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Abstract

A genome-wide association study (GWAS) seeks to identify genetic variants that contribute

to the development and progression of a specific disease. Over the past 10 years, new

approaches using mixed models have emerged to mitigate the deleterious effects of popula-

tion structure and relatedness in association studies. However, developing GWAS tech-

niques to accurately test for association while correcting for population structure is a

computational and statistical challenge. Using laboratory mouse strains as an example, our

review characterizes the problem of population structure in association studies and

describes how it can cause false positive associations. We then motivate mixed models in

the context of unmodeled factors.

Introduction

Genetics studies have identified thousands of variants implicated in dozens of common

human diseases [1–5]. These variants are locations in the human genome where genetic con-

tents differ among individuals in a population. A genome-wide association study (GWAS)

seeks to identify genetic variants that contribute to the development and progression of a spe-

cific disease.

Association studies discover these genetic factors by correlating an individual’s genetic vari-

ation with a disease status or disease-related trait. At the genome-wide scale, association stud-

ies typically focus on statistical relationships between single-nucleotide polymorphisms

(SNPs) and disease traits. SNPs are the most common genetic variants underlying an individu-

al’s susceptibility to disease, and associated SNPs are considered to mark the region of a

human genome that influences disease risk. A GWAS identifies an SNP as a significant, and

therefore associated, variant when the specific genome sequence at the SNP is correlated with

a disease trait or disease status. For example, a GWAS may find that individuals with a specific

sequence (or allele) at an SNP have higher blood pressure on average than individuals with a

different sequence at the SNP. If an SNP has a significant correlation with a trait or disease sta-

tus, the association study suggests that presence of the particular variant in the neighborhood

of the SNP may increase an individual’s risk for disease.
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Typical analytical strategies for performing association studies rely on standard regression

techniques, which assume the data have an identically and independently distributed (i.i.d.)

property. If data are i.i.d., all variables are mutually independent because each random variable

shares the same probability distribution with other variables. Association study methodology

was originally designed for populations composed of unrelated individuals, and standard

approaches assume this property is true [6]. However, the big genomic datasets available today

inevitably contain distantly related individuals. This genetic relatedness prevents standard

association studies from correctly identifying the causal variants and induces identification of

many false positive associations (or spurious associations).

Two types of relatedness may produce high rates of false positive associations: ancestry dif-

ferences and cryptic relatedness. Individuals who share ancestry are more related than individu-

als from different ancestries. Ancestry differences refer to different ancestry among individuals

in a study. Large (N� 5,000) population cohorts inevitably contain individuals who have com-

mon ancestry from different populations. Cryptic relatedness exists when some individuals are

closely related, but this shared ancestry is unknown to the investigators.

In this review, we refer to population structure as any form of relatedness in the sample,

including ancestry differences or cryptic relatedness. These relatedness differences can cause

the statistical methodology applied to association studies to assign strong association signals to

variants that are not actually causal for the trait or disease. Standard association study tech-

niques applied to population cohorts that contain population structure produce a high rate of

false positive associations. These associations may appear to be significant, but they are driven

by the cohort’s relatedness rather than variants that truly affect trait or disease risk.

Developing GWAS techniques to effectively test for association while correcting for popula-

tion structure is a computational and statistical challenge. This challenge is relevant to human

association studies as well as genetic studies in any organism, including model organisms such

as mice. Mouse studies are widely used to study human disease, yet the population structure

problem is even more severe than in human studies because the particular history of laboratory

mouse strains induced complex patterns of genetic relatedness. These patterns of relatedness

can cause false positives in association studies.

Over the past 10 years, new approaches using mixed models have emerged to mitigate the

deleterious effects of population structure and relatedness in association studies [7–10]. These

approaches were first developed in animal breeding [11] and utilized in the context of model

organism studies such as Arabidopsis [12, 13] and mouse [8] and were later applied to human

studies. In this review, we explicitly characterize population structure as a confounding factor

in order to explore the root cause of false positives in association studies. We trace the develop-

ment of these methods in mouse studies and describe how these methods were adapted to

human studies, particularly when they are applied to correct for population structure in large-

scale genomic datasets.

Standard GWAS

Genetic association studies attempt to identify SNPs that are responsible for differences in a

trait or phenotype values within an individual. An SNP is a single position in the human

genome sequence in which individuals in the population have different genetic contents.

These differing forms of the same gene are referred to as alleles. SNPs are the most common

form of genetic variation, and almost all common SNPs have two alleles. SNPs are ideal targets

for association testing [14]. The high level of SNP prevalence suggests they are often correlated

with other forms of variation. A single-SNP test measures the correlation between a trait and

the genetic information at a specific location in the genome or an SNP. To conduct a typical
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single-SNP test, we first collect genetic information at the SNP in a set of individuals (referred

to as genotypes). Next, we measure the association (or correlation) of these genotypes with the

trait values (or phenotypes) of the individuals (see Fig 1A). This process is repeated for every

SNP in the genome. In Fig 1, it is intuitively clear that the first SNP appears to be associated

but the second SNP does not appear to be associated.

In order to evaluate whether the association between an SNP and a phenotype is statistically

significant, we can use the collected data to test 2 hypotheses. The null hypothesis assumes a

model in which the SNP does not affect the phenotype (see Fig 1B). In this hypothesis, the phe-

notypes (y) are only affected by the population mean (m) and the environment (e). Unless data

indicate otherwise, we assume that the null hypothesis is true and the SNP does not influence

the phenotype (i.e., does not affect the individual’s disease risk).

An alternative hypothesis provides a model of the SNP being significantly associated with

the phenotype (see Fig 1C). In this case, the phenotypes (y) are affected not only by the popula-

tion mean (m) and environment (e), but they are also affected by the genotype (x). In other

words, the presence of the SNP suggests that an individual is likely to have the trait or disease

risk. Here, the quantitative measurement of strength that the genotype has on the phenotype is

referred to as the effect size (b). If the effect size (b) is equal to zero, we consider the 2 models

equivalent. The SNP is determined to be significantly associated with the phenotype when the

data fit the alternative hypothesis beyond a specific threshold.

We mathematically express the null and the alternative hypotheses in order to perform a

single-SNP test. We denote the genotype of kth SNP of the jth individual gjk where the geno-

type is in the set {0,1,2}, which is the number of copies of the kth variant that the jth individual

has on their 2 chromosomes. Here, “0” denotes the genotype that does not contain the variant

in either chromosome, whereas “1” or “2” denotes the presence of the variant in 1 or 2 of the

chromosomes, respectively. In order to simplify the equations for association studies, we stan-

dardize the genotypes by subtracting the population mean and dividing by the variance. The

frequency of a variant in the population is denoted as pk, which is the average genotype fre-

quency in the population. The standardized genotypes can be expressed as

Xjk 2
� pkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pkð1 � pkÞ
p ;

1 � pkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkð1 � pkÞ

p ;
2 � pkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkð1 � pkÞ

p

( )

:

Once we have calculated the standardized genotypes, a typical single-SNP test can be used

to identify variants associated with traits. A standard regression technique estimates the rela-

tionship among variables, including a dependent variable (y), any independent variables (x),

and unknown variables (b). Using regression, these simple linear models can correlate the

genetic variation with the trait, allowing us to assess whether the data best fit the null or alter-

native hypothesis.

The equation

yj ¼ mþ bkXjk þ ej

models the phenotype for a single individual j in the study. Here, the effect of the variant on

the phenotype is bk, the model mean is m, and the contribution of the environment on the phe-

notype is ej. The environment’s effect on a phenotype for an individual j ðej) is assumed to be

normally distributed with variance s2
e , denoted as ej � N 0; s2

e

� �
:

The equation above describes the relationship between the genotype and phenotype of just

one individual. We can use vector notation to represent all of the individuals in the dataset and
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produce the model

y ¼ m1þ bkXk þ e; ð1Þ

with the phenotypes of all of the individuals in the dataset denoted as a column vector y, a col-

umn containing the genotypes for the kth variant in the population denoted as Xk, and a vector

containing the environments denoted as e; 1 is a column vector of 1s. We draw the random

vector e from the distribution e � N 0;s2
e I

� �
. We note that each element of e is independent of

the others; therefore, the variance–covariance matrix is a diagonal matrix (s2
e I).

We can write the distribution of y using

y � Nðmþ bkXk; s
2

e IÞ;

where I is the identity matrix.

Using the observed data (such as the example in Fig 1), we can estimate the values of the

population mean and the effect of the true variant by using the following equations:

m̂ ¼
SN

j¼1
yj

N
¼

1Ty
N
;

b̂ ¼ ðXT
k XkÞ

� 1XT
k y ¼

PN
j¼1

Xjkyj
N

¼
XT

k y
N

;

ê ¼ y � m̂1 � b̂Xk;

ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j¼1
ê2
j

N � 2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
êT ê

N � 2

r

;

where N is the number of individuals. These equations are simple because the genotypes are

standardized. The resulting value is the association between an SNP and a phenotype. We can

then test the significance of this association by using the following statistic:

Sk ¼
b̂k

ŝ

ffiffiffiffi
N
p

: ð2Þ

This statistic is normally distributed with a mean that depends on the effect of the SNP on

the trait, the environmental variance, and the number of individuals. The variance of the statis-

tic is 1. We can write the distribution of the statistic as

Sk � N
bk

se

ffiffiffiffi
N
p

; 1

� �

:

If the SNP does not have an effect on the trait, the statistic will follow the null distribution,

Sk � Nð0; 1Þ;

Fig 1. Standard genetic association study applied to human blood pressure data. (A) The left SNP appears to be

more strongly associated with blood pressure than the right SNP. (B) We test 2 hypotheses against each other to

evaluate whether the association between an SNP and a phenotype is statistically significant. By default, a null

hypothesis assumes that the SNP does not affect the phenotype. (C) If the data fit the alternative hypothesis beyond a

certain threshold, the SNP is described as significantly associated with the phenotype. For simplicity, in the diagram,

we are depicting only 1 chromosome per individual. BP, blood pressure; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pgen.1007309.g001
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which is a standard normal distribution. We can then use this null distribution to determine

whether the association is significant. This statistic is considered significant with a significance

level of as if

FðSkÞ < as=2 or FðSkÞ > 1 � as=2;

in which case the variant is considered to be associated (see Fig 2). We use the notation as to

denote the significance level that we need to achieve at any SNP, which in human studies is

typically 5 × 10−8 due to multiple testing correction.

The p-value of the association is the tail probability area beyond the observed statistic, and

the p-value can be computed using 2F � jSkjð Þ. If the SNP does not affect the trait, the statistic

will come from the null distribution. In this case, the p-values will be uniformly distributed

between 0 and 1.

An assumed “true” genetic model

Assuming i.i.d., the single-SNP test will tell us whether an SNP is responsible for the differ-

ences we observe in an individual’s trait or phenotype expression values. However, this simple

linear model is an unrealistic model for identifying variants associated with traits in today’s

large genomic datasets that contain a high degree of relatedness. In real populations, the true

effect of a single SNP is influenced by multiple variants that affect the trait. A “hypothetical”

true genetic model takes into account the effect of all SNPs on the trait.

Here, the vector notation,

y ¼ m1þ
XM

i¼1
biXi þ e;

models the phenotypes of all the individuals in the dataset, denoted as a column vector y.

Again, the effect of the ith variant on the phenotype is bi, the mean is m, and the contribution

of the environment on the phenotype is denoted by e. Here, the number of variants is M.

The true genetic model takes into account the true effect of all SNPs, including the effect of

the SNP being tested for association with a trait. When testing SNP k, we are using Eq 1, yet

Fig 2. Significance testing in association studies. The null distribution is the standard normal distribution and the

expected distribution of the association statistics under the assumption that the effect size is 0. Each variant’s

association statistic in Eq 2 is computed, and its significance is evaluated using the null distribution. If the statistic falls

in the significance region of the distribution, the variant is declared associated. In this example, S1 is not significant,

whereas S2 and S3 are significant. The exact location of the threshold is defined as the location on the x-axis where the

tail probability area equals the significance threshold (S). This is denoted using the quantile of the standard normal

F� 1 xð Þ.

https://doi.org/10.1371/journal.pgen.1007309.g002
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the actual data are generated from

y ¼ mþ Xkbk þ Si6¼kbiXi þ e: ð3Þ

In applying the simple linear model to data, we observe a mismatch between the model

used for testing and the assumed underlying generative model. Here, any term that is missing

in the testing model when compared to the generative model is called an unmodeled factor.

The unmodeled factor is exactly
P

i6¼k biXi.

In this case, the unmodeled factor is the effect of variants in a genome other than the variant

being tested. This factor can significantly affect the results of an association study. If the indi-

viduals in the study are related to each other, the unmodeled factor may produce a high rate of

false positive associations. This is due to the fact that the equations used to estimate the param-

eters for the model in Eq 1 assume that the covariance matrix of the random vector e is a diago-

nal matrix, which is not the case in Eq 3.

In an association study, relatedness among individuals is referred to as population structure.

Over the past few years, many methods have been developed to mitigate the effects of population

structure in association studies. One of the most commonly utilized approaches today, mixed mod-

els, originally became popularized in mouse studies and is now the standard approach for analyzing

human GWAS studies. In this review, we motivate the problem of population structure in associa-

tion studies by using laboratory mouse strains and explain how population structure can cause

false positive associations. We then motivate mixed models in the context of unmodeled factors.

An example of population structure confounding from mouse genetics

The importance of controlling for population structure is evident in genetic mapping of inbred

mouse strains. Mice strains pose particular problems that mixed models are developed to

solve, and the basic ideas behind mixed models can be clearly demonstrated with mice genet-

ics. Today’s classical inbred laboratory mouse strains descend from a relatively small number

of genetic founders (mostly fancy mice originally kept as pets) and are characterized by several

population bottlenecks [15, 16].

A second group of laboratory strains are referred to as “wild-derived” strains. These strains

include descendants of mice captured in the wild and inbred mice that were never kept as pets.

Wild-derived strains do not share the population history of classical laboratory strains. A sim-

ple way to visualize the relationship between multiple ancestral groups and traits in the mouse

genome is with a phylogenetic tree that can be computed from the genetic information (Fig 3).

This tree visualizes the genetic relationships between 32 classical inbred strains and 6 wild-

derived strains, using genetic variant information at 140,000 SNPs for each strain.

We observe that the 2 groups of mouse strains are close to each other in the phylogeny and

are separated by a long branch length (denoted with a dotted line). This branch represents the

many genetic differences between the groups. We also have measurements for body weight

and liver weight for each of the 2 strains. Not surprisingly, the body weights of the classical

strains are much larger than the body weights of the wild-derived strains (Fig 3). Different

selective pressures on the 2 groups, including environmental fitness (wild-derived) and human

selection (laboratory), produced these differences in population genetics.

In order to identify which genetic variants are associated with body weight, we applied the

linear model described above to 140,000 SNPs from this dataset. In general, we expect associa-

tion study results to indicate very few significant associations between particular SNPs and a

trait. One common way to visualize the results of an association study is with a Manhattan

plot. In a Manhattan plot, the mouse genome is plotted against the x-axis, and the measure of

significance of correlation between the genome and trait is plotted against the y-axis. Each red
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spike represents an SNP at a particular genomic position, and the height of the spike represents

the strength of the association with the phenotype. The green horizontal line represents the sig-

nificance threshold. Any SNP that crosses this line is considered a significant association.

We expect to observe a Manhattan plot similar to the one in Fig 4, in which a number of

SNPs affect the phenotypes. Therefore, we would observe signals that cross the threshold at a

few locations in the genome, but most of the SNPs will not be associated with the phenotype.

Fig 3. A phylogenetic tree demonstrating the relationships between 38 inbred mouse strains using 140,000 mouse

HapMap SNPs. As shown in the tree, the strains cluster in 2 groups: classical inbred strains and wild-derived strains.

The body weight phenotypes, obtained from the Mouse Phenome Database, of the strains are shown. Here, classical

inbred strains have much higher body weight than wild-derived strains. Many SNPs separate the 2 groups because of

the long branch length. One such SNP is shown in the figure. Clearly the SNP is highly correlated with body weight. All

of the SNPs that separate these 2 groups will have the same correlation. When we consider both the tree and the SNP,

we can infer that the population structure may be driving this correlation and not an effect of the SNP on body weight.

SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pgen.1007309.g003

Fig 4. Expected distribution of p-values in a typical (A) Manhattan plot, (B) cumulative p-value distribution, and

(C) Q–Q plot. Circles in (B) and (C) denote where the median p-value (red line) falls on the graph in comparison to

the expected median p-value (yellow line). Here, the median falls close to 0.5, suggesting that population structure is

not affecting association results or has been corrected for in the model. Q–Q, quantile–quantile.

https://doi.org/10.1371/journal.pgen.1007309.g004
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Another way to visualize the results of an association study is with a cumulative p-value dis-

tribution plot (Fig 4B) and a quantile-quantile (Q-Q) plot (Fig 4C). These plots are graphical

techniques for determining whether multiple datasets come from populations with common

distribution. Here, the cumulative p-value distribution plot shows the quantiles of the p-values,

which assess the probable significance of association between a genotype and a trait; the Q–Q

plot shows the distribution of the same data log-transformed.

Since we expect most SNPs not be to associated, most of the statistics will be coming from

the null distribution. Therefore, most of the p-values will be uniformly distributed between 0

and 1. Typically, only a small fraction of the SNPs have signals stronger than expected at the

tail of the distribution. This results in a cumulative p-value distribution that is close to the diag-

onal line (Fig 4B) and a Q–Q plot that follows the line for the beginning of the curve (Fig 4C).

As shown in Fig 4, we would expect that the median p-value would be close to 0.5.

However, when we applied standard linear models to the inbred mouse dataset, we

observed strong signals in many locations in the genome (Fig 5A). The cumulative p-value dis-

tribution and the Q–Q plots are shown in Fig 5B and 5C. In our results, we observe that nearly

50% of the SNPs are significantly associated with the phenotype. There are far more significant

associations (red line) than expected associations (yellow line).

Why we observe false positives in mouse genetic studies

We can explain why we observe the excess amount of strong association by examining Fig 3,

containing the data for one of the red peaks from the Manhattan plot (found in Fig 5A). Here,

the big circles are body weight values, and the small circles represent the variant for each strain

for a particular SNP; the black small circle represents the reference allele, and the white small

circle represents the alternate allele. When we look at the distribution of body weight values

and SNP alleles, it appears that a white allele corresponds to mice with small body weight,

whereas a black allele corresponds to mice with large body weight. In Fig 5, there is a very

strong correlation between the SNP and the trait of body weight; it is no surprise that we

observe a very significant p-value.

Fig 5. Observed distribution in a (A) Manhattan plot, (B) cumulative p-value distribution, and (C) Q–Q plot.

Circles in (B) and (C) indicate where the median p-value falls on the plot compared to where it is expected. Here, there

is a substantial deviation between the red and yellow lines due to inflation of false positive associations for the body

weight phenotype. Q–Q, quantile–quantile.

https://doi.org/10.1371/journal.pgen.1007309.g005
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However, if we consider the phylogenetic tree over the pattern of alleles at the SNP and

body weight values (Fig 3), we see that the separation of the population into classical and wild-

derived strains is strongly correlated with the body weight. Here, the SNP differentiates these 2

groups. The length of each tree branch corresponds to the amount of genetic differences

between the 2 groups separated by the branch. The long branch length between the classical

and wild strains indicates that many SNPs will separate these 2 groups and each one has a

strong signal. This correlation between strains and the alleles at these SNPs causes the large

amount of observed associations.

Clearly, there are genetic differences between these 2 groups that affect body weight, but

not every genetic difference between the 2 groups affects body weight. However, the simple lin-

ear model will associate every SNP that separates these 2 groups with body weight. Therefore,

most of the associations that we observe are for SNPs that are not actually affecting body

weight. These associations are referred to as spurious associations.

Another way to understand the effect of population structure on association is through

graphical models. We consider SNPs and traits in Fig 6A. Typically, we perform an association

test on an SNP. Observation of an association gives evidence that the SNP affects the trait. On

Fig 6. (A) The SNP and the phenotype are independent under the null hypothesis (H0) and correlated under the

alternative hypothesis (H1). (B) In the case of population structure, the structure will influence many SNPs and the

phenotype. In this case, correlation between SNPs and the phenotype will be induced in both the null and alternate

hypothesis. SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pgen.1007309.g006
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the other hand, if we do not observe an association, this suggests that either the SNP does not

affect the trait or that the effect is too small for our study to detect. However, if genetic differ-

ences between groups are present (Fig 6B), shared histories will produce many SNPs directly

correlated with population structure (straight dark line). In addition, phenotypes, such as body

weight, are also highly correlated with the population structure (straight dark line). Such phe-

notypes will induce correlation between many SNPs and the phenotype (dotted line), includ-

ing—but not limited to—the SNPs that are actually responsible for variants.

This connection between the phenomenon of false positive associations due to relatedness

and unmodeled factors is shown in Eq 3. Here, the genetic history shared between mouse

strains is the unmodeled factor
P

i6¼k biXi. Because the shared genetic history is missing from

the testing model, we consider population structure the unmodeled factor.

Using mixed model methods in mouse association studies

We have shown that population structure can bias association study results. Our mouse examples

show that we must correct for population structure in order to accurately identify specific genetic

variants involved in disease risk. At present, several challenges limit usefulness of genome associ-

ation studies for implicating genetic variants. First, unmodeled factors are not known and cannot

be accounted for in computational methods that match traits with phenotypes. Second, we do

not know the exact ways that unmodeled factors interact with population structure to bias out-

put. Finally, many studies ignore dependency among these unmodeled factors.

The effects of these SNPs are the unmodeled factor in Eq 3, and they confound our ability

to perform association studies. In reality, there are many SNPs located on the long branching

line (Fig 6, dashed line) that affect the phenotype. In order to identify these true associations,

we must eliminate the unmodeled factor. Although we cannot know which specific SNPs com-

prise the unmodeled factor, we can use available knowledge about similarities between the

genomes of individuals in our studies to estimate the unmodeled factor.

Using our mouse example, we consider 2 different strains, B6 and C3H. These 2 strains are

both classical inbred mice derived from domesticated mice and have similar genomes. In Fig

7A, we show a toy example considering the genomes of the 2 strains. Here, the genomes are very

similar; 9 out of 10 SNPs are shared between strains B6 and C3H. In this example, let us assume

that the even-numbered SNPs are causal variants that affect the phenotype. For those variants,

their corresponding effect size bið Þ will be nonzero. We neither know the actual effect sizes nor

the resulting value for the unmodeled factor. However, because they share the same allele at

these SNPs, we do know that the 2 strains will have a similar value for the unmodeled factor.

Next, we consider a larger number of strains pairwise (Fig 7B). When we consider the classic

inbred mouse strain B6 and the wild mouse strain CAST, the strains have different alleles present

at many SNPs. If any of these SNPs affects the trait, the value of the unmodeled factor will differ by

the effect size. Therefore, we expect the 2 strains to have different values for the unmodeled factor.

The amount of pairwise sharing of alleles between strains can be used to capture the similarity

between the values of the unmodeled factor among strains. In order to do this, we make a matrix

that contains all SNPs shared between the paired genomes (Fig 8). This kinship matrix allows us

to “model” the values of the unmodeled factors among the individuals in our study, and it shows

us which pairs have similar sharing of alleles and which pairs have dissimilar values.

The principle underlying mixed models is that we incorporate this “model” of unmodeled

factors into the association test. We incorporate the unknown factors into the model of associ-

ation using what is called a random effect or a variance component. Our model is called a

mixed model because it combines a random effect with the effect sizes of the SNPs we are test-

ing (referred to as fixed effects) to model population structure.
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When using a mixed model to identify causal variation, one key step is to establish these

fixed parameters and random effect components. A linear mixed model (LMM) uses the infor-

mation from the matrix to account for the unmodeled factor. We extend the simple, hypotheti-

cal true model,

y ¼ m1þ bkXk þ e;

to include a term that captures the unmodeled factors. The term u in

y ¼ m1þ bkXk þ uþ e ð4Þ

is a random vector that depends on the amount of shared genome in terms of pairwise differ-

ences. Here, we assume that u � N 0;s2
gK

� �
, where K is the kinship matrix. Each entry of K

estimates the pairwise similarity between the genomes of the individuals in the study, which

follows the intuition of Figs 7 and 8.

In practice, K can be computed from the genotypes in which each entry in the kinship

matrix is just the product of the standardized genotypes for the 2 individuals divided by the

number of variants. Therefore, the kinship entry computing the relatedness between

Fig 7. Pairwise similarity between strains gives some insight into the similarity of the unmodeled factor. In this

toy example, we consider 10 SNPs in which the even-numbered SNPs are the causal SNPs with an effect on the trait.

(A) Because B6 and C3H share alleles at 9 out of 10 SNPs, these strains have a similar value for the unmodeled factor.

(B) When we consider other strains, the unmodeled factors may be larger. For example, B6 and CAST, which share few

SNPs, will have different values for their unmodeled factor. SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pgen.1007309.g007
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individuals i and j is

Kij ¼

XM

k¼1
XikXjk

M
:

We can elegantly compute the kinship matrix using the equation K ¼ XXT=M.

The mixed model is making an assumption that the phenotype follows the model in Eq 4.

How accurately this assumption holds in practice depends on how well the kinship matrix cap-

tures the covariance between individuals for the phenotype. Exploring this issue is an active

area of research, leading to many variations of mixed models including techniques for comput-

ing kinship matrices. We discuss some of these developments later in this review.

The standard estimation equations above cannot be used to estimate the values of the

parameters in Eq 4. Due to the random effect u, the phenotypes of the individuals are no lon-

ger independent of each other—an assumption of the previous methods.

However, if we know the values of s2
g and s2

e , we can apply the following “mixed model

trick.” We note that the phenotypes will follow the distribution,

y � Nðmþ
X

biXi;VÞ;

where V ¼ s2
gK þ s

2
e I and I is the identity matrix. If we transform then multiply the

Fig 8. The mixed model includes a term u which attempts to model the unmodeled factors in the true model. The

term uses information from the kinship matrix that accounts for the dependency among SNPs correlated with

phenotypes due to population structure. SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pgen.1007309.g008
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phenotypes and genotypes by V � 1
2, we get

V � 1
2y � N V � 1

21mþ
X

bV � 1
2Xi; I

� �
:

In the transformed data, the individuals are now independent of each other, and we can

apply the estimation equations presented above to estimate the values for b and the association

statistics.

In this case, we assume that the bi values are drawn from a normal distribution with a mean

zero as effect size and s2
e as the variance.

Estimating the values of s2
g and s2

e is a difficult computational problem referred to as esti-

mating the variance components. These parameters are estimated by utilizing a maximum

likelihood approach. Specifically, we attempt to find the values of s2
g and s2

e , such that the fol-

lowing log likelihood function of the data is maximized:

lðy;Xk; bk; sg ; se; nÞ ¼ �
1

2
½nlogð2pÞ þ log j V jþðy � XkbkÞV

� 1ðy � XkbkÞ�;

where V ¼ s2
gK þ s

2
e I.

This equation is computationally difficult because likelihood requires computing the

inverse of the matrix (V � 1), which in turn depends on the values of sg and se. Optimization

methods that maximize this likelihood apply algorithms updating current estimates of sg and

se until they converge to high values of the log likelihood function. Each step of an optimiza-

tion algorithm is referred to as an iteration. In each iteration, the optimization algorithm must

evaluate the log likelihood for the current values of sg and se and must compute this matrix

inverse. A straightforward way to compute a matrix inverse involves a complexity of approxi-

mately O N3ð Þ. Unfortunately, this results in a very inefficient algorithm and prevents mixed

models from being widely utilized in association studies, despite their long history in genetics.

The idea to infer relationships from the SNPs directly was originally proposed in [8], yet

mixed models were used in genetics for decades prior to where the kinship matrix was inferred

from pedigrees. In the same paper, we also presented efficient mixed model association

(EMMA) [8], an efficient algorithm for estimating these parameters. Since we first presented

EMMA, many other groups have developed similar efficient algorithms [7, 9, 17]. The key idea

behind EMMA is that we apply spectral decomposition to the kinship matrix, leading to a

much faster optimization algorithm. This type of approach was previously utilized in classical

mixed model approaches applied to pedigrees. The spectral decomposition only needs to be

computed once and requires a complexity of O N3ð Þ. Specifically, if we write K ¼ UDUT ,

where U is a matrix of eigenvectors and D is a diagonal matrix of eigenvalues, then we can rep-

resent V using matrix algebra properties as follows:

V ¼ s2

gK þ s
2

e I ¼ s
2

gUDU
T þ s2

eUIU
T ¼ Uðs2

gDþ s
2

e IÞU
T:

We can then compute the quantity z ¼ UT y � Xkbkð Þ for each SNP k, which has complexity

O N2ð Þ. The log likelihood of the data can then be computed using

lðy;Xk; bk; sg ; se; nÞ ¼ �
1

2
½nlogð2pÞ þ s2

gTrðDÞ þ ns2

e þ zTðs2

gDþ s
2

e IÞ
� 1z�;

which can be computed in complexity OðNÞ because the matrix inside the likelihood is now

diagonal. The inverse can be computed by simply taking the reciprocal of the elements along

the diagonal. This procedure results in a very efficient algorithm that is useful for today’s large-

scale human genomic datasets.
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We applied EMMA to the same mouse association data that we analyzed using a standard

LMM approach (see Fig 3). With these computational improvements, we almost completely

reduced the inflation of false positives while obtaining nearly uniform p-value distribution for

most SNPs (Fig 9). Here, the strongest peak, which is not significant, falls into a region of the

genome on chromosome 8, which is known to be associated with body weight. Regions of the

genome that correlate with variation in a phenotype are referred to as quantitative trait loci (QTL).

Next, we applied EMMA to other phenotypes from the same mouse strain datasets, includ-

ing a liver weight phenotype. Here, we see that the inflation of false positives is reduced and a

strong signal at chromosome 2 (chr2) is more pronounced after the correction (Fig 10).

EMMA correctly identifies a locus for liver weight that falls into the QTL Lvrq1 (liver weight),

which was previously identified using a traditional mouse mapping approach [18].

Population structure and mixed models in human association studies

When mixed models were first used in mouse studies, the problem of relatedness in human

GWAS studies was a well-known challenge. At that time, there was no single approach to han-

dle relatedness. Instead, different types of relatedness were explicitly modeled, and association

study methods were adapted to those scenarios. There is an entire class of methods designed to

handle relatedness when there are closely related individuals in the genetic study and the

genetic relationships are known. These include methods for multigenerational families, twins,

and siblings [19, 20].

A complication in human association studies is when the relationships are unknown. One

of the most common types of relatedness among individuals in human studies is due to ances-

try. Ancestry refers to the population that an individual descended from. Many individuals are

admixed, which means they are descended from ancestors in different populations. If an asso-

ciation study contains individuals from different populations or differing degrees of admix-

ture, the individuals will have different degrees of relatedness among them. In other words,

individuals with the same ancestry are slightly more related to each other than individuals with

different ancestries.

It is well documented that these ancestry differences can induce false positive associations

[21]. Association studies that analyzed individuals with differences in ancestry typically uti-

lized an approach to predict the ancestry for each individual and then incorporated this

Fig 9. (A) The conventional GWAS test applied to mouse body weight phenotypes produces numerous false positives.

(B) The mixed model approach using EMMA almost completely reduces the inflation of false positives and identifies a

strong peak (chr8) that falls into a known body weight QTL. chr8, chromosome 8; EMMA, efficient mixed model

association; GWAS, genome-wide association study; QTL, quantitative trait loci.

https://doi.org/10.1371/journal.pgen.1007309.g009
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information as a covariate in the model [22]. An alternate approach was to estimate principal

components over the genotype data, which could be interpreted as a proxy for ancestry infor-

mation and included in the model as covariates [23]. In the human genetics literature, ancestry

differences are sometimes referred to as population structure. In this review, we use the term

ancestry differences separately from the term population structure; we use the latter to specifi-

cally describe the general phenomenon of relatedness in a sample.

A second type of relatedness is cryptic relatedness [24]. Because GWASs are applied to

extremely large samples, there are often individuals included in the study who happen to be

related, but this relatedness is unknown to both the individuals and the investigators. Typi-

cally, cryptic relatedness is handled by screening the association study for related individuals

and computing the genetic similarity between each pair of individuals.

A general purpose approach to correct for population structure, or any type of confounding

in association studies, is genomic control [25, 26]. Genomic control allows us to measure the

extent to which population structure (or any other confounder) is affecting the association sta-

tistics. By examining the cumulative p-value distribution plot, we consider the deviation of the

actual plot from what is expected at the median. Because we expect the vast majority of variants

not to be associated with the trait, we expect the median observed p-value to be close to 0.5.

Typically, population structure induces a more significant observed median p-value.

Genomic control computes a correction factor referred to as l, which is a scaling factor

used to scale all observed p-values so the corrected median p-value will be 0.5. The l is on the

w2 scale (meaning that the median p-value is converted to a w2 value and the ratio is computed

relative to the w2 value) corresponding to a p-value of 0.5, which is 0.545. The observed associa-

tion p-values are converted from p-values to w2 statistics, scaled by l, and then converted back

to p-values.

We can also use the value of the l as a measure of the extent of the effect of confounding on

the association statistics. Genomic control l’s are widely utilized to compare different correc-

tion approaches. A l of 1.0 shows that there is no inflation. A value greater than 1.0 is evidence

that the association statistics are inflated. Typically, the 95% confidence interval of the l in

GWASs is 0.02. Therefore, any l of 1.03 or higher suggests that there is some inflation. We

note that more recent exploration of polygenicity, or the amount of causal variants for a trait,

suggests that there are many more causal variants than originally expected. In this case, the l

Fig 10. (A) The conventional GWAS test applied to mouse liver weight phenotypes produces numerous false positive

associations. (B) The mixed model approach using EMMA reduces inflation of false positives and correctly produces a

stronger signal at chr2, a region that is located in known QTLs for liver weight. chr2, chromosome 2; EMMA, efficient

mixed model association; GWAS, genome-wide association study; QTL, quantitative trait loci.

https://doi.org/10.1371/journal.pgen.1007309.g010
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values should actually be higher than 1.0 [27]. We discuss this perspective in the Discussion

section of this paper.

In the literature, ancestry differences and cryptic relatedness are referred to as distinct phe-

nomenon. In fact, they can be thought of as different degrees of relatedness in the sample.

Consider Fig 11A, which shows a potential pedigree relating all of the individuals in an associa-

tion study sample. Cryptic relatedness can be thought of as relatedness in a more recent por-

tion of the tree (Fig 11B), and ancestry differences can be thought of as relatedness near the

top of the tree (Fig 11C).

Fig 11. Different degrees of relatedness in the sample. (A) All of the individuals in a genetic study are somehow

related through a large pedigree or family tree. Different parts of the tree induce different types of relatedness. (B)

Cryptic relatedness refers to relatively recent genetic relationships. (C) Relatedness due to ancestry refers to relatedness

caused by ancestors originating from the same region. The boxes in (B) and (C) represent the level of the pedigree that

causes that type of relatedness in each case, respectively.

https://doi.org/10.1371/journal.pgen.1007309.g011
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Mixed models can handle nearly arbitrary genetic relationships between individuals and are

a natural approach for human association studies. Mixed models are ideal because they can be

applied without explicit identification of the relatedness within the sample. They also enable the

analysis of datasets with particularly complex genetic relationships, such as isolate populations

in which the population is descended from a small number of founder individuals [28]. For iso-

late populations, the previous methods were not able to fully account for population structure.

Mixed models were first used in human studies with the Northern Finnish Birth Cohort

[29], using a version of the EMMA software called EMMAX [9], in which mixed models were

applied to 331,475 SNPs in 5,326 individuals who were phenotypes for 10 traits. These traits

include C-reactive protein (CRP), triglyceride (TG), insulin plasma levels (INS), diastolic

blood pressure (DBP), body mass index (BMI), glucose (GLU), high-density lipoprotein

(HDL), systolic blood pressure (SBP), and low-density lipoprotein A (LDL). Individuals within

this cohort have some ancestry differences due to their origin from different parts of Finland,

and they share some genetic relationships.

Table 1 shows the results of applying mixed models to these traits. Each entry in the table

shows the l value for the analysis of that phenotype. The first column shows the results of the

uncorrected analysis. We can see that there are very large l factors, particularly for height. In

fact, the associations with height were not reported in the original Sabatti and colleagues [29]

manuscript because the high l value suggested that some of the observed associations may be

false positives. The second column shows the l factors after eliminating cryptically related

individuals. Here, we computed the pairwise relationships between individuals and filtered out

one of any pair that was closely related. This approach filtered out 611 individuals.

The third column shows the l factors after using the principal component approach to correct

for ancestry differences. One hundred principal components were utilized in this analysis, which

is a much larger number of components than are typically utilized to show the limit of the

approach. The last column shows the l for mixed models. Each of these l values is within the

95% confidence interval (around 1.0), suggesting that mixed models can correct for all of the

population structure in the sample—including cryptic relatedness and ancestry differences. As

shown in Table 1, only mixed models adequately correct for population structure in this sample.

Discussion and recent developments

Over the past decade, association studies have identified thousands of variants implicated in

dozens of common human diseases. The traditional approach to association studies assumes

Table 1. Results of analysis (l values) on NFBC66 data.

Traits Uncorrected IBD < 0.1 100PC EMMAX

BMI 1.036 1.028 1.024 1.001

CRP 1.012 1.020 1.020 0.994

DBP 1.033 1.025 1.029 1.010

GLU 1.045 1.025 1.030 1.009

HDL 1.054 1.041 1.037 1.003

INS 1.026 1.026 1.015 1.005

LDL 1.093 1.089 1.040 1.002

SBP 1.063 1.054 1.021 1.004

TG 1.024 1.021 1.018 0.999

Height 1.193 1.152 1.080 1.002

Abbreviations: BMI, body mass index; CRP, C-reactive protein; DBP, diastolic blood pressure; GLU, glucose; HDL, high-density lipoprotein; INS, insulin plasma levels;

LDL, low-density lipoprotein A; NFBC66, Northern Finish Birth Cohort 66; SBP, systolic blood pressure;TG, triglyceride.

https://doi.org/10.1371/journal.pgen.1007309.t001
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that individuals are unrelated to each other. However, in practice, individuals in genetic stud-

ies are related to each other in numerous complex ways. In this review, we demonstrate how

these relationships cause false positives in association studies and how mixed models can cor-

rect for these confounding genetic relationships.

This review covers only the basic principles of mixed models and population structure.

Since the original EMMA paper in 2008, mixed models have become an active research area.

Many groups have published papers exploring various aspects of mixed models and their

application to complex genomic problems.

For example, many approaches have been developed to improve the efficiency of mixed

models, including the methods Fast-LMM [17] and GEMMA [7]. More recently, a method

called BOLT-LMM [30] was developed for scaling analyses to handle cohorts in the hundreds

of thousands of individuals.

Another direction of method development has been extending mixed models to handle

case control studies. These approaches typically assume a liability threshold model in which

there is an underlying continuous phenotype; if the phenotype is above a threshold, the indi-

vidual has a disease. If it is below a threshold, the individual does not have the disease [31].

These types of studies are also complicated by the phenomenon of selection bias because the

cases are oversampled from the population. At present, such mixed model extensions to case

and/or control studies result in challenging computational problems [32–34].

Another direction in mixed models research is based on observations that a bias is induced

when the SNP that is tested is also used in the computation of the kinship matrices [10]. This

bias motivated the idea that, when applying mixed models, the kinship matrix should not con-

tain the SNP being tested. As a result, the Leave One Chromosome Out (LOCO) approach

constructs a different kinship matrix for testing each chromosome and leaves out the SNPs on

the chromosome being tested [35]. Methods incorporating mixed models that use LOCO have

higher statistical power compared to traditional association studies.

Our example in Fig 8 brings to the surface a key issue related to the application of mixed

models in genetic studies. In our example, all of the variants are used to build the kinship

matrix, yet only a subset of them are the actual causal variants affecting the trait. The model

also makes assumptions about the magnitude of the contribution of each SNP to the trait.

Issues related to these assumptions have been explored in depth in the literature [36]. Proposed

approaches include stratifying the variants based on frequency when constructing the kinship

matrix [37–39] and taking into account linkage disequilibrium when generating the kinship

matrix [40, 41]. In general, whether or not mixed model approaches developed for common

variants will be effective for rare variants is an active area of current research [42].

The results of GWASs have demonstrated that many complex traits are highly polygenic,

suggesting that there are hundreds (if not thousands) of loci that influence some traits [43].

Some traits, such as height, are known to be highly polygenic. In this case, it is not clear what

the actual value of l should be for a polygenic trait as it is expected to have a contribution from

both confounding effects as well as polygenicity. More recently, a method called LD (Linkage

Disequilibrium) score regression has been developed that attempts to differentiate between

these 2 components [44].

Mixed models are also utilized in genetic studies beyond mere correction for population

structure as described in this review. Mixed models have become important in human GWAS

analysis because the estimates of s2
g and s2

e can be used to estimate the heritability of the trait.

Recent results suggest that common variants explain a larger proportion of the variance of

complex traits than previously thought [2, 4, 45]. Common variants are also utilized to capture

environmental factors that may be correlated with genetic background [46] and even to model
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gene-by-environment interactions [47]. Mixed models are also utilized to understand the pro-

portion of regions of the genome or types of functional elements that contribute to a trait [43,

48, 49].

From their origins in analyzing genetic variation in nonhuman organisms to powering

large-scale human GWASs today, mixed models play an important role in the analysis of

genetic data, particularly in correcting for population structure. Improving and extending

mixed model approaches is now an active area of research in human genomics.
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