 
Figure 9 contrasts the predictions of the best-performing 
model, SDTτ4, ∅ . Based on a visual inspection, the pre-
dicted confidence rating ROCs are close to the observed 
ones.13 Although model misfits were found to be statis-
tically significant ( p = .01 ), the observed badness of fit 
is not completely unacceptable when taking into con-
sideration the large sample size (see Bröder & Schütz, 
2009).14 The other candidate models considered, which 
include SDTτ4, ∅ as a special case, only produced mar-
ginal improvements over the latter (largest �G2

= 4.4 , 
p = .49 ). This result is reflected in the α and ξ estimates 
reported in Table 3, which barely deviated from 1. These 
results corroborate the previous analysis of binary judg-
ments in which we failed to accrue any support for the 
DFD hypothesis.

In the present analysis of confidence ratings, imposing 
the equal variance restriction σ 2

T = σ 2
L = 1 on SDTτ4, ∅ 

led to large increases in badness of fit ( �G2
df=1 = 93.51 , 

p < .0001 ), which indicates that the σ 2
T estimates are reli-

ably below 1. This result, which is in line with previous 
reports on lineup procedures (e.g., Wixted et  al., 2018), 
shows that confidence ratings play a critical role in esti-
mating σ 2

T in the context of sequential lineups. They are 
more than a convenient way of augmenting the degrees 
of freedom provided by the data.

Finally, we evaluated the impact of allowing for confi-
dence criteria to be affected by a previous target rejec-
tion. Across all the models considered, the restriction of 
ω , η , and γ had a minimal impact (largest �G2

df=3 = 1.11 , 
smallest p = .77 ). Given these results, it seems unwise to 
try to extract implications from the estimates of ω , η , and 
γ reported in Table 3. An obvious culprit here is the fact 

14  To some degree, these misfits are due to the way that we streamlined the 
response criteria, using δ , � , ω , η , and γ . But given that this approach did 
not yield any systematic misfits (see Kellen & Singmann, 2016), we saw no 
reason to discard it, especially when an alternative approach would likely 
explode the number of free parameters.

13  When inspecting model (mis)fits in terms of ROCs, keep in mind that they 
only capture a small portion of the overall data, which the models attempt to 
fit in their entirely. For reference, only twelve of the forty-nine cells (24.4%) in 
each of the datasets reported in Table 1 are included the ROCs.
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that the number of cases in which witnesses miss the tar-
get and subsequently accept a lure is quite small (see the 
italic frequencies in Table 1). Not surprisingly, this issue 
becomes increasingly acute when “unpacking” these 
already uncommon responses in terms of confidence 
levels.

The question of unconstrained confidence criteria
One concern with the results above is that (1) allowing 
confidence criteria to be freely estimated introduces an 

amount of flexibility that is unwarranted, and (2) this 
flexibility is limiting the ability to detect changes in dis-
criminability. We will address (1) here and turn to (2) 
in the subsection below. Let us consider the SDTτ4, ∅ 
and SDTτ4,µ1 models: If we constrained the κm,i param-
eters to be the same across positions in both models, 
then their difference in badness of fit becomes statisti-
cally significant; �G2

df=1 = 7.45 , p = .008 , a result that 
supports the DFD hypothesis. However, these criteria-
constrained models fit the data much worse than their 

Fig. 8  Examples of the effect of previously encountering and rejecting the target on ordered confidence criteria τi , which is established as a 
function of parameters ω , γ , and η and Lag = i − h . Lag = 0 denotes the value of the criteria when the target is encountered. For illustrative 
purposes, τ0 remains fixed at 0 across lags and the contiguous confidence criteria in Lag = 0 are equidistant
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unconstrained counterparts (smallest �G2
df=15 = 98 , 

p < .0001 ). What these results show is that, similar to 
our previous analysis of binary judgments, support for the 
DFD hypothesis is apparently only found when imposing 
constraints that are rejected by the data. In terms of AIC 
and BIC, there is a disagreement: AIC supports the mod-
els with unconstrained confidence criteria (in line with 
the null hypothesis tests), whereas BIC supports their 
constrained counterparts. However, it is well known that 
BIC can impose unreasonably large penalties per addi-
tional parameter (see Kellen et  al., 2013a) and end up 
supporting models that fail to provide an acceptable fit of 
the data, in detriment of models that do (see Gelman & 
Rubin, 1995).

In reaction, one could argue that the assumption that 
response criteria are fixed across sequence positions is 
more principled than the alternative of allowing them to 
vary haphazardly, regardless of badness-of-fit or model 
selection results. We identify a number of problems with 
this stance: First, it ignores or downplays the fact that we 
are dealing with aggregate data coming from heterogene-
ous respondents. There is a large body of work showing 
how certain features found in aggregate data might not 
be representative of any of the individual respondents 
(e.g., Regenwetter & Robinson, 2017; Regenwetter et al., 
in press; but see Kellen, in press). In other words, data 
aggregation might turn perfectly sensible patterns among 
individual respondents into something completely dif-
ferent, perhaps something disordered or incoherent. 
Second, the solution proposed—restricting response cri-
teria across sequence positions—is not well supported 
on methodological nor conceptual grounds: On the one 

hand, the proposed restriction runs counter to the well-
established practice of making models more flexible in 
order to deal with individual heterogeneity (see Barr 
et al., 2013; Regenwetter & Robinson, 2017). On the other 
hand, it invites the researcher to entertain a scenario in 
which changes in response criteria across sequence posi-
tion are precluded a priori while allowing criteria to 
change as a function of a previous encounter with the tar-
get. Third and finally, the very notion that fixing response 
criteria across positions constitutes a principled move 
is likely predicated on an analogical overreach: The fact 
that response criteria are typically assumed to be fixed 
across recognition memory trials does not underwrite its 
enforcement in other domains such as eyewitness identi-
fication, regardless of the fact that its data can be under-
stood in similar ways (e.g., in terms of ROC functions) 
and successfully characterized by the same model frame-
work. One should not overlook the possibility of perceiv-
ing sequential lineups through a different lens that finds 
criterion changes highly plausible; e.g., casting sequential 
lineups as an “optional-stopping problem” (see Baumann 
et al., 2020; Lee & Courey, 2021).

Statistical power when evaluating the DFD hypothesis
We investigated the possibility that the failure to find evi-
dence in support of the DFD hypothesis is due to a lack 
of statistical power. Simply put, it is possible that the flex-
ibility gained from letting response criteria be completely 
unconstrained is masking actual differences in discrimi-
nability (for an example of how the flexibility of response 
criteria can affect statistical power when testing SDT 
models, see Kellen et al., 2013b). Such a scenario would 
explain the discrepant results found when modeling 
binary judgments, between the comparison of SDTτ1, ∅ 
with SDTτ1,µ1 (which supported a difference in dis-
criminability) and the comparison between SDTτ4, ∅ and 
SDTτ4,µ1 (which did not). This scenario would also speak 
against our exclusive use of models with unconstrained 
criteria when modeling confidence ratings and ultimately 
vindicate the “restrictive stance” criticized in the previ-
ous section.

In order to evaluate this possibility, we simulated confi-
dence rating data using the parameter estimates obtained 
with the SDTτ4,µ1 (see the bottom half of Table 2), with 
the exception of parameters α2−6 which were fixed to 1, 
1.05, or 1.10. Under these parameter estimates, the dif-
ference between µT and µL is expected to increase by 0%, 
5%, or 10% between sequence position 1 and positions 
2-6. We then used the SDTτ4, ∅ and SDTτ4,µ1 models to fit 
these data and evaluated their difference in badness of fit 
(quantified by �G2 ). We repeated this entire procedure 
200 times for each of the α2−6 values considered. Fig-
ure 10 illustrates the distribution of �G2 values obtained 

Fig. 9  Observed confidence rating ROCs and the corresponding 
predictions from SDTτ4,∅ (Reanalysis of Wilson et al., 2019)
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for each value of α2−6 considered, along with the �G2 
value that was obtained when modeling the real data 
(solid circle). The distribution of �G2 values in the case 
of α2−6 = 1 , which corresponds to the “null hypothesis”, 
is somewhat similar to the asymptotic χ2

df=1 distribution, 
although it takes on more extreme results with greater 
frequency: The proportion of statistically significant 
cases ( p < .05 ) was 12% instead of the nominal 5%. In the 
other two cases, α2−6 = 1.05 and 1.10, the obtained �G2 
values were deemed statistically significant in 54% and 
97% of the times, respectively.

Beyond binary proclamations of “statistical signifi-
cance,” the distributions illustrated in Fig.  10 show that 
the �G2

= 0.01 obtained with the real data is largely 
consistent with the distribution obtained under the 
null hypothesis and inconsistent with the distributions 
obtained under the two alternative hypotheses con-
sidered: When using polynomial splines to estimate 
the probability densities of each �G2 distribution (see 
Fig.  10), we find that the observed difference of 0.01 is 
fourteen and eighty-seven times more likely under the 
null hypothesis α2−6 = 1 than under the alternatives 
α2−6 = 1.05 and 1.10, respectively. These results do not 
change much when considering �G2 values ranging 
between 0 and 1.5: The null is still three and forty-nine 
times more likely than the two alternatives. Overall, these 
simulation results produce a very clear message: The 
ability to detect moderate differences in discriminability 

(e.g., a 10% increase) is quite high, even when response 
criteria are allowed to vary across sequence positions, 
which means that there is no statistical power or likeli-
hood ratio rationale for questioning the specification of 
unconstrained response criteria.

Looking back at the validity of binary response modeling 
outcomes
Our analyses of binary and confidence judgments from 
Wilson et al. (2019) showed how the latter are necessary 
in order to estimate µT and σ 2

T with reasonable preci-
sion. This result shows that—for purposes of parameter 
estimation—binary judgments in sequential lineups have 
limited diagnostic value despite the large number of 
degrees of freedom that they provide. Confidence ratings 
turn out to be necessary.

At first glance, one might see this result as a mere dem-
onstration of something that is well established in the 
context of recognition memory: that binary responses 
alone (i.e., without response bias manipulations) can-
not support a complete SDT characterization, an 
inability that ultimately leads to failures in distinguish-
ing differences in discriminability from differences in 
response criteria (see Rotello et  al., 2008; Verde et  al., 
2006). One problem with this view is that it risks over-
looking the consistency between the model-comparison 
results obtained with binary and confidence judgments 
(see Table 2). In fact, if we use the µT and σ 2

T estimates 

Fig. 10  Distribution of �G
2 values, obtained from the comparison of the SDTτ4, ∅ and SDTτ4,µ1 models, when generating the confidence rating 

data from the latter under different values of α2−6 . Two-hundred datasets were generated per scenario. The black circle corresponds to the 
�G

2
= 0.01 observed with the real data (see Table 3). The red lines correspond to polynomial spline approximations of the �G

2 distributions. Please 
note that the ranges of both axes vary across panels
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in Table 3 to compute the discriminability measure da , we 
end up with very similar values:15 1.79, 1.72, and 1.72, in 
the case of binary judgments, and 1.80, 1.75, and 1.75, in 
the case of confidence ratings. This consistency suggests 
that binary judgments from sequential lineups might 
still be informative in specific circumstances. In order to 
identify these circumstances, we conducted a number of 
simulations.

Our first simulation investigated the ability to estimate 
discriminability—as quantified by da—from binary judg-
ments: We simulated binary response data from SDTτ4,∅ 
model, in which we randomly sampled µT and σ 2

T values 
from independent uniform distributions with ranges [0.2, 
1.40] and [0.3, 1.2], respectively. The remaining param-
eter values were the ones estimated from confidence 
ratings (see the bottom half of Table  3). Two-hundred 
simulated datasets (each its own µT and σ 2

T values) were 
generated, with 100/1000 responses per lineup condition. 
As illustrated in Fig. 11, the true data-generating da are 
closely followed by their estimated counterparts, with 
rank correlations of 0.91 and 0.99 for n = 100 and 1000, 
respectively.

In a second simulation, we evaluated the ability to cor-
rectly identify the causes behind the differences between 
two groups: Are they caused by differences in discrimi-
nability, response bias, or both? In order to answer this 
question, we fit different versions of the SDTτ4,∅ model to 
binary response data coming from two groups A and B. 
The different model versions implemented four different 
hypotheses: 

1.	 Groups A and B do not differ (None),
2.	 Groups A and B differ in terms of discriminability 

(Discriminability),
3.	 Groups A and B differ in terms of response criteria 

(Criteria),
4.	 Groups A and B differ in terms of both discriminabil-

ity and response criteria (Both).

Binary response data were generated from these dif-
ferent models, once again using the SDTτ4,∅ parameters 
estimated from confidence ratings as a basis (see the 
bottom half of Table 3). Scenarios in which group B has 
lower discriminability were introduced by decreasing µT 
by 10% (i.e., a difference of approximately 0.08), whereas 
differences in response criteria were obtained by shift-
ing τ0 by ±0.20 across all sequence positions. Finally, we 
assumed 500/1000 responses per lineup condition in 
each group (for each group, there are six target-present 
lineup conditions and one target-absent lineup condition; 
see Table 1). These differences, as well as the sample sizes, 
strike us as reasonable reference values when taking con-
sideration previous reports (e.g., Dunn et al., 2022; Wil-
son et  al., 2019). Two-hundred datasets were generated 
per scenario. Table 4 reports the frequencies with which 
the null hypotheses that discriminability and response 
criteria are equal across groups were found to be statis-
tically significant ( p < .05).16 These frequencies track the 
data-generating models quite well. Importantly, note that 
shifts in response criteria are rarely being misinterpreted 

Fig. 11  True and estimated da from the SDTτ4,∅ model, under different n per lineup condition

16  The equivalence of discriminability across groups was tested by constrain-
ing both µT  and σ 2

T  . In turn, the equivalence of response criteria was tested by 
constraining all six τ0 as well as δ and �.

15  Under the present model parametrization, da =
√
2

2µT√

1+σ 2
T

 (see Simpson & 

Fitter, 1973).
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as differences in discriminability (for a contrasting state 
of affairs in recognition memory, see Rotello et al., 2008; 
Verde et al., 2006).

In a third and final simulation, we evaluated the abil-
ity to detect differences in µT across sequence positions, 
as postulated by the DFD hypothesis. Essentially, we 
replicated the simulation reported in the previous sec-
tion (see Fig. 10), only that this time we are fitting binary 
responses instead of confidence judgments. For data-gen-
erating parameters α2−6 = 1.10 and 1.50 (i.e., after the 
first sequence position, discriminability increases by 10% 
and 50%, respectively), the percentages of statistically 
significant �G2 values comparing SDTτ4, ∅ and SDTτ4,µ1 
models were 10% , and 30% . For reference, the frequency 
of statistically significant results for α2−6 = 1.10 , when 
fitting confidence ratings, was 97% (see the right panel of 
Fig. 10).

Altogether, these simulation results show that binary 
judgments coming from sequential lineups can be used 
to obtain valid SDT characterizations and conduct sim-
ple between-group comparisons. However, the use of 
binary judgments severely impairs our ability to detect 
differences in discriminability across sequence positions, 
as postulated by the DFD hypothesis. To be clear, none 
of these simulation results puts into question the overall 
value of confidence judgments in the study of eyewitness 
identifications—they only delineate the circumstances in 
which confidence ratings are not strictly necessary (see 
also Footnote 5).

The merit of sequential lineups relative to showups
In their second experiment, Wilson et  al. also collected 
responses from a showup procedure, in which partici-
pants are only shown a single face, which is either the 
target or a lure. The availability of such data allows us 
to directly compare the relative merits of the two pro-
cedures. We conducted a first comparison by directly 

fitting the showup data jointly with the data from the first 
sequence position.

The SDT model used allowed µT and σ 2
T as well as the 

confidence criteria to differ across procedures. The badness 
of fit of this model was acceptable ( G2

df=4 = 5.99 , p = .20 ). 
Restricting µT and σ 2

T to be the equal across conditions 
produced a negligible increase in misfit ( �G2

df=2 = 2.29 , 
p = .32 ), whereas restricting τ0 yielded a large increase 
( �G2

df=1 = 29.31 , p < .0001 ). These results are corrobo-
rated by the ROC functions associated with the two condi-
tions, which are illustrated in Fig.  12. The fact that 
discriminability was found to be the same across proce-
dures constitutes an argument against the use of sequential 
procedures, at least when considering showups as an alter-
native. As illustrated on the right panel of Fig. 3, the ROCs 
associated with later sequence positions are not only 

Table 4  Hypothesis testing results from simulated binary judgments

Two-hundred datasets were simulated per scenario. The percentages in bold denote the correct rejections. Symbols + and − in parentheses indicate whether the 
criteria in group B are more lenient or stricter, respectively

True difference Equality hypothesis rejected ( p < .05)

n per lineup condition = 500 n per lineup condition = 1000

Discriminability (%) Criteria (%) Discriminability (%) Criteria (%)

None 5 4 6 5

Discriminability 92 4 99 7

Criteria (−) 6 79 5 99
Criteria ( +) 7 71 7 96
Both (−) 86 84 99 99
Both ( +) 78 74 99 98

Fig. 12  Confidence rating ROCs (from Wilson et al., 2019) obtained 
in position 1 of the sequential lineup procedure and the showup 
procedure
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dominated by their antecedents, their maximum hit rate 
steadily decreases. Assuming that each target position is 
equiprobable, it follows that the expected/average ROC 
function for sequential lineups will be dominated by the 
ROC function for showups.

However, a different and arguably more nuanced picture 
is obtained when taking into consideration the different 
possible outcomes associated with each procedure, their 
respective utilities, and the prior probability of suspect 
being guilty (Ceci & Friedman, 2000; Clark, 2012). Table 5 
reports the probabilities of the different response outcomes 
for both sequential lineups and showups (these outcomes 
were described earlier in the Introduction). Based on all 
these values, we can compute the expected utility of each 
procedure:

Uprocedure = Pguilty

3∑

i=1

PTPi ×UTPi + (1− Pguilty)

3∑

i=1

PTAi ×UTAi

Using the utilities specified in Table 5 while varying the 
probability of a suspect being guilty ( Pguilty ), we can com-
pare the merit of sequential lineups relative to showups. 
As shown in Fig.  13, the expected utility of sequential 
lineups is greater when the probability of the suspect 
being guilty is moderate or small (less than .40). A sec-
ond look at Table 5 helps us to see why: The recognition 
of innocent suspects is lower for sequential lineups than 
showups (11.6% vs. 26.4%) due to the protective effect of 
known lures. However, this advantage can be cancelled 
or even overtaken by the considerable amount of known 
lures that are incorrectly identified in target-present and 
target-absent lineups (38.8% and 57.9%).

But what if we remove the stopping rule? In order to 
investigate this alternative scenario, we considered the 
last “yes” response that participants made instead of 
the first one. Note that this change can only affect out-
come frequencies in target-present lineups. In the case 
of target-present lineups, removing the stopping rule 
led to a considerable increase in the hit rates ( +19.9% ) 
and an equivalent decrease in false alarms. This differ-
ence shows that removing the stopping rule is generally 
beneficial, allowing individuals to correct previous mis-
takes. This difference leads to noticeable improvements 
in terms of expected utility (see Fig. 13).

Based on these comparisons, we do not think that 
there is a clear case against sequential lineups relative 
to showups, especially if we consider the possibility of 
removing the stopping rule. Whether or not sequen-
tial lineups should be preferred to showups depends on 
numerous factors, such as the probability that the suspect 
is guilty, which can vary dramatically from jurisdiction-
to-jurisdiction, situation-to-situation, and detective-
to-detective (cf. Lampinen et  al., 2019). For reference, 
Wixted et al. (2016) reported an estimated probability of 
.35, which, if taken at face value, renders sequential line-
ups equiparable or superior to showups, depending on 
whether or not the stopping rule is imposed (see Fig. 13).

Fig. 13  Expected utilities associated with different procedures, as 
a function of the probability that the suspect is guilty ( Pguilty ) and 
the outcome frequencies reported in Table 5. SR = stopping rule. 
The gray dashed line corresponds to the Pguilty estimate reported by 
Wixted et al. (2016)

Table 5  Outcome percentages and utilities for the sequential lineup and showup conditions (data from Wilson et al., 2019)

FA, false alarm. Please note that outcomes TP2 and TA1 are not possible in the case of showups

Outcome Utility % Lineups (with stopping 
rule)

% Lineups (no stopping rule) % Showups

TP1 (Hit) 2 52.3 66.2 86.6

TP2 (FA, Known Lure) − 5 38.8 24.9 –

TP3 (Miss) − 1 8.9 8.9 13.4

TA1 (FA, Known Lure) − 1 57.9 –

TA2 (FA, Innocent Suspect) − 20 11.6 26.4

TA3 (Miss) 2 30.5 73.6
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Discussion
The reanalysis of Wilson et al. (2019) allowed us to tackle 
a number of foundational issues regarding the application 
of SDT to sequential lineups. First, we showed that SDT 
can provide a satisfactory characterization of people’s 
eyewitness judgments without obliterating the sequen-
tial structure of the data or call for a large number of free 
parameters (Q1). These results contrast with previous 
attempts in which the models considered yielded con-
siderable misfits (e.g., Kaesler et  al., 2020; Wilson et  al., 
2019). We were also able to establish the relative merits 
of binary and confidence rating judgments with regards 
to estimating discriminability and testing hypotheses: 
Although incorporating confidence ratings is gener-
ally advantageous, there are a number of circumstances 
in which binary judgments are enough to obtain a valid 
SDT characterization (Q2).

Our reanalysis of Wilson et  al.’s (2019) data suggests 
that people’s response criteria change across the lineup 
sequence and that they are affected by the rejection of 
the target. These results are consistent with the learn-
ing process postulated by Turner et al. (2011): When the 
target is rejected, this leads the witness to change their 
belief regarding the latent strength of lures. Namely, the 
witness will believe that lures are generally “more famil-
iar” than they actually are. This change can produce a 
conservative shift in the response criterion, especially 
if said criterion is trying to maintain a certain degree of 
response bias (Kantner & Lindsay, 2012; 2014; see also 
Fig. 2). It is worth pointing out that this observed pattern 
is at odds with previous experimental reports coming 
from the recognition memory literature (Malmberg and 
Annis, 2012).

In contrast, we found minimal, nonsignificant effects of 
sequence position at the level of discriminability. These 
results are strengthened by complementary simulations 
showing that the observed differences in model perfor-
mance (when fitting confidence ratings) are consistent 
with the null hypothesis and inconsistent with the pres-
ence of an effect, even if small (see Fig.  10). In short, 
the testing conditions—in terms of both experimental 
design and the models implemented—are well suited for 
detecting the kind of differences in discriminability pos-
tulated by the DFD hypothesis (Q3). But although these 
results speak against the DFD hypothesis, it would be a 
mistake to generalize beyond this specific procedure or 
even this specific study. It is clear from earlier discussions 
comparing simultaneous and sequential lineups that the 
learning opportunities postulated by the DFD hypoth-
esis were already expected to be limited in the latter case 
(see Wilson et al., 2019; Wixted & Mickes, 2014). There 
is also the fact that Wilson et al.’s study did not actually 
impose a stopping rule; its imposition was emulated 

afterwards when structuring the data for analysis. The 
generalizability of these results will be put to the test in 
the section below, where we reanalyze the data from a 
follow-up study by Dunn et al. (2022) in which a stopping 
rule was enforced. Interestingly, we observe discrepan-
cies between the two studies that need to be addressed. 
Beyond generalizability, we will tackle a number of issues 
also raised by Dunn et al., regarding the use of aggregate 
data and its inferential risks.

Finally, we compared sequential lineups with showups. 
The discriminability estimated in both procedures was 
essentially the same, which speaks against the use of 
sequential lineups altogether given the effects of target 
sequence positioning (see the left panel of Figs. 3 and 9). 
However, an alternative comparison based on expected 
utilities provides a more nuanced picture, indicating spe-
cific scenarios in which sequential lineups are preferred, 
especially if the stopping rule is removed (Q4). To be 
clear, our comparisons of expected utilities are based on 
arbitrary utility values assigned to each possible outcome. 
That being said, we believe that the present utility values 
are more sensible than simply setting the utilities of all 
un/desirable outcomes to ±1 , as done in previous work 
(e.g., Smith, Lampinen, Wells, Smalarz, & Mackovichova, 
2018). The utility values adopted here capture some of 
our most basic intuitions regarding the relative severity 
of the different outcomes: On the one hand, we perceive 
the incorrect identification of an innocent suspect as a 
tragic outcome whose avoidance should be prioritized. 
On the other hand, we find the incorrect identification of 
a known lure in a target-present outcome (which favors 
the guilty suspect) to be a worse outcome than failing to 
recognize anyone, or incorrectly recognizing a known 
lure in a target-absent lineup. Researchers are of course 
encouraged to consider alternative utilities, provided that 
some kind of justification is provided.

Revisiting Dunn et al. (2022)
Dunn et al.’s (2022) experimental design differs from Wil-
son et al.’s (2019) in two major ways: First, they relied on 
an asymmetric ratio (approximately 4 to 1) of responses 
collected from target-present and target-absent lineups. 
Their rationale was that a biased ratio, which increases 
the total number of responses to target-present lineups, 
is preferable when attempting to characterize phenomena 
related to target positioning. Second, their study imposed 
a stopping rule, such that the sequential lineup proce-
dure terminated as soon as a participant made their first 
“yes” response. The data were modeled exactly as in the 
case of Wilson et al., but in light of the results reported 
earlier, we focused our efforts entirely on the confidence 
rating data and on the SDT models with unconstrained 
response criteria.
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Analysis of confidence judgments
The modeling results reported in Table 6 show that, con-
trary to what we found with Wilson et al.’s (2019) study, 
both models SDTτ4,µ1 and SDTτ4, σ1 outperform their 
competitors. These two models were found to provide a 
competent characterization of the data ( G2

df=137 = 171 , 
p = .03 ), especially when taking into consideration the 
large sample size. For reference, the observed ROCs 
and the predictions made by model SDTτ4,µ1 are con-
trasted in Fig.  14. For both SDTτ4,µ1 and SDTτ4, σ1 , 
restricting σ 2

T = σ 2
L = 1 led to large increases in misfit 

( �G2
df=1 = 89.19 , p < .0001 ). This result corroborates 

earlier findings that σ 2
T < σ 2

L in the context of eyewitness 
judgments (e.g., Wixted et al., 2018).

An inspection of the parameters estimates of models 
SDTτ4,µ1 and SDTτ4, σ1 in Table 6 shows that α2−6 = 1.17 
and β2−6 = 0.73 . Both estimates indicate a clear increase 
in discriminability after the first sequence position. These 

Table 6  Model selection results and parameter estimates (Reanalysis of Dunn et al., 2022)

The best-performing values according to AIC and BIC are underlined and in bold font

Confidence rating judgments

Model Parameters G2 AIC BIC

SDTτ4, ∅ 30 215 275 482

SDTτ4,µ1 31 171 233 446
SDTτ4, σ1 31 171 233 446
SDTτ4,µ2 36 169 240 488

SDTτ4, σ2 36 169 240 488

SDTτ4, ∅ SDTτ4,µ1 SDTτ4, σ1 SDTτ4,µ2 SDTτ4, σ2

µT 0.88 µT 0.78 µT 0.78 µT 0.78 µT 0.78

σ 2
T

0.47 σ 2
T

0.46 σ 2
T

0.46 σ 2
T

0.46 σ 2
T

0.46

τ0,1 0.39 α1 1 ξ1 1 α1 1 ξ1 1

τ0,2 0.50 α2−6 1.17 ξ2−6 0.73 α2 1.17 ξ2 0.73

τ0,3 0.44 τ0,1 0.41 τ0,1 0.41 α3 1.16 ξ3 0.74

τ0,4 0.43 τ0,2 0.50 τ0,2 0.43 α4 1.19 ξ4 0.71

τ0,5 0.42 τ0,3 0.44 τ0,3 0.38 α5 1.17 ξ5 0.73

τ0,6 0.42 τ0,4 0.43 τ0,4 0.37 α6 1.12 ξ6 0.80

δ 0.49 τ0,5 0.44 τ0,5 0.37 τ0,1 0.41 τ0,1 0.41

� 0.13 τ0,6 0.43 τ0,6 0.37 τ0,2 0.50 τ0,2 0.43

ω 0.84 δ 0.45 δ 0.39 τ0,3 0.44 τ0,3 0.38

η -0.17 � 0.16 � 0.16 τ0,4 0.43 τ0,4 0.36

γ 0.01 ω 0.83 ω 0.83 τ0,5 0.43 τ0,5 0.37

η -0.17 η -0.17 τ0,6 0.42 τ0,6 0.38

γ 0.01 γ 0.01 δ 0.44 δ 0.38

� 0.14 � 0.13

ω 0.84 ω 0.84

η -0.17 η -0.17

γ 0.02 γ 0.02

Fig. 14  Observed confidence rating ROCs and the corresponding 
predictions from SDTτ4,µ1 (Reanalysis of Dunn et al., 2022)
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effects should be seen as optimistic estimates though: A 
visual inspection of the ROCs in Fig.  14 shows that the 
predicted ROC for position 1 dominates its observed 
counterpart. What this means is that discriminability in 
sequence position 1 is being overestimated, which in turn 
suggests that the difference between this sequence posi-
tion and the others is being inflated (but see Footnote 13). 
We also note that the learning effect is limited in scope: 
The improvements offered by models and SDTτ4,µ2 
SDTτ4, σ2 are negligible at best (largest �G2

df=4 = 2.32 , 
smallest p = .68 ) and the estimated changes in discrimi-
nability do not suggest any kind of monotonic pattern 
(see Table  6). If anything, discriminability appears to 
reach a plateau after an initial increase. We will return to 
this issue in the section below.

Turning our attention to response criteria, we also 
observe some discrepancies relative to Wilson et  al. 
(2019): Restricting the binary response criteria τ0 in 
the SDTτ4,µ1 and SDTτ4, σ1 models to be fixed across 
sequence positions did not lead to statistically signifi-
cant increases in badness of fit (largest �G2

df=5 = 8.41 , 
smallest p = .13 ). We found large differences in misfit 
when setting δ = 0 ( �G2

df=1 = 62.86 , p < .0001 ) but not 
when setting � = 0 ( �G2

df=1 = 2.89 , p = .09 ). Figure 15 
illustrates the differences in proportions of “yes” 
responses (observed and predicted) when condition-
ing on a prior target rejection. These differences, which 
are similar but smaller than the ones found in Wilson 

et al.’s data (see Fig. 7), show a stable decrease in “yes” 
responses after the target is rejected.

Altogether, the modeling results obtained with Dunn 
et al.’s (2022) data support the idea that people learn how 
to make recognition judgments throughout the lineup 
sequence. This learning is manifested in two different 
ways: On the one hand, we found an increase in discrimi-
nability, in line with the DFD hypothesis. On the other 
hand, we also saw changes in the response criteria when 
participants incorrectly rejected the target, which is con-
sistent with the learning process proposed by Turner 
et  al. (2011). But how can the aforementioned change 
in discriminability be reconciled with the “null effect” 
obtained with Wilson et al.’s (2019) data? Our attempts to 
provide an answer to this question are detailed in the sec-
tion below.

Contrasting and reconciling the two studies
One of the major differences between the Wilson et al.’s 
(2019) and Dunn et  al.’s (2022) studies was the ratios 
of responses to target-present and target-absent line-
ups collected. At first glance, this difference appears to 
offer an explanation for the observed discrepancies at 
the level of discriminability: The biased ratio adopted 
by Dunn et  al. is particularly advantageous when try-
ing to characterize effects related to target position-
ing, which is the exact kind of effect being postulated 
by the DFD hypothesis—discriminability increasing 
across sequence positions. This explanation strikes us 

Fig. 15  Differences in the conditional probability of responding “yes” in sequence position i between target-present and target-absent lineups. 
The different symbols distinguish the preceding position taken by the target in target-present lineups
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as implausible for two reasons: First, the two datasets 
have clear qualitative differences in terms of the ROC 
curve for sequence position 1 (compare Figs. 9 and 14). 
Second, the simulation results reported in the previous 
section show that even small differences—considerably 
smaller than the one found in Dunn et  al.’s data—can 
be reliably detected with Wilson et  al.’s experimental 
design.

A second experimental design difference that stands 
out is the way that each study handled participants’ 
“yes” judgments: Dunn et al.’s (2022) procedure imposed 
a stopping rule, whereas participants in Wilson et  al.’s 
(2019) study were required to evaluate all the faces in the 
sequence. Recent work by Horry et al. (2021) has shown 
that the presence of a stopping rule induces more con-
servative response criteria. A comparison of the response 
criteria estimated from the two datasets replicates this 
finding, with Dunn et al.’s estimates being more conserva-
tive. When cast in terms of log-likelihood ratios (which 
take into account discriminability differences; see Mac-
millan & Creelman, 2005, Chap. 2), the criteria from Wil-
son et al. were always more lenient than their Dunn et al. 
counterparts, with an average difference of -0.67 (paired 
Wilcoxon test: W = 0 , p = .03).

Aside from response criteria, this procedural dif-
ference also invites different explanations for the dis-
crepancies found at the level of discriminability: One 
possibility is that the absence of a stopping rule in Wil-
son et  al.’s (2019) study discourages people from seri-
ously engaging with the task. After all, it introduces the 
notion that mistakes can be corrected down the line. 
In principle, a reduced engagement could compromise 
learning throughout the lineup. Fortunately, there is 
one way to directly test this hypothesis: As previously 
discussed, the second experiment reported by Wilson 
et  al. also collected responses from a showup proce-
dure. Importantly, this procedure does not give any 
opportunity for corrections later on. If participants 
are expected to be less engaged in sequential lineups 
without a stopping rule, then performance in the first 
sequence position should lead to a lower discriminabil-
ity relative to the showup condition. But as discussed 
earlier, the two conditions do not differ in terms of dis-
criminability (see Fig. 12). This means that the data do 
not provide any support to the notion that the observed 
discrepancy between Wilson et  al. and Dunn et  al. is 
due to some kind of reduced engagement caused by the 
lack of a stopping rule.

However, we can think of a second possible explanation 
that puts the onus on Dunn et al.’s (2022) study: Perhaps, 
a small portion of their participants selected the first face 
that they encountered in order to complete the experi-
ment as fast as possible. This explanation highlights one 

of the issues that arises from the use aggregate data. 
Namely, that differences between participants might be 
mistaken for effects taking place at the individual level 
(for a relevant discussion, see Regenwetter & Robinson, 
2017). Dunn et al. raised a similar concern when discuss-
ing the effect of target rejections (which we will address 
later on). But there is no reason for circumscribing these 
concerns to that specific effect. The feasibility of this 
explanation in the present case was evaluated by fitting 
an extended version of the SDTτ4, ∅ model. This extended 
model assumes that participants’ responses follow a two-
component mixture distribution: With probability π , a 
sampled participant is “serious” such that their judg-
ments are assumed to follow the SDTτ4, ∅ model. With 
complementary probability 1− π , a sampled participant 
is “unserious,” such that they always select the first face 
that they encounter in the sequence. Confidence rating 
probabilities for “unserious” participants were deter-
mined by the following state-mapping function, which is 
governed by a single parameter ζ > 0 . Let k = 1, . . . ,K  
denote the K confidence levels associated with a “yes” 
response, with k = 1 denote minimum confidence, and 
k = K  maximum confidence (for a similar approach, see 
Klauer & Kellen, 2010):

The ability of this extended model to describe the 
observed data was found to be comparable to the 
SDTτ4,µ1 model, with G2

= 167 (AIC = 231 and BIC 
= 452 ). The two models make virtually identical pre-
dictions. Parameter estimates for the extended SDTτ4, ∅ 
model were π = .95 and ζ = 0.89 , which indicate that the 
observed increase in discriminability (which is likely to 
be an overestimate, as discussed earlier) can be attributed 
to 5% of the participant sample invariably choosing the 
first face that they encountered with relatively low confi-
dence (for k = 1, 2, 3, 4 , the confidence rating probabili-
ties were .61, .25, .10, and .04, respectively).

In response, one could argue that it is not very surpris-
ing that a change in discriminability can be (re)described 
in terms of a change in mixture weights (see DeCarlo, 
2010; Province & Rouder, 2012). The point is well taken, 
but it overlooks the circumstances behind this alternative 
characterization: The enforcement of a stopping rule in 
Dunn et al.’s (2022) sequential lineup procedure—and the 
lack thereof in Wilson et al.’s (2019) procedure—is what 
motivated this explanation in the first place. Second, this 
alternative explanation represents one of the many kinds 
of aggregation biases that could be present, biases that 
also concerned Dunn et al. (2022). We see no a priori rea-
son to treat the present case as less plausible or legitimate 

P(“k” | “yes”, unserious) =
exp(−ζk)

∑K
k ′=1 exp(−ζk ′)

.
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than any other kind of aggregation bias, such as the pos-
sibility of “selection biases” on the effect of target rejec-
tions. Third, the characterization offered by the SDTτ4,µ2 
model for Dunn et  al.’s data suggests a 17% increase in 
discriminability immediately after the first face is rejected 
but no clear changes afterwards—discriminability basi-
cally reaches a plateau (see Table 6; see also Dunn et al., 
Figure 3a). What this means is that, if we are in fact deal-
ing with an active learning process, then the conditions 
in which it manifests itself turn out to be dramatically 
narrow. Fourth, there is the fact that this learning process 
is somehow absent in Wilson et  al.’s data, even though 
there is no reason to expect its absence there, nor should 
there be any difficulty in detecting its presence. Finally, 
this reaction overlooks a very clear message: that only 
five percent of the online participant sample are enough 
to distort the data in the direction of the DFD hypothesis. 
In order to outright dismiss this alternative explanation, 
researchers would have to possess a degree of experimen-
tal knowledge/control that is arguably unrealistic.

Dissolving the between‑/within‑subjects distinction 
in sequential lineup modeling
The previous section reiterated the inferential risks 
associated with relying on aggregate data. Some of 
these risks were discussed by Dunn et  al. (2022), who 
tried to remedy them by conducting a so-called within-
subjects analysis of Wilson et  al.’s (2019) data. This 
analysis, which forfeited any kind of stopping rule emu-
lation and modeled the entire sequence of six responses 
produced by each participant, was contrasted with the 
“between-subjects” analysis that enforced it. Note that 
according to Dunn et al.’s classification, all of the model 
comparisons reported in the present manuscript up to 
this point are “between-subjects” analyses. The results 
obtained in their “within-subjects” SDT model analy-
sis corroborated some of the results obtained with its 
“between-subjects” counterparts, such as the effect of 
rejecting the target on response criteria (see Fig.  7). 
But whereas their “between-subjects” analysis found 
no effect of sequence position on discriminability (con-
sistent with the present results), their “within-subjects” 
analysis found discriminability to decrease as the lineup 
sequence unfolded. Dunn et al. attributed this discrep-
ancy to the presence of output interference or item 
noise effects (Criss et al., 2011; Osth et al., 2018).

We disagree with the understanding behind this 
between-/within-subjects distinction. As we will show 
below, it is a mistake to think that this “within-sub-
jects” analysis offers some kind of alternative perspec-
tive: When properly construed, it becomes clear that 
one analysis is a proper subset of the other. This rela-
tionship appears to be overlooked because of additional 

invariance assumptions being enforced at the level of 
the data (i.e., enforced by the aggregation steps con-
ducted). It turns out that these assumed invariances are 
what ultimately drives the discrepancies between both 
analyses. These issues are discussed in detail below, 
as they demonstrate how careful researchers must be 
when dealing with aggregate lineup data.

Let us begin with the between/within-subjects dis-
tinction. This distinction traditionally refers to the 
comparison between different groups of individuals viz-
à-viz the comparison of the same group of individuals 
across experimental conditions. But this contrast can-
not be applied here, given that the “between-subjects” 
analysis also considers the responses made by the same 
participant across different conditions (sequence posi-
tion, target vs. lure). What distinguishes both analyses 
is the censoring imposed by the stopping rule: Whereas 
one analysis only includes the first “yes” response, the 
other includes the entire sequence of responses. Con-
sider the following censored response sequence, in 
which the item in sequence position 4 is (the first to be) 
recognized and the uncensored sequences of length six 
that can stem from it:

Going from censored to uncensored sequences 
increases the total number of unique sequences that 
can be observed in a given lineup. For lineups of length 
six, we have to consider how each of the seven censored 
patterns can be expanded, which ends up amounting to 
1+

∑6
i=1 2

i−1
= 64 unique uncensored sequences.

The same SDT model framework described in Eqs.  1 
and  2 can be used to characterize censored and uncen-
sored response sequences. The major difference between 
both applications being that a number of multiplicative 
terms would be omitted in the former case, namely the 
terms denoting the probabilities of responses made after 
the first “yes.” However, it is would be unwise to assume 
that no further modifications are necessary. After all, 
we are dealing with an experimental task in which it is 
clear to everyone (participants included) that there is 
at most one target in a given lineup. We are not dealing 
with a randomized test list comprised of multiple stud-
ied and non-studied words, of the kind typically found in 
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recognition memory studies. For instance, it is sensible 
to assume that a second “yes” response is only produced 
when the latent strength of a given face is greater than 
the previously recognized one, which implies a conserva-
tive shift of the response criterion. The possibility of dis-
criminability being affected by a previous “yes” response 
is also plausible a priori, as evidenced by the numerous 
studies investigating the effects of repeating sequences 
and/or providing feedback (e.g., Godfrey & Clark, 2010; 
Horry et  al., 2015; Palmer et  al., 2010; Steblay et  al., 
2011a). In fact, rejecting this possibility a priori would 
result in a somewhat bizarre scenario in which we are 
willing to entertain the impact of rejecting the target on 
response criteria while simultaneously denying the possi-
bility that a positive ID could in any way affect any of the 
eyewitness judgments made afterwards.

A simple way to incorporate the considerations above 
into our SDT models consists of allowing SDT parame-
ters to change after a “yes” response has been made. Let 
{µ/σ , τ0} denote the set of parameters operating up to the 
point a “yes” response is first made, and {µ⋆/σ⋆, τ

⋆

0
} 

denote the set of parameters operating afterwards. Now, 
let us consider the seven uncensored response sequences 
below, where “ ” denotes unspecified yes/no responses:

As previously mentioned, the sixty-four possible 
uncensored sequences are obtained when expanding 
the seven possible censored sequences beyond the first 
“yes” response. The seven sequences listed immediately 
above capture how this expansion takes place and how 

any uncensored sequence can be cast as the conjunction 
of two segments representing pre- and post-first-“yes” 
responses—pre ∩ post . Now, note that the probability 
of any given uncensored sequence can be expressed as 
P(pre ∩ post) = P(pre)× P(post | pre) . The first 
product term, which corresponds to the probability of 
the censored sequence segment, is governed by its own 
set of parameters, namely {µ/σ , τ0} . The second prod-
uct term, a conditional probability, refers to responses 
made after the first “yes” response; these responses are 
governed by their own parameter set {µ⋆/σ⋆, τ

⋆

0
} . 

This decomposition makes it clear why an analysis of 
uncensored sequences cannot be used as a form of cor-
roboration—basically the same set {µ/σ , τ0} of function-
ally independent parameters are being estimated in both 
analyses. In fact, any discrepancy between the estimates 
obtained with censored and uncensored sequences will 
be caused by the model’s inability to accurately describe 
P(post | pre) , in all likelihood due to constraints being 
imposed over {µ⋆/σ⋆, τ

⋆

0
}.

The relationship between the two kinds of analyses 
is not obvious in Dunn et  al.’s (2022) analyses because 
they did not fit their models to uncensored response 
sequences directly. Instead, they opted to focus on the 
(marginal) response probabilities associated with each 
sequence position. This approach throws away a con-
siderable amount of sequential information, enforcing 
the assumption that, aside from past encounters with 
the target, participants’ responses at a given position are 
independent and identically distributed (i.i.d.).17 What 
this means is that very different sequences are treated 
as equivalent when determining P(“yes′′) for a given 
position. Sequences that, as discussed above, are likely 
governed by different sets of SDT parameters. For exam-
ple, for sequence position 3, it treats the four sequences 
below as equivalent (the first being the only one consid-
ered when analyzing censored sequences):

17  To understand the loss of information implied, note that the uncensored 
binary response sequence data from Wilson et al. (2019) can be represented in 
terms of seven joint multinomial distributions with sixty-four categories each, 
for a total of 441 degrees of freedom. In contrast, Dunn et  al. (2022) repre-
sented the data in terms of 7× 6 = 42 joint binomial distributions, for a total 
of just 42 degrees of freedom.
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Fig. 16  Binary response ROCs (from Wilson et al., 2019) obtained 
with marginal responses per sequence position (each point 
corresponds to a sequence position, from 2 to 6). Black squares 
denote cases in which no “yes” responses were made in any previous 
positions (pre-“yes”). Black circles denote the complementary cases 
in at least one “yes” response was previously made (post-“yes”)

18  This structuring of the data still assumes all cases in which a “yes” 
response was previously made as i.i.d. This strikes us as a small price to pay 
given that we distinguish them from cases in which no such response has 
been made.

This i.i.d. assumption enforces a bizarre scenario—
discussed earlier—in which any possible effect of prior 
responses is excluded a priori. Importantly, because this 
assumption is introduced in the way responses are rep-
resented in the data (marginal responses rather than 
sequences) the researcher is effectively unable to deter-
mine its violation by inspecting SDT model misfits (for 
extensive discussions, see Birnbaum, 2011, 2013). In 
order to evaluate the merits of this assumption, one needs 
to “unpack” the data and directly test the null hypoth-
esis that the probability of a “yes” response on a given 
position i is the same across all of the possible preced-
ing sequences (for a discussion, see Smith & Batchelder, 
2008). It turns out that this hypothesis is at odds with the 
data. For example, in the case of “yes”/“no” responses 
to a target on position 3 ( G2

df=3 = 72.17 , p < .0001 ). This 
result follows from the fact that the probabilities of “yes” 
response across the four possible sequences listed above 
are .84, .56, .50, and .64, respectively. In words, the prob-
ability of a “yes” response to a target at position 3 is con-
siderably lower when participants gave at least one “yes” 
response before. A statistically significant violation of i.i.d 
is also obtained when looking at “yes” responses in posi-
tion 3 of target-absent lineups, with proportions .19, .10, 
.13, and .22 ( G2

df=3 = 72.17 , p < .0001).
These violations of the i.i.d. assumption help us under-

stand the reason why Dunn et al. (2022) found discrimi-
nability to decrease across sequence positions in their 
“within-subjects” analysis, which they attributed to out-
put interference or item noise (Criss et  al., 2011; Osth 
et al., 2018). Based on the response proportions above, it 
appears that discriminability might be lower after a “yes” 
response has been made. In response, we conducted a 
more rigorous analysis that paired choice proportions 

for targets/lures in target-present/absent lineups at each 
sequence position, from 2 to 6. We unpacked each of 
these pairs in terms of whether or not a “yes” response 
was previously made (hence the exclusion of the first 
sequence position).18 

These pairs can be cast as hit/false alarm pairs and fit 
with a traditional SDT model for binary choices (e.g., 
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Bröder & Schütz, 2009; Dube & Rotello, 2012). Discrimi-
nability and response criteria were allowed differ if a “yes” 
response was previously made. Criteria were also allowed 
to differ as a function of sequence position. This model fit 
the data well ( G2

df=2 = 6.78 , p = .34 ), as shown in Fig. 16. 
In terms of parameter estimates, the prior occurrence of 
“yes” responses was associated with lower discriminabil-
ity ( da difference = 0.35; �G2

df=2 = 12.12 , p = .002 ) as 
well as stricter response criteria (mean τ0 difference = 
0.39; �G2

df=5 = 30.11 , p < .0001). 19

With these results as a backdrop, we now turn to the 
prevalence of previous “yes” responses across sequence 
positions, which can be extracted from Table  1: In the 
case of target-present lineups, the percentages were 20%, 
33%, 45%, 57%, and 60%, for positions 2-6. In target-
absent lineups, they were 18%, 31%, 45%, 57%, and 64%. 
What these percentages are telling us is that the more 
faces one has evaluated, the greater the chances that 
some of them were recognized along the way. Jointly, 
the model fits and the percentages provide a clear expla-
nation of Dunn et  al.’s findings: Scenarios in which a 
“yes” response was previously made are associated with 
lower discriminability; scenarios that become increas-
ingly prevalent in later sequence positions. Collapsing 
these scenarios with those in which no “yes” response 
has been made before results in aggregate data that spu-
riously suggest a decrease in discriminability across 
sequence positions.

Can target rejection effects be attributed to aggregation?
The invalidity of Dunn et  al.’s (2022) “within-subjects” 
analysis does not dismiss the concerns that it tried 
to address. Among them was the possibility that the 
observed effects of target rejection on subsequent lineup 
positions might be due to “selection biases.” Their argu-
ment can be summarized as follows:

•	 Participants adopt different response criteria, which 
they hold throughout the lineup condition.

•	 The more conservative the criteria, the fewer identifi-
cations will be made overall.

•	 Therefore, it should be expected that the more con-
servative eyewitnesses will be overrepresented 
among those whose lineup has not yet been termi-
nated by a target acceptance (i.e., more conservative 
eyewitnesses will be overrepresented in sequences 
where the target appears later on).

Dunn et al.’s (2022) concern can be assessed indirectly, by 
using simulations to evaluate the plausibility of the selec-
tion bias hypothesis: When considering well-defined syn-
thetic scenarios, do we find the aforementioned selection 
biases producing the kinds of effects observed in Figs. 7 
and 15? Our evaluation consisted of three different simu-
lations, all using the SDTτ1, ∅ model as a basis (according 
to this model, the discriminability and criteria of each 
individual are fixed throughout the lineup). For simplic-
ity, we also assumed that σ 2

T = σ 2
L = 1:

•	 Simulation 1: We only allowed the response criterion 
τ0 to vary across eyewitnesses while fixing µT to 0.75. 
Each individual τ0 was sampled from a uniform dis-
tribution ranging from −0.25 and 1.

Fig. 17  Simulated differences in the conditional probability of responding “yes” in sequence position i between target-present and target-absent 
lineups. The different symbols distinguish the preceding position taken by the target in target-present lineups

19  Please note that this reduction in discriminability after the first “yes” 
response does not negate the overall improvements coming from removing 
the stopping rule (see Table 5). Both findings can coexist in perfect harmony. 
It is easy to see why: Even if discriminability is reduced after the first “yes” 
response, it is still quite likely that the target, when encountered later on, will 
be the most familiar out of all the faces in the sequence.
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•	 Simulation 2: Both τ0 and µT varied across eyewit-
nesses. Each individual µT was sampled from a uni-
form distribution ranging from 0.10 to 1.40 (note that 
µT = −µL ). Individual τ0 were sampled as described 
in Simulation 1.

•	 Simulation 3: Both τ0 and µT varied across eyewit-
nesses, but we also assumed that τ0 was a function of 
a likelihood ratio (LR; for a review, see Glanzer et al., 
2009). Individual LRs were sampled from an uniform 
distribution ranging from 0.75 and 2, whereas µT val-
ues were sampled as described in Simulation 2.

In each simulation, a total of 100,000 synthetic eyewit-
nesses were generated. Figure  17 illustrates the results in 
the exact same way as Figs. 7 and 15 did for Wilson et al.’s 
(2009) and Dunn et  al.’s (2022) data. The only simula-
tion that shows differences in line with the selection bias 
hypothesis is Simulation 1. However, the observed differ-
ences are considerably smaller, especially when compared 
against the results from Wilson et  al. Both simulations 
2 and 3, which can be seen as somewhat more realistic 
due to their introduction of individual differences at the 
level of discriminability, show an effect in the opposite 
direction. Both results show that individual differences 
in terms of discriminability and response criteria can 
interact in ways that ultimately render the selection bias 
hypothesis an implausible candidate explanation. The 
three simulations, together with the fact that we have a 
principled account for the effect of target rejection based 
on belief updating (see Fig. 2), lead us to believe that the 
effect of target rejections cannot be easily dismissed as 
the mere outcome of some kind of aggregation bias, that 
it is a real phenomenon taking place at the individual 
level.

Discussion
Dunn et  al.’s (2022) study makes two important con-
tributions: First, it reports new experimental data that 
replicate Wilson et  al. (2019) while imposing an actual 
stopping rule. The modeling results obtained with their 
data support an increase in discriminability, as postulated 
by the DFD hypothesis, as well as an effect of target rejec-
tion on response criteria, as expected by the learning 
process proposed by Turner et  al. (2011). However, one 
might interpret the observed stability of response criteria 
across sequence positions as an indictment against this 
learning process. In our view, this would be a mistake, as 
one should keep in mind that different trends at the indi-
vidual level (e.g., increasingly strict/liberal criteria) can 
cancel out at the aggregate level. What is common across 
all these heterogeneous individual cases is the expec-
tation that the rejection of the target will result in an 

overestimation of the lure distribution, which in turn will 
induce the kind of conservative shifts that were found in 
both datasets.

A second important contribution is their explicit con-
cern with the problems that aggregate data can pose. 
Motivated by similar concerns, we conducted additional 
analysis investigating how results could be distorted by 
the aggregation of heterogeneous individuals. One of our 
results showed that the observed increase in discrimina-
bility found in their data can be attributed to an unac-
counted mixture of individuals (Q5). Further empirical 
work is necessary in order to determine the merits of this 
alternative explanation. In terms of response criteria, we 
did not find any reason to dismiss the effects of target 
rejection as the outcome of a “selection bias” that over-
represents conservative individuals (Q5). Finally, we criti-
cally evaluated the “within-subjects” analysis proposed 
by Dunn et  al., which attempts to sidestep aggregation 
biases by removing the stopping rule from the sequential 
lineup procedure. Our critique lays out the reasons why 
this analysis should be dismissed in toto (Q6): It enforces 
i.i.d. assumptions that are not only unreasonable a priori 
but also rejected by the data when directly tested. Relax-
ing these i.i.d. assumptions does not provide any kind 
of relief though; it only leads to a redundant analysis of 
uncensored response sequences. To be clear, we are not 
arguing that there is no value in removing the stopping 
rule from sequential lineups—our expected utility analy-
ses already showed that there is (see Fig. 13). We are sim-
ply saying that its removal cannot serve the role bestowed 
to it by Dunn et al.

General discussion
SDT is arguably one of the greatest success stories in 
modern psychological research, with its application to 
recognition memory being a particularly notable example 
(for recent overviews, see Kellen & Klauer, 2018; Kellen 
et al., 2021; Rotello, 2019; Wixted, 2020). In light of this 
success, nobody should be surprised to see its application 
being regularly extended to new domains. In the case of 
eyewitness research, the inception of SDT modeling and 
the different concepts surrounding it (e.g., ROC func-
tions) led to a renewed discussion on the relative merits 
of alternative procedures such as lineups and showups 
(see Gronlund et  al., 2015). One of its most positive 
impacts has been the vindication of the idea that the 
relationship between people’s responses and theoretical 
concepts such as mnemonic discriminability is not trivial 
(e.g., Rotello & Chen, 2016; Starns et al., in press).

However, one should not confuse the merits of SDT 
modeling with the notion that it is a risk-free enter-
prise. After all, an excessive reliance on specific mod-
els and data structures can always lead to myopic or 
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biased understandings (see Kellen, 2019; Spektor Kel-
len & Hotaling, 2018). For instance, the fact that one 
can subject eyewitness judgments to the same kinds of 
treatments given to recognition memory data does not 
mean that the two are essentially the same. Simply put, 
researchers need to take the unique characteristics of 
eyewitness procedures seriously. Fortunately, this issue 
has not gone unnoticed, as demonstrated by the recent 
efforts toward model tailoring and refinement (e.g., Dunn 
et al., 2022; Kaesler et al., 2020; Wilson et al., 2019; Wix-
ted et al., 2018). The present work takes additional steps 
in this direction, by providing a comprehensive dis-
cussion on how to model sequential lineup data with-
out compromising its “natural structure” or imposing 
unnecessary constraints, and the problems that can arise 
when failing to do so. For instance, in the case of Wilson 
et al. (2019), we saw how the unnecessary restriction of 
response criteria across sequence positions resulted in 
spurious evidence for changes in discriminability. In the 
case of Dunn et al. (2022), we saw how the introduction of 
questionable i.i.d. assumptions in their “within-subjects” 
analysis led to discrepant results and a misunderstanding 
of how they relate to “between-subjects” analyses.

According to Wilson et  al. (2019), sequential lineups 
are “not well understood theoretically” (p. 122). This 
statement is corroborated by the discrepancies found 
between the two reanalyzed datasets and the challenges 
faced when trying to make sense of them. Our under-
standing of these discrepancies is that they are likely due 
to unaccounted aspects of the experimental design, such 
as the potential effect of enforcing a stopping rule on 
participant engagement. This possibility, together with 
observed benefits of removing the stopping rule, should 
be seen as encouragement for future work exploring dif-
ferent sequential lineup procedures. Our inability to 
sometimes go beyond (data- and simulation-informed) 
speculations is largely due to the reliance on aggregate 
data, which can yield results that might represent only a 
minority of individuals (Regenwetter & Robinson, 2017; 
Regenwetter et al., in press). Other issues also play a role, 
such as the use of different stimulus sets across studies, 
which introduce distorting “item effects” (see Singmann 
& Kellen, 2019; Trippas et  al., 2018). Fortunately, there 
are well-established hierarchical extension methods for 
SDT models that could in principle address these con-
cerns, provided that one can go beyond what the pre-
sent data have to offer (see DeCarlo, 2011; Freeman 
et al., 2010; Pratte & Rouder, 2011; Trippas et al., 2018). 
In any case, one should not let the observed discrepan-
cies detract from the consistencies that we were also able 
to identify, such as the lower latent strength variance for 
targets relative to lures (i.e., σ 2

T < σ 2
L ), and the impact of 

target rejections on response criteria, which is line with 
the learning process postulated by Turner et al. (2011).

When searching for ways to obtain more informative 
lineup data, researchers are strongly encouraged to capi-
talize on SDT’s impressive track record in linking differ-
ent types of judgments (see Gepshtein et al., 2020; Kellen 
et  al., 2021; Meyer-Grant & Klauer, 2021). For exam-
ple, Kellen et  al. (2012) relied on the close relationship 
between ranking and yes-no recognition judgments 
to estimate criterion noise under minimal assumptions 
(for other examples of joint modeling, see Rouder & 
Batchelder, 1998; Chechile, 2004, Jang et al., 2009). This 
example is worth highlighting given the surging inter-
est in eliciting rankings from eyewitnesses (see Brewer 
et  al., 2020; Carlson et  al., 2019). In the case of eyewit-
ness identification, the joint modeling of simultaneous 
and sequential lineups appears to be quite promising, 
especially with regards to the testing of the DFD hypoth-
esis: In their analysis of simultaneous lineups, Wixted 
et al. (2018) formalized the DFD hypothesis in terms of 
an “ensemble” SDT model that makes strong assump-
tions about the way that the latent strengths of the dif-
ferent options are considered together. In principle, the 
joint modeling of sequential and simultaneous lineups 
could be used to model the DFD hypothesis under more 
relaxed assumptions and establish closer links between 
the different eyewitness identification procedures.

On the other hand, researchers should also be mind-
ful that the granularity of model-based characteriza-
tions is bounded by the richness of the data, which in 
turn are dependent on a number of real-world con-
straints (especially in applied settings). For instance, 
one can easily think of applied scenarios in which con-
fidence ratings are simply not available or are perhaps 
unreliable. Fortunately, SDT models can be successfully 
applied to binary responses in order to answer a num-
ber of relevant questions, as demonstrated here. This 
possibility is an important reminder that models can 
serve multiple roles: They can provide a rich medium 
for theoretical development and refinement, but also 
serve as measurement tools. These roles are beholden 
to different standards (see Kellen, 2019; Navarro, 2019). 
For the latter role, it is often sensible to rely on simpli-
fied models, provided that they satisfy specific meas-
urement desiderata (e.g., van Ravenzwaaij et al., 2017).
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