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Abstract: The estimation of body fat percentage (%BF) from anthropometry-related data requires
population-specific equations to avoid incorrect interpretations in young athletes. Waist girth (WG)
has been described as potential predictor of fat mass (FM) in several populations; however, there
are no valid WG-based equations to estimate body composition in young Colombian athletes. The
aim of this STandardisierte BerichtsROutine für Sekundärdaten Analysen STROSA-based study was
twofold: i) to validate the relative fat mass (RFM) and its pediatric version (RFMp) compared to
dual-energy x-ray absorptiometry (DXA) and ii) to develop a new equation (F20CA) to estimate
the fat mass in Colombian children and adolescent elite athletes. A total of 114 young athletes
that belong to the ‘Team Medellín’ program (58F, 56M; 51 children, 63 adolescents; 14.85 [2.38]
years; 55.09 [12.16] kg; 162.38 [11.53] cm) participated in this cross-sectional study. The statistical
analysis revealed a poor correlation, agreement and concordance of RFMp and RFM estimations
with DXA measurements. After model specification using both Ordinary Least Square method and
Bayesian analysis, the regression output revealed that sex, body mass-to-waist ratio, and waist-
to-stature ratio were the statistically significant predictor variables that account for variability in
FM. The new F20CA equation is expressed as FM (kg) = 5.46 ∗ (Sex) + 0.21 ∗ (BM/W [kg/m]) +
81.7 ∗ (W/Stature [cm/cm]) − 41.8 (R2 = 0.683; SEE = 2.468 kg), where sex is 0 for males and 1 for
females. A moderate-to-high correlation and agreement of the F20CA was confirmed within the
internal validation data set (R2 = 0.689; ICC [95%CI] = 0.805 [0.615, 0.904]; RMSE = 2.613 kg). The
Bland–Altman analysis corroborated the high concordance between the reference method (DXA) and
the F20CA-estimated FM (bias [95% LoA] = 1.02 [−3.77, 5.81] kg), indicating the two methods could
be considered interchangeable. Even though external validation is needed, practitioners are advised
to use the F20CA in young Colombian athletes with similar characteristics to those who participated
in this study.

Keywords: waist circumference; body composition; DXA scan; kinanthropometry; regression equations;
Bayesian analysis; youth sports; athletic performance

1. Introduction

Childhood and adolescence are a period of human life that ranges from 8 to 19 years
age [1]. As part of the physical growth and normal development, child and adolescent
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populations should become more physically active over time; unfortunately, a worldwide
phenomenon is that these populations are insufficiently active [2,3]. In the case of those
engaged in physical exercise who initiate training at school age (>8 years), the development
of fundamental motor skills might increase the training age of youth while reducing the
risk of sport-related injuries [4,5]. Children and adolescent athletes with projection to high
performance need strict and constant supervision, not only to ensure their proper growth
and development but also to meet their sporting goals [6]. To this end, scientific research has
recently focused on providing data regarding adaptive physiological responses to training
stimuli [7,8]. Based on those findings, it is of vital importance that multi-disciplinary
clinical supervision (athletic coaches, sport nutritionists, sports medicine physicians, etc.)
ensures the correct assessment of nutritional status and body composition. This will help to
accurately program exercise training or plan dietary interventions based on the individual
needs and requirements of young athletes.

Notably, a recently published systematic review showed that the main factors associ-
ated with eating disorders in adolescents are psychological-related variables with a high
prevalence of body image dissatisfaction [9]. In fact, in adolescent elite athletes, a higher
prevalence rate for eating pathologies in female athletes, in athletes in high-risk sports, and
in those aged between 15 to 18 years has been reported [10]. It seems that young athletes
at greater risk of eating disorders are those pressured to achieve a body composition that
optimizes performance; therefore, nutrition–dietetics practitioners should target education
regarding the risk factors of eating disorders, nutritional recommendations, psychological
well-being, and the relationship to physical performance [11].

Since the early detection of eating disorders is important, the primary care physi-
cians, sports nutritionists and coaches need to be educated and trained to use valid and
reproducible techniques in order to avoid the frequently pivotal identification of body
composition in adolescent athletes [12]. Kinanthropometry is a discipline focused on per-
forming body measurements and analyze their relationships with the other parameters
of health, growth or human movement. It is considered a simple technique that also help
to estimate body composition (e.g., body fat percentage [%BF]), monitor maturity status
or profile morphological features using absolute data or regression equations [13]. In fact,
the International Standards for Anthropometric Assessment has been established by the
International Society for the Advancement of Kinanthropometry (ISAK) to reduce the
coefficient of variation and improve reliability [14]. Among the different anthropometric
measures, it is worth noting the high potential of waist girth (WG) for predicting excess fat
mass in humans [15]. WG is considered a fast, simple and inexpensive tool that is directly
related to visceral fat [16] and is highly associated with health risk indicators [17]. Although
this measurement cannot provide information on body composition, the absolute values of
WG have shown a strong correlation (r = 0.80) with the %BF obtained by dual-energy x-ray
absorptiometry (DXA) in children and adolescents. Interestingly, regression equations that
use the WG as a predictive variable appear to estimate body fat percentage more accu-
rately [18–20]. In this regard, Woolcott and Bergman [21] developed and validated a simple
equation named relative fat mass (RFM) to estimate the %BF in adults and adolescents
between 15–19 years old (RFM = 64 − (20× (stature [m]/WG [m])) + (12 × sex [0 for male
and 1 for female])). One year later, the same authors developed a specific equation for
children between 8–14 years old (74 − (22 × Stature/WG) + (5 × sex)) [22]. Importantly,
so far no anthropometry-based equations for estimating body composition in Colombian
child and adolescent athletes have been developed [23]. The few research studies in this
population focused on the external validation of skinfold-based equations [24,25] or the
generation of anthropometric profiles [26–28]. Only one study performed the concurrent
validation of five equations (none including WG) to estimate the %BF in young Colombian
athletes [25].

Considering there are no studies that have validated or developed WG-based equa-
tions for estimating body composition in children and adolescents, the aim of this study
was twofold: (i) to perform the external validation of the RFMp and RFM compared with
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DXA and (ii) to develop and validate for the first time a new simple WG-based equation to
estimate fat mass in young Colombian elite athletes.

2. Methods
2.1. Study Design

A cross-sectional study was conducted on a single-point measurement of body com-
position (DXA and anthropometry) in young Colombian athletes with a projection to high
performance sport that belong to the ‘Team Medellín’ program (Medellín, Antioquia),
in which several of the authors of this article participated. To perform this secondary
analysis of data, we followed the analytical workflow of the ‘F20 Project’ (registered in
ClinicalTrials.gov under ID #NCT05450588), which is an on-going multi-centric research
project that aims to test the validity of current WG-based equations and to develop new
models to estimate body composition in populations with different levels of physical activ-
ity from various Euro-American countries [29]. We followed the standardized guidelines
for reporting secondary data analysis STandardisierte BerichtsROutine für Sekundärdaten
Analysen (STROSA) [30], an extension of the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) statement [31].

2.2. Setting

Body composition data was collected from the participants that fulfilled the selection
criteria of the ‘Team Medellín’ program between June 2018 and April 2019. ‘Team Medellín’
is a program created in 2017 to monitor children and adolescents with athletic projection
in different sports modalities. The analytical procedures for developing and the cross-
validation of new equations were conducted as in previous studies carried out by our
research group [32,33] and presented under the framework of the ‘F20 Project’ [29]. This
study research was conducted as part of the thesis activities of the Master of Science in
Sports Nutrition at Universidad CES.

2.3. Legal Basis and Data Protection

‘Team Medellín’ is a program led by Medellin’s Town Hall, the Institute of Sports
and Recreation INDER Medellín, and the Center for Advanced Studies in Nutrition and
Food CESNUTRAL of the Faculty of Nutrition and Food Sciences at Universidad CES. This
support program for athletes with a projection for high competitive levels was announced
in accordance with Resolutions No 288 of 9 November 2017, No 0622 of 22 November 2017,
and the informative circular 001 of 27 November 2017. More information about the program
is available at https://www.inder.gov.co/es/team-medellin (accessed on 17 August 2022).
Institute of Sports and Recreation INDER Medellín protects and safeguards the personal
data in compliance with Colombian Law 1581 of 2012 and its regulatory decrees in con-
nection with Colombian Law 1712 of 2014. The guidance above covers the application of
data protection law when using secondary data; however, fully anonymized data was used
for research purposes. Since an Institutional Review Board review may be required for
a research study that relies exclusively on the secondary use of anonymous information,
this study was approved by the Institutional Review Board at the University CES (Act 139
Project: AE-374).

2.4. Selection Criteria and Study Participants

The study population was young male and female Colombian elite athletes. In order
to comply with the objectives of this secondary analysis research, the following criteria
were taken into consideration for inclusion: (i) residing in Medellin; (ii) belonging to the
‘Team Medellín’; (iii) informed consent signed by both the athletes and their parents or
legal representatives; and (iv) being aged between 8–19 years old when measured. The
exclusion criteria were: (i) para-athletes; (ii) lack of quality in the records; and (iii) athletes
who were evaluated by only one body composition method (DXA or anthropometry).

ClinicalTrials.gov
https://www.inder.gov.co/es/team-medellin


Nutrients 2022, 14, 4059 4 of 17

2.5. Variables

As reference criterion, whole-body 2-compartment body composition was estimated
using DXA. The following anthropometric variables established by ISAK were measured:
body mass (kg), stature (cm), and WG (cm). Besides the aforementioned, the following
anthropometric indexes were included in the regression models as potential predictors:
body mass-to-waist (BM/W) and waist-to-stature (W/Stature).

2.6. Data Measurement

All the measurements on the selected participants were performed at the Center for
Advanced Studies in Nutrition and Food CESNUTRAL at CES University in Medellín,
Colombia. All the athletes were evaluated in a similar way at controlled environmental
conditions (<24 ◦C and <60% humidity), with a protocol established for such purpose and
the selection criteria were strictly verified. The equipment used was duly calibrated and
the procedures were developed in accordance with the latest version of the Declaration of
Helsinki [34].

2.6.1. Dual Energy X-ray Absorptiometry

DXA scans were performed following all current technical recommendations and the
laboratory procedures reported in previous articles published by our research group [35–37].
A Lunar Prodigy™ unit was used (General Electric Healthcare, Madison, WI, USA). Each
subject was scanned by a certified bone densitometry technologist (M.K.-L.), and the
distinguished bone and soft tissue, edge detection, and regional demarcations were per-
formed using computer software. Test–retest reliability of the DXA unit had a coefficient of
variation ranging from 1.0 to 2.0%.

Similar to previous reports [35], we adjusted the DXA measurements on fat-free mass
based on the model proposed by Heymsfield et al. [38] to eliminate the influence of fat-free
adipose tissue (FFAT). This has been shown to provide more accurate values to detect
changes in body composition and for the normalization of physiological variables (e.g.,
VO2peak) in adults [39] and adolescents [40]. In brief, adipose tissue was estimated as DXA-
fat mass ÷ 0.85 and then FFAT was calculated as adipose tissue × 0.15. Finally, fat-free
mass was adjusted with the subtraction of FFAT.

2.6.2. Anthropometry

Anthropometric measurements were performed in accordance with the International
Standards for Anthropometric Assessment published by the ISAK [14]. The body mass
was measured with a digital scale to the nearest 100 g (Seca 874, Hamburg, Germany).
A portable stadiometer with a 1 mm graduation was used to measure stature (Seca 213,
Hamburg, Germany). WG was measured at the narrowest point between the lower costal
(10th rib) border and the top of the iliac crest at the end of a normal expiration with a
non-extensible metal tape (Lufkin w606PM, Apex Tool Group, Sparks, MD, USA). The
average of two measurements of anthropometric data was calculated and analyzed. The
relative technical error of measurement by the ISAK L2 certified anthropometrists was less
than 1.5% for measurements [13].

2.7. Study Size

Guidelines regarding the sample size needed for accurate predictions have indicated
that a total of 130 participants are necessary to obtain a coefficient of determination (R2) of
0.5 with an excellent level of prediction using three independent variables [41]. To perform
this study, a convenience sample (non-probability sampling) with all 140 young athletes
that belonged to the ‘Team Medellín’ was used. However, 26 child and adolescent athletes
did not fulfill the inclusion criteria and were excluded. For the external validation of the
existing WG-based equations, we divided the remaining set of data (n = 114) into two
groups that corresponded to each age range of the equations. Therefore, we validated
the RFM for adolescents (≥15 years) and RFMp for children (≤14 years) in n = 63 and
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n = 51, respectively. To develop the new WG-based equation for Colombian population, the
included participants (n = 114) were randomly assigned to either the equation development
group (EDG, n = 83 [75%]) or the validation group (VG, n = 31 [25%]).

2.8. Statistical Methods

The descriptive statistics was expressed as mean and standard deviation (SD) unless
otherwise is indicated. We used the Yuen–Dixon test [42] with 20% trimmed means (µt)
and 20% winsorized standard deviations (σw) as a robust statistical method to compare
unequal-sized samples (i.e., EDG [n = 83] versus VG [n = 31]). This robust statistics provide
broader control of Type I error when variances are not equal [43].

For the external validation of RFM and RFMp equations, correlation and agreement
analyses were performed between the actual and estimated %BF by calculating the corre-
lation coefficient (CC, as Pearson’s r), the coefficient of determination (R2), the adjusted
coefficient of determination (aR2), the standard error of the estimate (SEE), the root mean
squared error (RMSE), the intraclass correlation coefficient (ICC) and the concordance
correlation coefficient (ρc) as compared to DXA measurements. Bland–Altman diagrams
were used for the concordance analysis. This analysis determines whether two measure-
ment methods X and Y agree sufficiently to be declared interchangeable (D = X − Y). The
mean of these differences represents the systematic error (bias), while the variance of these
differences (1.96 SD) measures the dispersion of the random error.

The following was the set of candidate predictor variables to develop the new model
using the Ordinary Least Squares method: age, sex, WG, body mass, stature, BM/W
and W/Stature. All possible combinations involving one regressor, two regressors, three
regressors and so on until the seven variables were tested. Zellner–Siow prior distributions
on the regression coefficients were used to compare all Bayes factors to the null model and
all possible models were sorted by their probability from best to worst. For the latter, the
Bayesian Adaptive Sampling (BAS) R package was used. The variation explained by the
model was determined by the aR2. The SEE was calculated for all generated models to
measure the regression’s precision, while the RMSE was used to evaluate how estimated
values from each equation were close to the actual measured values by DXA. Moreover,
all possible regression models were ranked using the akaike information criterion (AIC),
the Bayesian information criterion (BIC), the Mallows’ Cp and the Hocking’s Sp. After
compliance with all of the assumptions of the multiple regression analysis (the normality
of residual errors was confirmed with the Omnibus k-squared and Jarque–Bera tests), the
model with the best performance was selected for further analysis. The predictability of the
selected model was tested in the validation sample by calculating the CC, R2, aR2, RMSE,
CCC and ICC with its respective 95% CI. The concordance analysis was performed using the
Bland–Altman diagrams, reporting the concordance intervals at 95% (limits of agreement,
LoA). Statistical tests were carried out using the latest version of the environment for
statistical computing R [44].

3. Results
3.1. Participants

A total of 114 child and adolescent Colombian athletes with a projection to a high
competitive level fulfilled the inclusion criteria. The sample of the athletes consisted of
underwater hockey (n = 12), karate (n = 12), BMX (n = 10), gymnastics (n = 10), Taekwondo
(n = 9), tennis (n = 8), ultimate (n = 7), swimming (n = 6), diving (n = 5), table tennis
(n = 5), archery (n = 4), chess (n = 4), fencing (n = 3), wrestling (n = 3), badminton (n = 3),
bowling (n = 3), squash (n = 3), judo (n = 2), athletics (n = 1), bike trial (n = 1), BMX freestyle
(n = 1), speed skating (n = 1) and agility (n = 1) players. All athletes were enrolled in
high-performance competitive tournaments at the national or international level. Table 1
shows the characteristics of all EDG and VG participants.
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Table 1. Characteristics of the study population.

Variable All (n = 114)
X (SD) [95% CI]

EDG (n = 83)
X (SD) [95% CI]

VG (n = 31)
X (SD) [95% CI]

ESt (MoE∆)
[95% CI] p Value

Sex
Women 58 (50.87%) 46 (55.42%) 10 (32.25%)

Men 56 (49.12%) 37 (44.57%) 21 (67.74%)

Race
White-Mestizo 110 (96.49%) 79 (95.18%) 31 (100.0%)

Afro-descendant 4 (3.50%) 4 (4.81%) 0 (0.0%)

CA
Children (8 to 14) 51 (44.73%) 39 (46.98%) 12 (38.70%)

Adolescents (15 to 19) 63 (55.26%) 44 (53.01%) 19 (61.29%)

Age 14.85 (2.38) 14.87 (2.30) 14.79 (2.60) 0.10 (1.15)
[−1.05, 1.26] 0.850

Body mass 55.09 (12.16) 54.51 (12.02) 56.63 (12.60) 2.97 (4.49)
[−1.52, 7.47] 0.189

Stature 162.38 (11.53) 161.80 (11.42) 163.91 (11.89) 4.02 (4.34)
[−0.31, 8.37] 0.069

Waist 69.04 (6.30) 68.77 (6.46) 69.74 (5.88) 1.29 (2.57)
[−1.28, 3.86] 0.314

BM/W (m/m) 79.02 (11.88) 78.52 (11.59) 80.37 (12.73) 3.11 (4.81)
[−1.69, 7.93] 0.197

W/Stature (cm/cm) 0.42 (0.02) 0.42 (0.02) 0.42 (0.02) 0.00 (0.01)
[−0.008, 0.01] 0.666

FM (kg) 12.39 (4.34) 12.33 (4.35) 12.54 (4.36) 0.47 (2.06)
[−1.58, 2.54] 0.639

%BF (%) 22.65 (6.40) 22.80 (6.53) 22.26 (6.11) −0.55 (3.33)
[−3.88, 2.78] 0.738

Data is presented as mean (X) and standard deviation (SD) unless otherwise is indicated. The effect size (ESt)
corresponds to the difference between the two trimmed means (µt2 − µt1) in original units. %BF: percentage of
body fat; BM/W: body mass-to-waist ratio; CA: children and adolescents; CI: confidence interval; EDG: equation
development group; FM: fat mass; MoE∆: marge of error for the CI on the difference between the two trimmed
means; VG: validation group; W/Stature: waist-to-stature ratio. Statistically significance (p < 0.05 of the two-tailed
p value) for difference between EDG and VG.

No statistically significant differences were found between EDG and VG participants.
An exploratory correlation analysis was performed for a quick and simple summary to
understand the relationship between the study variables in all participants (Table 2). BM/W
showed the high significant correlation values with other variables (r ≥ 0.72).

Table 2. Means, standard deviations and correlations with confidence intervals.

Variable X SD 1 2 3 4 5 6

1. Age 14.85 2.38

2. Body mass 55.09 12.16 0.70 *
[0.59, 0.78]

3. Stature 162.38 11.54 0.61 * 0.88 *
[0.49, 0.72] [0.82, 0.91]

4. Waist 69.04 6.30 0.56 * 0.89 * 0.72 *
[0.42, 0.67] [0.85, 0.93] [0.61, 0.79]

5. BM/W 79.02 11.89 0.72 * 0.95 * 0.89 * 0.72 *
[0.62, 0.80] [0.93, 0.97] [0.84, 0.92] [0.62, 0.80]
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Table 2. Cont.

Variable X SD 1 2 3 4 5 6

6. W/Stature 0.43 0.03 0.10 0.28 * −0.11 0.62 * 0.02
[−0.09, 0.28] [0.11, 0.45] [−0.29, 0.08] [0.49, 0.72] [−0.16, 0.21]

7. FM_DXA 12.39 4.34 0.41 * 0.50 * 0.27 * 0.44 * 0.50 * 0.32 *
[0.24, 0.55] [0.35, 0.63] [0.09, 0.43] [0.28, 0.58] [0.35, 0.63] [0.14, 0.47]

Data is presented as mean (X) and standard deviation (SD). Values in square brackets indicate the 95% confidence
interval for each correlation. The confidence interval is a plausible range of population correlations that could have
caused the sample correlation [45]. BM/W: body mass-to-waist ratio; FM: fat mass; W/Stature: waist-to-stature
ratio. * Statistically significance (p < 0.01).

3.2. External Validation of the RFMp and RFM for Colombian Children and Adolescents

The RFM equation for adults has been reported to be useful for estimating %BF in
adolescents from 15 to 19 years of age. Complementarily, the RFMp has been developed
as a modified version of the original equation for children and adolescents between 8 and
14 years of age. However, our statistical analysis showed very low and low correlation for
RFMp (Figure 1A) and RFM (Figure 1B), respectively, in young Colombian athletes. In fact,
the ICC and CCC revealed a very poor and poor agreement and concordance with DXA
measurements for RFMp (ICC [95% CI]: 0.148 [−0.131, 0.406]; CCC [95% CI]: 0.145 [0.030,
0.313]) and RFM (ICC [95% CI]: 0.536 [0.333, 0.691]; CCC [95% CI]: 0.531 [0.370, 0.662]),
respectively. The Bland–Altman analyses showed a too wide range of the 95% CI for the
LoA for RFMp (−15.922, 14.111) and RFM (−9.644, 13.093).
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Figure 1. External validation of the RFMp and RFM in young Colombian athletes. (A) Concordance
correlation plot of DXA measurements and estimations with RFMp. (B) Concordance correlation plot
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of DXA measurements and estimations with RFM. The solid 45◦ line represents perfect concordance
while the red line represents the linear regression line through the observations. CC: Correlation
coefficient; R2: Coefficient of determination; R2a: Adjusted coefficient of determination; SEE: Standard
error of the estimation; RMSE: Root mean square error; ICC: Intraclass correlation coefficient; CCC:
Concordance correlation coefficient (ρc). (C) Bland–Altman plot for differences between measured
and estimated %BF with the values obtained by the RFMp. (D) Bland–Altman plot for differences
between measured and estimated %BF with the values obtained by the RFM. Individual differences
between real and estimated %BF values are plotted against the mean of the values of measured and
estimated %BF. Limits of Agreement are shown as dashed black lines with 95% confidence intervals,
bias (as dashed black line) with 95% confidence interval, and regression fit of the differences on the
means (as solid blue line).

3.3. New Waist Girth-Based Equation to Estimate Fat Mass in Young Athletes

After the evaluation of all models with all possible combinations of predictor variables
to estimate fat mass in kilograms (127 models in total), the best performance was obtained in
the model that included Sex, BM/W and W/Stature as explainable variables for estimating
fat mass. Table 3 shows the performance metrics of the top ten models with three regressors
to estimate fat mass (see all possible models including all regressors in Supplementary
File S1). All models are expressed as Ŷ = β0 + β1X1 + β2X2 + β3X3. It is important
to note that models with maximum three regressors were prioritized for simplicity and
considering the a priori sample size calculation. Even though we also evaluated all possible
combinations to estimate %BF or fat-free mass as independent variables (data not shown),
the selected model to estimate fat mass outperformed all other possibilities after the model
specification process.

Table 3. Regression results to estimate fat mass using DXA as the criterion.

OLS Equation R2 aR2 Cp AIC BIC hsp

Ŷ = β0 + β1(Sex) + β2(BM/W) + β3(W/Stature) 0.683 0.671 4.045 393.525 405.619 0.080
Ŷ = β0 + β1(Sex) + β2(BM) + β3(Stature) 0.661 0.648 9.439 399.004 411.098 0.085

Ŷ = β0 + β1(Sex) + β2(BM) + β3(W/Stature) 0.655 0.642 10.950 400.476 412.570 0.087
Ŷ = β0 + β1(Sex) + β2(Stature) + β3(W/Stature) 0.587 0.572 27.862 415.385 427.479 0.104

Ŷ = β0 + β1(Sex) + β2(W) + β3(BM/W) 0.585 0.570 28.304 415.741 427.835 0.104
Ŷ = β0 + β1(Sex) + β2(W) + β3(W/Stature) 0.585 0.569 28.367 415.791 427.885 0.104

Ŷ = β0 + β1(Sex) + β2(W) + β3(Stature) 0.584 0.568 28.671 416.034 428.129 0.105
Ŷ = β0 + β1(Sex) + β2(W) + β3(BM) 0.582 0.566 29.078 416.360 428.454 0.105
Ŷ = β0 + β1(Age) + β2(Sex) + β3(W) 0.574 0.558 31.182 418.021 430.115 0.110

Ŷ = β0 + β1(Sex) + β2(BM) + β3(BM/W) 0.563 0.546 33.914 420.129 432.224 0.110

Data was generated using the ols_step_all_possible function of the ‘olsrr’ v0.5.3 R package. It tested all possible
subsets of the set of potential independent variables. AIC: akaike information criterion; aR2: adjusted coefficient
of determination; BIC: bayesian information criterion; BM: body mass; Cp: Mallows’ Cp; hsp: Hocking’s Sp; OLS:
Ordinary Least Squares; R2: coefficient of determination; W: waist girth.

A complementary Bayesian approach was implemented to select the most suitable
regression model. Zellner–Siow prior distributions on the regression coefficients were
used to compare all Bayes factors to the null model and all possible models were sorted
by their probability from best to worst (Figure 2). This alternative analysis revealed that
the best model for estimating fat mass was the one that included sex, the BM-to-W and
W-to-Stature ratios.

Once the predictor variables were selected, we ensured the assumptions of the linear
regression were satisfied. Normality of residual errors was confirmed with the Omnibus
K-squared (p = 0.586) and Jarque–Bera (p = 0.579) tests which are based on skewness
and kurtosis, respectively. VIFs revealed there were no multicollinearity issues. Finally,
autocorrelation in the residuals was discarded using the Durbin–Watson test where values
between 1.5 and 2.5 are considered as acceptable. Finally, the heteroscedasticity condition
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was rejected (p = 0.287). The statistical parameters of the regression are shown in Table 4.
The new model (F20CA) to estimate FM in Colombian children and adolescent athletes is
shown in the following Equation (1), where 0 for men and 1 for women (SEE = 2.468 kg):

FM (kg) = 5.46 ∗ (Sex) + 0.21 ∗ (BM/W [kg/m]) + 81.7 ∗ (W/Stature [cm/cm]) − 41.8 (1)
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Figure 2. Visualization of the model space with all of the potential predictors. (A) Marginal posterior
inclusion probabilities for each of the covariates. The marginal posterior inclusion probabilities
greater than 0.5 are shown in red. (B) Zellner–Siow prior distributions on the regression coefficients.
The rows correspond to each of the variables and intercept (labels on the y-axis) while the x-axis
corresponds to the possible models. The models are sorted by their posterior probability from best
(left) to worst (right) with the rank on the top x-axis (each column represents one model). Excluded
variables in a model are shown in black for each column and the variables included are colored (the
color is related to the log posterior probability with orange as the highest probability model). BM:
body mass; BM/W: body mass-to-waist ratio; W: waist girth; W/Stature: waist-to-stature ratio.

Table 4. Regression results to estimate fat mass using DXA as the criterion.

Predictor b [95% CI] beta [95% CI] sr2 [95% CI] r R2 aR2 VIFs DW

(Intercept) −41.80 [−51.69, −31.91] *
0.683

[0.55, 0.75] * 0.671 1.877
Sex 5.46 [4.29, 6.63] * 0.63 [0.49, 0.76] 0.35 [0.20, 0.49] 0.38 * 1.132
BM/W 0.21 [0.16, 0.26] * 0.55 [0.43, 0.68] 0.30 [0.16, 0.44] 0.48 * 1.026
W/Stature 81.70 [60.91, 102.49] * 0.52 [0.39, 0.65] 0.25 [0.12, 0.37] 0.35 * 1.105

A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. aR2: adjusted
coefficient of determination; b: represents unstandardized regression weights; beta: indicates the standardized
regression weights; BM/W: body mass-to-waist ratio; DW: Durbin–Watson; r: represents the zero-order correlation;
sr2: represents the semi-partial correlation squared; VIFs: variance inflation factors; W/Stature: waist-to-stature
ratio. * Statistically significance (p < 0.01).

3.4. Validation of the F20CA Equation

The validation process of the F20CA equation resulted in a moderate-to-high level of
correlation and concordance with DXA measurements. Regarding goodness of fit, the new
equation had low values of SEE (2.471 kg) and RMSE (2.613 kg) with moderate-to-high aR2

(0.679), which indicated the model fit for the estimation. In addition, the C.b was equal
to 0.963 (very close to 1). The C.b is a bias correction factor that measures how far the
best-fit line deviates from a line at 45 degrees. Furthermore, there was a good agreement
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and correlation between measured and estimated fat mass based on the obtained ICC
(95% CI) of 0.805 (0.615, 0.895). Finally, the Bland–Altman analysis corroborated the high
concordance between the new equation and DXA (bias = 1.02 kg), since 100% of the data
remain within a relatively short range of the 95% LoA (−3.771, 5.815 kg) (Figure 3).
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Figure 3. Correlation and concordance analysis of the F20CA equation. (A) Concordance correlation
plot. CC: Correlation coefficient; R2: Coefficient of determination; R2a: Adjusted coefficient of
determination; SEE: Standard error of the estimation; RMSE: Root mean square error; ICC: Intraclass
correlation coefficient; CCC: Concordance correlation coefficient (ρc). (B) Bland–Altman plot for
differences between measured and estimated fat mass in kilograms with the developed equation
(F20CA). Individual differences between real and estimated fat mass values are plotted against the
mean of the values of measured and estimated fat mass.
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4. Discussion

Young athletes with projection to a high competitive level require early monitoring to
understand individual responses to exercise programs, morphological changes [27,28] and
the development of technical skills [46,47]. Therefore, the assessment of nutritional status
and body composition is extremely important to avoid unwarranted nutrient deficiencies,
chronic low energy availability (LEA) and eating disorders [48]. Sports practitioners fre-
quently rely on equations to estimate body composition (i.e., fat mass, musculoskeletal
mass) as an accessible, practical and non-expensive methodology with moderate corre-
lation to reference methods [23]; however, it is clear that the estimation of %BF with-
out a population-specific equation or correction factor may lead to incorrect interpreta-
tions [49]. It should be emphasized that using wrong equations to assess body composition
may affect the dietary planning process by resulting in inaccurate athlete resting energy
expenditure or macronutrient distributions that may further evoke in chronic LEA or
macro/micronutrients deficiencies [50].

Considering the aforementioned situations, this study aimed to validate and develop
WG-based equations in young Colombian elite athletes. Although RFM/RFMp has been as-
sociated with biochemical-related and cardiometabolic parameters in children with chronic
kidney disease [51] or with overweight/obesity [52], the findings of our external validation
process revealed that neither RFM nor RFMp are recommended for young Colombian
athletes given the poor correlation, agreement and concordance with the DXA scans (see
Figure 1). Similar to our results, recent studies performed in south American population
have also concluded that the RFM equation seems not to be valid for estimating %BF in
adolescents. In a total of 631 individuals (197F, 434M) aged 11 to 18, Ripka et al. [49] evalu-
ated the validity and accuracy of different equations to estimate %BF from anthropometric
data against DXA. Their findings revealed that RFM underestimated %BF in boys and girls
and had lower sensitivity compared to BMI and tri-ponderal mass index. In another study,
Encarnação et al. [53] evaluated 420 Brazilian adolescents (204F, 216M) aged 15–19 years to
verify the validity of anthropometric methods, including the RFM, with DXA as reference
method. The authors concluded that RFM was not valid for predicting %BF in the studied
sample regardless of sex or age. It worth noting that RFM has been reported as a tool to
diagnose high adiposity [54], which might explain the poor estimation performance in
children and adolescents due to their lower adiposity. Nevertheless, further research is
warranted to make definitive conclusions in this regard.

Considering the origin and number of studies, a recent scoping review by Cerqueira
et al. (2022) showed that only a few South American countries have developed anthropo-
metric equations to estimate FM, %BF or body density in young populations: Argentina (1),
Uruguay (1), Chile (2) and Brazil (9). No studies have been performed in Colombia to
validate or develop regression equations based on anthropometric data to evaluate body
composition in children and adolescents. Thus, the F20CA is the first equation for athletic
Colombian children and adolescents.

In the young Colombian athletes who participated in this study, as age increases,
fat mass increases in women (r = 0.6), while in men, a positive correlation was observed
between fat-free mass and age (r = 0.787). Although chronological age has been found
to explain to a large extent the changes in body composition [55], our statistical analysis
(traditional and Bayesian) showed that age was not a statistically significant variable that
could be used as a regressor. In fact, the Bayesian approach revealed that sex, the BM/W
and W/Stature ratios were the variables with higher marginal posterior inclusion proba-
bilities, indicating that these are important for explaining the data variance or prediction
(estimation). Both ratios have been found to have a strong correlation with body compo-
sition as well as strong predictors of abdominal obesity across the lifespan [56–62]. Thus,
we were able to successfully develop and validate a novel equation (F20CA) to estimate fat
mass in kilograms with relatively low SEE (2.471 kg) and RMSE (2.613 kg), which indicate
that the estimated values are close to the DXA measurements. Our concordance analysis
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suggests that both fat mass measurement methods (DXA and the F20CA-estimated values)
can be interchanged.

4.1. Limitations and Strengths

The results of this study should be discussed in light of the following limitations and
strengths. Firstly, we are aware that as a result of the skewed selection of participants
this study is susceptible to bias and other forms of selection errors; however, the sample
had relatively homogeneity between number of male and female participants. In addition,
sample was representative for young Colombian elite athletes. Secondly, even though
we might have experienced attrition bias given we did not reach the target sample size
(n = 130), we obtained a higher R2 than initially planned, as well as moderate-to-high values
of correlation, agreement and concordance between the developed equation and DXA
measurements. Moreover, the general rule of thumb is ≈50 participants for developing
a regression equation [63]. A larger sample size for external validation is warranted for
generalizability in the young athletic Colombian population, particularly including young
athletes from different geographical locations. It is necessary to point out the need for
validation current or new WG-based equations in other populations (e.g., health and
disease). Thus, following the methodological procedures of the ‘F20 Project’ might increase
generalizability and scientific soundness at the time of evaluating body composition in
populations with different levels of physical activity by validating and/or developing
new WG-based models [29]. Third, the study was performed as secondary data analysis,
although we were able to answer the specific research question/objective.

The development and validation of new models, such as the F20CA equation, increase
the accuracy in the estimations, the scientific soundness in research projects and generaliz-
ability to evaluate the young Colombian athletic population. Aware of the need for external
validation, we consider that the simple developed/validated F20CA equation could become
a formally established tool by the Institute of Sports and Recreation INDER Medellín and
the Colombian Ministry of Sports.

4.2. Practical Recommendations

The following are practical take-home points for sport and performance practitioners
and scientists who supervise young athletes without access to more sensitive, accurate and
expensive methods:

• Follow the International Standards for Anthropometric Assessment (ISAK protocol).
The International Olympic Committee research working group on body composition,
health and performance recommends the procedures established by the ISAK [64].
However, it is necessary to point out that WG measured at different sites (minimal
[ISAK], midway, iliac, umbilicus) does not affect the relationships with visceral adipose
tissue measured by magnetic resonance imaging and with cardiometabolic risk factors
in children and adolescents, regardless of race or sex [65].

• Estimate fat mass with the F20CA as: FM (kg) = 5.46 ∗ (Sex) + 0.21 ∗ (BM/W [kg/m]) +
81.7 ∗ (W/Stature [cm/cm]) − 41.8, where sex is zero for men and one for women.

• Use a fat mass index (fat mass/stature2, kg/m2) chart analysis to avoid the misclassifi-
cation of young players’ nutritional status in order to assess differences between age
categories and to design individual intervention for fat loss or muscle gain [66,67].

• Use the sum of skinfolds to accurately detect changes in body composition (i.e., %BF)
during a nutrition and/or exercise intervention. The sum of skinfolds has been shown
to strongly correlate with %BF measured by DXA in well-trained athletes [68–70].

• Estimate the young athlete’s fat-free mass (kg) according to the expression: Body Mass
[kg] − F20CA-estimated fat mass [kg].

• Use the estimated fat-free mass to calculate the energy (e.g., resting energy expenditure
or energy expenditure during exercise) [71–73] and macronutrient distribution [74,75].
For the selection of any predictive equation to estimate body composition or energy
expenditure, the practitioner should consider the following: (a) the assessed athletes
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should be similar to the ones used to develop the original equation; (b) similarities in
age and sex; (c) similarity in adiposity and physical activity levels; (d) the technique
or protocol used in the study; and (e) the equipment used [70].

• Use the estimated fat-free mass to calculate the energy availability to avoid chronic
LEA and the subsequent relative energy deficiency in sport. The energy availability is
calculated as: Energy Intake − Exercise Energy Expenditure/Fat-Free Mass [76,77].

• Calculate the skinfold-corrected muscle girths (girth − [π × skinfold/10]) to monitor
changes in musculoskeletal mass [78].

• Body composition is important but is not the cornerstone of sports success. Track
other psychological, physiological and performance-related variables to gain a more
integrative picture of the athlete’s adaptive response to exercise, nutrition and rest
(allostatic response) [79,80].

5. Conclusions

Current scientific evidence on the estimation of %BF encourages researchers and
practitioners to advocate for the creation of simple and specific equations to children and
adolescents [23]. We successfully formulated a new simple, specific and WG-based two-
component model to estimate body composition in Colombian children and adolescent
elite athletes using ordinary least squares regression. The regression output revealed that
sex, the BM/W ratio and the W/Stature ratio were the statistically significant predictor
variables that account for variability in the fat mass of young athletes. The new equa-
tion was named as F20CA and showed a moderate-to-high correlation and agreement
within the internal validation data set (R2 = 0.689; ICC [95%CI] = 0.805 [0.615, 0.904];
RMSE = 2.613 kg). Furthermore, all data measurements were within the concordance limits
between values measured with the reference method (DXA) and the F20CA-estimated fat
mass (bias [95% LoA] = 1.02 [−3.77, 5.81] kg), indicating that the two methods could be
considered interchangeable. While the equation is externally validated in other geographi-
cal population groups, practitioners are advised to use the F20CA in Colombian children
and adolescents with similar characteristics to those who participated in this study.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nu14194059/s1, File S1: The performance metrics of the
all regressors.
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