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Background: Asthma is a complex pulmonary inflammatory disease which is common
among older adults. Aging-related alterations have also been found in structural cells and
immune cells of asthma patients. Nonetheless, the underlying mechanism by which
differenced aging-related gene contributes to asthma pathology remains unclear. Of
note, DNA methylation (DNAm) has been proven to play a critical mechanism for age-
related gene expression changes. However, the methylation changes of aging-related
genes in asthma patients are still obscure.

Methods: First, changes in DNAm and gene expression were detected with multiple
targeted bisulfite enrichment sequencing (MethTarget) and qPCR in peripheral blood of 51
healthy controls (HCs) and 55 asthmatic patients. Second, the correlation between the
DNAm levels of specific altered CpG sites and the pulmonary function indicators of asthma
patients was evaluated. Last, the receiver operator characteristic (ROC) curve and principal
component analysis (PCA) were used to identify the feasibility of the candidate CpG sites
as biomarkers for asthma.

Results: Compared with HCs, there was a differential mRNA expression for nine aging-
related genes in peripheral blood of asthma patients. Besides, the methylation levels of the
nine aging-related genes were also altered in asthma patients, and a total of 68 CpG sites
were associated with the severity of asthma. Notably, 9 of the 68 CpG sites were
significantly associated with pulmonary function parameters. Moreover, ROC curve and
PCA analysis showed that the candidate differential methylation sites (DMSs) can be used
as potential biomarkers for asthma.

Conclusions: In summary, this study confirmed the differentially expressed mRNA and
aberrant DNAm level of aging-related genes in asthma patients. DMSs are associated with
the clinical evaluation indicators of asthma, which indicate the involvement of aging-related
genes in the pathogenesis of asthma and provide some new possible biomarkers for
asthma.
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INTRODUCTION

Asthma is a chronic and complex pulmonary inflammation
disease which is characterized by aberrant immune responses
to allergen, reversible airflow obstruction, and airway
hyperresponsiveness (AHR). Although bronchodilators and
inhaled/systemic corticosteroids are highly effective in most
asthma patients, approximately 5–10% asthma patients are still
steroid-refractory, which always have lower lung function and
higher mortality (Luhadia, 2014; Maltby et al., 2017). Classical
“allergic constitution” or “airway inflammation” cannot fully
explain the occurrence and development of asthma. Thus,
accumulating studies are attempted to further elucidate the
inner pathogenesis of asthma and identify novel therapeutic
targets.

Intriguingly, asthma is common among older adults (aged
over 65 years), which is usually more severe, with little
opportunities of remission (Dunn et al., 2018). Accumulative
studies have demonstrated the involvement of aging in the
parthenogenesis of chronic pulmonary diseases, including
idiopathic pulmonary fibrosis (IPF) and chronic obstructive
pulmonary diseases (COPD). As is known, the pathological
changes in asthma resemble those in COPD, such as airway
remodeling, chronic inflammation, and decreased lung function
(Zhou-Suckow et al., 2017; Aghasafari et al., 2019). It is feasible to
speculate the possible involvement of aging in the development of
asthma. Indeed, some valuable evidences have implicated that
aging is a vital dangerous factor for the development of asthma
(Budde and Skloot, 2018). Aging-related changes have also been
found in structural cells and immune cells of asthma patients. Of
particular note is that the hallmarks of aging such as telomere
attrition, epigenetic alterations, loss of proteostasis, and altered
intercellular communication have also been detected in asthma
patients (Kennedy et al., 2014). Besides, aging can affect asthma
severity along with its diagnosis and management, which is
significant for the treatment of asthma (Budde and Skloot,
2018). The aging of different targeted cells can also contribute
to the pathobiology of asthma, including airway inflammation,
airway remodeling, and decreased lung function (Wang et al.,
2020). Furthermore, it has been confirmed that antiaging
strategies can improve pathological processes such as airway
inflammation and airway remodeling in asthma patients
(Conte et al., 2015).

Although more and more undeniable studies have evidenced
the association between aging and asthma, the role of aging and
the mechanism behind the differential expression of aging-related
genes are still obscure. A series of recent researches have
confirmed that epigenetic mechanisms are involved in the
regulation of the expression of aging-related genes (Johnson
et al., 2012; Field et al., 2018). Epigenetic mechanisms
containing DNA methylation (DNAm), microRNA expression,
and histone modifications could regulate the transcription
activities of the target genes without alteration of the
nucleotide sequence. In particular, DNAm is the most deeply
studied epigenetic regulation, which has been proven to play a
crucial role in the regulation of aging-related genes (Yang et al.,
2014). Specifically, it has been verified that cytosine methylation

at the CpG site affected multiple regulatory mechanisms of aging-
related genes during transcription (Zhu et al., 2016; Morales-
Nebreda et al., 2019) and further participated in aging-related
diseases such as asthma and COPD (Nicodemus-Johnson et al.,
2016; Morrow et al., 2016; Morrow et al., 2018). A series of
previous studies have verified that DNAm regulations are
involved in the pathogenesis of respiratory diseases such as
allergies and asthma (DeVries and Vercelli, 2016; Miller and
Lawrence, 2018; Peng et al., 2019). However, the DNAm
mutations of aging-related genes in asthma patients are still
obscure.

Our previous study screened and evaluated the differential
mRNA expression and altered methylation levels of nine aging-
related genes (AREG, ATG3, E2F1, FOXO3, HDAC1, MMP2,
NUF2, TGFB1, and TP53) in COPD patients (Du et al., 2019). It
is found that DNAm was involved in regulating the expression of
nine aging-related genes in peripheral venous blood of COPD
patients. Besides, the methylation level of certain special CpG
sites was associated with the incidence and severity of COPD (Du
et al., 2019). In this study, we further aim to probe the potential
involvement of these previously screened nine aging-related
genes in the parthenogenesis of asthma. First, we inspected the
changes in DNAm and mRNA expression of the nine aging-
related genes in peripheral venous blood of healthy controls
(HCs) and asthmatic patients. Then, we analyzed the
correlation between DMSs and clinical indicators in asthmatic
patients. Finally, we assessed the feasibility of the candidate CpG
sites as biomarkers for asthma.

METHODS

Subjects and Data Collection
The study was approved by no. 20180308 of the Xiangya Hospital
Ethics Review Committee. From October 2018 to January 2019,
51 HCs and 55 asthma patients were chosen from the Respiratory
Department and Physical Examination Center of Xiangya
Hospital, China. FEV1/FVC ratio <0.7 and FEV1% <70% were
defined as the presence of asthma. The inclusive standards for the
patient group were between the age of 40 and 70 years with a clear
diagnosis of asthma (according to the criteria of 2018 Global
Strategy for Asthma Management and Prevention) but without
other respiratory or other diseases (GINA Report, 2021). The
HCs had no differences in age and gender without asthma or
other organic mental diseases, including smoking and
nonsmoking controls. Quality control methods were strictly
enforced.

After obtaining the written informed consent from each
subject, we collected questionnaire information (general
condition, smoking history, and other respiratory diseases),
pulmonary function testing, and peripheral blood samples. For
our analysis, pulmonary function parameters including forced
expiratory volume in 1 s as percentage of predicted volume
(FEV1%), the spirometric values of forced expiratory volume
in 1 s (FEV1), forced vital capacity (FVC), peak expiratory force
(PEF), and forced expiratory flow (FEF) were adopted. Certified
staff performed all interviews and examinations. Moreover,
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feedback on work quality would be regularly provided to field
staff during the data collection process, and secondary training
would be conducted when necessary.

Sample Collection
A total of 106 whole blood samples were collected from the
enrolled 51 HCs and 55 asthma patients. Then, the collected
peripheral blood was placed into 5 ml EDTA anticoagulation
tubes and transferred to a centrifuge tube. After adding 2 volumes
of erythrocyte lysate and lysing for 5 min, peripheral blood cells
were pelleted by centrifugation and stored at −80°C.

RNA Extraction and Quantitative RT-PCR
Total mRNAwas purified from peripheral blood cells using Trizol
(Invitrogen) and quantified by an ultraviolet spectrophotometer
(Thermo Fisher Scientific, MA, United States) (Yuan et al., 2019).
1 μg RNA was reverse-transcribed into cDNA using Reverse
Transcriptase Kit (Qiagen, Netherlands) in accordance to the
manufacturer’s instructions (Yuan et al., 2020). Then, quantitative
RT-PCR was executed using SYBR® Premix Ex Taq™ II system
(TaKaRa, Japan) with the CFX96 Touch™ Real-Time PCR Detection
System (Bio-Rad, CA, United States). 1 μL of the reverse-transcript
was added to a 30-μL PCRmixture for 40 cycles. Each cycle included
93°C for 30 s and 54°C for 60 s. By the comparison between the copy
numbers of target gene and β-actin, the normalization of mRNA
expression data for sample-to-sample variability in RNA input, RNA
quality, and reverse transcription efficiency was completed. Primer
sequences are described in Table 1.

DNA Extraction, Bisulfite Treatment, and
Methylation Array Methods
A commercially available kit (TIANGEN Biotech, Beijing, China)
was used to extract genomic DNA from whole blood according to
previous publications (Koshy et al., 2017). Genesky Biotechnologies
Inc. performed bisulfite processing, methylation library construction,
high-throughput sequencing, and quality control (Li et al., 2017). CpG
islands located between 2K upstream of the gene transcription start site
and 1K downstream of the first exon were selected to measure the
methylation level. 18 CpG islands from the nine screened aging-related
genes were selected (two fromAREG, two fromATG3, one fromE2F1,
three from FOXO3, one from HDAC1, three from MMP2, one from
NUF2, three from TGFB1, and two from TP53) according to our
previous publications (Du et al., 2019). Then, bisulfite modification of
DNA sample, methylation library construction, and MethTarget were
performed (Du et al., 2019). 856 CpG sites from nine distinguishingly
expressed aging-related genes in the methylation assay were detected.
Weonly selected the original datawith a sequencing quality value ofQ>
40 (basic sequencing error rate <0.1%), and the methylation percentage
of each CpG site was presented. In the process of sequencing, due to the
sample getting segmented intomultiple fragments during amplification,
a few fragments were detected repeatedly, which was specifically labeled
in the results.

Statistical Analysis
The characteristic data of all recruited HCs and asthma patients
were shown as mean ± SD, p-value < 0.05, and analyzed by

unpaired t test. t test and nonparametric test (Mann–Whitney U
test) were used to analyze the mRNA expression and the
methylation array of AREG, ATG3, E2F1, FOXO3, HDAC1,
MMP2, NUF2, TGFB1, and TP53. We used the Benjamini
Hochberg method to control the false discovery rate (FDR). The
selection of distinguishingly expressed CpG sites was performed by
logistic regression analysis, with latent risk factors of age and gender
(Miravitlles et al., 2000). The correlation between the percentage of
methylation of candidate CpG sites and successive variables for
instance FEV1%, FVC, FEV1, and PEF was assessed by Pearson’s
correlation or Spearman’s correlation. ROC analysis was obtained to
elucidate the accuracy of candidate DMSs or methylation change
rates in predicting asthma. For each candidate DMS, the optimal
cutoff value for predicting asthma and corresponding sensitivity and
specificity were defined by the maximum Youden index value
(sensitivity + specificity-1) (Fluss et al., 2005). The methylation
percentage of candidate DMSs or the methylation status (change
or not change) were used for PCA to identify asthma. For each
candidate DMS, the change in methylation status was defined by its
optimal threshold (Saito et al., 2017). Themethylation change rate in
each sample mainly referred to the probability that the methylation
status of the candidate DMSs changed. The statistical analyses were
implemented using SPSS version 22.0 (IBM Corporation, Armonk,
NY, United States). A two-tailed p-value <0.05 was considered
statistically significant, ****p < 0.0001; *p < 0.05.

RESULTS

Differential Expression of the Nine
Screened Aging-Related Genes in
Peripheral Blood of Asthma Patients
In order to detect the expression of the previously screened nine
aging-related genes in asthma patients, peripheral blood was

TABLE 1 | Primer sequence of aging-related genes for qPCR.

Gene Primer

AREG Forward TGTCGCTCTTGATACTCGGC
Reverse AGGCATTTCACTCACAGGGG

ATG3 Forward GTGTTCAGTTCACCCATGCAG
Reverse TTAACAGCCATTTTGCCACTAATCT

E2F1 Forward CATCCCAGGAGGTCACTTCTG
Reverse GACAACAGCGGTTCTTGCTC

FOXO3 Forward CGGACAAACGGCTCACTCT
Reverse GGACCCGCATGAATCGACTAT

HDAC1 Forward TTTTTGGGTYGGAYGTTGAG
Reverse CCCTCRCAACCTCCTCTCC

MMP2 Forward TGGCACCCATTTACACCTAC
Reverse CCTCGTATACCGCATCAATC

NUF2 Forward TGTTAAGCAATACAAACGCACAG
Reverse TGCCTTTTCAATACCGTCGTG

TGFB1 Forward CGACTCGCCAGAGTGGTTAT
Reverse GCTAAGGCGAAAGCCCTCAA

TP53 Forward AAGTCTGTGACTTGCACGTACTCC
Reverse GTCATGTGCTGTGACTGCTTGTAG

β-actin Forward TTCCAGCCTTCCTTCCTGGG
Reverse TTGCGCTCAGGAGGAGCAAT
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collected from 51 HCs and 55 asthma patients. The demographic
characteristics of all the subjects are shown in Table 2. There was
no significant difference in age between asthma patients and HCs.
Compared with HCs, the mRNA expression of AREG, ATG3,
E2F1, FOXO3, HDAC1, MMP2, NUF2, TGFB1, and TP53 in the
asthma group changed significantly (Figure 1).

Altered Methylation Levels of the Nine
Aging-Related Genes in Peripheral Blood of
Asthma Patients
As the mRNA expression of the nine aging-related genes altered
significantly in asthma patients, we further determined the
methylation levels of the nine aging-related genes in asthma
patients. We analyzed the total 856 CpG sites in the CpG
islands of the nine aging-related genes. The methylation
analysis result was shown via volcano maps (Figure 2). It is
shown that the methylation levels of 68 CpG sites were related to
asthma at FDR <5%. The detailed information of all the
differential 68 DMSs is demonstrated in Supplementary Table
S1. In addition, we analyzed the correlation between the
methylation level of the 68 CpG sites and the expression of
the corresponding aging-related genes. Among all the 68 CpG
sites, there is a negative association between mRNA expression
and DNAm in 58 CpG sites (Supplementary Table S2). This
correlation strongly indicates that the methylation level of the
CpG sites would have a negative impact on the expression of the
corresponding aging-related genes.

Potential Correlation Between DMSs of
Aging-Related Genes and Clinical Index of
Asthma
To further assess whether the differential methylation of the nine
aging-related genes is related to the occurrence and severity of
asthma, we detected the correlation between the differential 68
DMSs in aging-related genes and the lung function indicators of
asthma patients. The results demonstrated that nine DMSs were
significantly associated with lung function. The maximum
correlation coefficient for each DMS is presented in Figure 3.
The remaining correlation analysis data are shown in

Supplementary Figure S1. For these nine DMSs, three DMSs
(Chr4:75310649-1, Chr6:108883024, and Chr17:7591672) were
closely related to at least three clinical indicators. In addition,
other two DMSs (Chr20:32274088 and Chr6:108882977) were
related to two clinical indicators. It has also been shown that the
correlation coefficients of the nine DMSs were all greater than
0.38 with a p-value ＜0.05. It was also particularly noteworthy
that Chr17:7591672 was closely related to four lung function
indicators (FVC, FEV1, PEF, and FEF25), with a correlation
coefficient of 0.671 and a p-value equal to 0.0001. These data
strongly suggested that the differential DNAm of the specific
aging-related DMSs may influence the occurrence and severity of
asthma. The complete data for the nine DMSs and clinical
indicators are shown in Table 3.

Feasibility of Candidate DMSs as
Biomarkers of Asthma
Since the differential nine DMSs have been confirmed to be
closely associated to the clinical lung function of asthma patients,
we further evaluated their potential as biomarkers for asthma
patients. First, ROC analysis of the methylation levels of each
candidate DMS was performed. The areas under the curve (AUC)
of eight DMSs (p-value < 5%) were between 65.3% and 76.3%,
and the AUC of six DMSs was greater than 70% (Figure 4A and
Table 4). Besides, logistic regression was conducted, and the ROC
of eight candidate DMSs showed that the AUC of the predicted
probability of the eight candidate DMSs was as high as 95.4%, and
the result was statistically significantly (p-value < 0.1%,
Figure 4B). These results indicated that the eight candidate
DMSs had the potential value to be the biomarkers for
asthma. Meanwhile, to verify the above results, PCA analysis
consisting of eight candidate DMSs was executed. The result
revealed that the methylation levels of the total eight DMSs could
effectively distinguish asthma patients from HCs (Figure 4C).

To better understand the possible value of the eight DMSs, we
further calculate the methylation change rate of the eight DMSs in
HCs and asthma patients, which is a description of the possibility of
methylation status alteration. Then, the status of the changed
methylation or unchanged methylation was determined using the
optimal cutoff value. The optimal cutoffs of the eight DMSs were
calculated according to the Youden index, which is presented in
Table 4. The methylation change rate of HCs and asthmatic patients
is included in Figure 5. Specially, the methylation change rate of the
total eight DMSs in HCs showed a significant decreasing trend,
whereas significantly increased methylation change rate was
observed in asthma patients (Figure 5A). The methylation
change rate of the total eight DMSs in asthma was 33.3–100%,
and the rate in HCs was only 0–55.6%. Notably, the change rate of a
single DMS in asthma patients was between 47.27% and 89.09%,
while it was 1.96–41.17% in HCs (Figure 5B). Similarly, asthma
patients had a higher rate of methylation change. Statistical results
showed that themethylation change rate of the total eight DMSs was
significantly increased in asthma patients (p-value < 0.1%,
Figure 6A). In addition, ROC analysis was implemented
according to the methylation change rate of the eight DMSs in
all samples (Figure 6B), and there was a higher AUC than that in the

TABLE 2 | Demographic characteristics of asthma patients and HCs.

Control Asthma

Number of subjects 51 55
Age 53.83 ± 6.84 46.72 ± 10.41
Gender (f/m) 41/10 46/9
FEV1 2.82 ± 0.20 1.76 ± 0.62*
FEV1% predicted 0.92 ± 0.25 0.70 ± 0.24*
FVC 4.02 ± 0.65 2.84 ± 0.85*
FEV1/FVC 0.83 ± 0.03 0.65 ± 0.16*
PEF 8.34 ± 0.92 4.65 ± 0.85*
FEF75 0.86 ± 0.35 0.47 ± 0.22*
FEF50 0.83 ± 0.34 0.37 ± 0.16*
FEF25 0.72 ± 0.22 0.23 ± 0.18*

Data are presented as mean ± SD.
*p-value < 0.05, asthma patients vs controls (unpaired t test).
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previous method (AUC � 0.98). Moreover, the PCA analysis results
also indicated that the methylation change rate of eight DMSs could
better distinguish asthma patients from HCs (Figure 6C).

DISCUSSION

Asthma is a common chronic pulmonary disease, and the
incidence of asthma has increased in the last few decades
(Mazurek and Syamlal, 2018). With the increased incidence of
asthma, new preventive strategies and therapies for asthma are
urgently needed to further reduce the morbidity and mortality of
asthma. Of particular note is the potential causal role of aging in
the asthma pathogenesis (Vignola et al., 2003; Bullone and Lavoie,
2017). Several relevant studies have identified the altered

expression of aging-related genes (such as TP53 and FOXO3)
in respiratory diseases (Amarin et al., 2017; Hu et al., 2018). The
polymorphism of transcription factor FOXO3 was confirmed to
regulate the overactivation of mast cells, downregulation of anti-
inflammatory factors, and production of cytokines during the
pathogenesis of COPD and asthma (Barkund et al., 2015).
FOXO3 deficiency has been confirmed to play an important
role in regulating lung inflammation of COPD/emphysema,
which has emerged as a new approach to address the
development of pulmonary inflammatory diseases (Hwang
et al., 2011). Similarly, TP53 has been implicated in COPD
pathogens by mediating the senescence of multiple lung cells,
and the overexpression of TP53 also could promote the
progression of emphysema in COPD patients (Hashimoto
et al., 2016; Hu et al., 2018).

FIGURE 1 |mRNA levels of aging-related genes in HCs and asthma patients. (A–I) The mRNA expression of AREG, ATG3, E2F1, FOXO3, HDAC1, MMP2, NUF2,
TGFB1, and TP53 in HCs and asthma patients. ****p < 0.0001.
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Not only that, as a stable epigenetic marker, aging-related CpG
sites were either hypo- or hyper-methylated in COPD and other
aging-related diseases (Perez et al., 2018; Sundar and et al., 2017).
Our previous research identified that DNAm was involved in
regulating the expression of nine aging-related genes in
peripheral venous blood of COPD patients (Du et al., 2019), as
asthma and COPD have similar even overlapping clinical
phenotypes in chronic inflammation and decreased lung
function. In this study, we further explored the methylation
change of the previous screened aging-related genes in peripheral
venous blood of asthma patients. Indeed, the association between
these screened nine aging-related genes and asthma has been
extensively studied by previous literature works (von Bernhardi
et al., 2015; Martins et al., 2016; de Sousa Neto et al., 2018;
Wang S. et al., 2018; Wu and Prives, 2018; Gao et al., 2019;
Huang et al., 2019; Qi et al., 2019). AREG, E2F1, FOXO3,
HDAC1, MMP2, TGFB1, and TP53 have been confirmed as
crucial signaling molecules in asthma (Enomoto et al., 2009;
Nakagome and Nagata, 2011; Butler et al., 2012; Xu, 2014;
Toujani et al., 2016; Amarin et al., 2017; Hur and Broide, 2019;
Wang et al., 2019). Although ATG3 is a key central regulator in
autophagy induction during aging (Frudd et al., 2018), and NUF2 is
closely associated with lung cell senescence (Xing et al., 2016), their
specific role in asthma has rarely been studied. The differential
expression of ATG3, FOXO3, NUF2, and TP53 in asthma patients
was also aligned with that in former studies (Xuan and Hou, 2014;
Xing et al., 2016; Amarin et al., 2017; Tsai et al., 2019). In addition,
excessive secretion of AREG in the airway after acute asthma attack
promotes airway remodeling (Enomoto et al., 2009). However,
AREG is downregulated in peripheral blood of elderly asthma
patients, which may be attributed to the different disease stages.
It is particularly worth noting that the decreased expression of E2F1
in asthma patients is consistent with what we have previously
observed in COPD patients (Du et al., 2019), which is different
from that in lung cancer patients (Tsai et al., 2019). One possible

reason is the specificity of the sample tissue and pathogenic genes in
different diseases. MMP2, as a member of the matrix
metalloproteinase family, shows an increasing trend in the acute
and chronic phases of lung disease. Our results observed the
increased expression of MMP2 in asthma patients, which is
consistent with that in previous literature (Greenlee et al., 2007).

Additionally, we identified the methylation status of the nine
aging-related genes in asthma patients. Most DMSs of asthma
patients were hypermethylated, which was consistent with the
differential expression of mRNA, indicating that DNAm-
regulating gene expression is related to aging. Moreover,
except for ATG3, HDAC1, and TGFB1, correlation analysis
showed that the expression of the aging-related genes in
peripheral blood of asthma patients was associated with
pulmonary function parameters (FEV1%, FEV1, FVC, PEF,
FEF75, FEF50, and FEF25). It is known that TGFB1 was a key
cytokine that directs airway remodeling (Dragicevic et al., 2016),
and HDAC1 played a critical role in the pathogenesis of asthma
(Wang C. et al., 2018). This partial difference may be due to the
presence of single-nucleotide polymorphism in asthma (Shan
et al., 2018). Chr16:55514392 located in the promoter region has a
regulatory effect on gene expression, which is inversely associated
with the lung function index (FVC) (Haberle and Stark, 2018).
Interestingly, Chr16:55514437 is also located at the transcription
initiation site, but the specific molecular mechanism which
regulates gene expression still needs further study (Haberle
and Stark, 2018). Furthermore, there were eight asthma-related
CpG sites on the CpG islands of the differential aging-related
genes. The ROC curve and PCA analysis of the methylation level
showed that all the eight DMSs could be used as potential
biomarkers to distinguish asthma from HCs. Most notably, the
methylation rate of either single DMS or total eight DMSs in
asthma patients was significantly higher than that of HCs. As
population size and ethnicity may influence the methylation level,
we assumed that a methylation marker hold promise for better
biomarker of asthma. Previous studies have shown that the
decreased methylation level of the promoter region regulates
the proliferation of asthmatic airway smooth muscle cells,
which is related to the severity of asthma and can be used a
potential biomarker for predicting asthma exacerbation (Perry
et al., 2018). In addition, it has also been pointed out that the
methylation levels of FOXO3 and TP53 can be used as biomarker
targets for late-onset asthma (Yuan et al., 2020). Our analysis of
the eight DMSs’methylation mutation rate also produced a better
ROC specificity and sensitivity, suggesting that the combinatorial
DMSs had a great potential to predict asthma. BALF (IL-25, IL-
33, etc.), induced sputum (eosinophils, Th2 cells, etc.), and airway
remodeling could all be used as a useful indicator for asthma
diagnosis (Lefaudeux et al., 2017; Li et al., 2018). However, the
detection of DNAm in peripheral blood has greater advantage of
widespread access to samples and simple operation. Compared
with other clinical biomarkers, such as blood eosinophils, exhaled
nitric oxide (FeNO), and sputum eosinophils (Fitzpatrick and
Moore, 2017), detection of DNAm in peripheral blood has some
clear advantages. Although sputum eosinophils have been the
“gold standard” Type-2 inflammatory biomarker (Coumou and
Bel, 2016), performing sputum analysis in clinic is still risky to

FIGURE 2 | Volcano plot of the differential methylation CpG sites
between HCs and asthma patients. The upregulated sites were presented as
green dots, and downregulated sites were presented as red dots. *p＜0.05
sites were presented above the dotted line.
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FIGURE 3 | Correlation between DMSs and clinical parameters of asthma patients. (A) The methylation level of Chr4:75310649-1 was positively correlated with
FEF50. (B) The methylation level of Chr20:32274088 was positively correlated with PEF. (C–F) Correlation among the methylation levels of Chr20:32274358, Chr16:
55514392, Chr16:55514437, Chr17:7591672, and FVC, (G–I) Correlation among the methylation levels of Chr6:108883024, Chr1:163291825, and FEV1%.

TABLE 3 | Correlation analysis between DNA methylation levels and clinical parameters in asthma patients.

p-value

CpG site Gene FEV1 FEV1% FEV1/FVC PEF FVC FEF75 FEF50 FEF25

Chr4:75310649–1 AREG 0.309 0.105 0.093 0.33 0.933 0.025* 0.019* 0.030*
Chr20:32274088 E2F1 0.035* 0.233 0.223 0.022* 0.051 0.05 0.05 0.068
Chr20:32274358 E2F1 0.113 0.059 0.968 0.182 0.033* 0.306 0.543 0.641
Chr6:108883024 FOXO3 0.044* 0.032* 0.063 0.038* 0.238 0.758 0.195 0.05
Chr6:108882977 FOXO3 0.063 0.011* 0.055 0.048* 0.366 0.949 0.147 0.051
Chr16:55514392 MMP2 0.064 0.243 0.424 0.104 0.036* 0.932 0.365 0.223
Chr16:55514437 MMP2 0.151 0.198 0.75 0.102 0.025* 0.343 0.489 0.246
Chr1:163291825 NUF2 0.508 0.038* 0.157 0.202 0.793 0.106 0.278 0.366
Chr17:7591672 TP53 0.001* 0.113 0.575 0.004* 0.0001* 0.758 0.171 0.019*

*p-value < 0.05 was considered statistically significant.
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FIGURE 4 | Accuracy of the methylation level of the 8 DMSs in distinguishing asthma patients from HCs. (A) ROC curve analysis of differential CpG sites Chr4:
75310649-1, Chr20:32274088, Chr20:32274358, Chr6:108882977, Chr16:55514392, Chr16:55514437, Chr1:163291825, and Chr17:7591672, respectively. (B)
The ROC curve of the predicted probability of the 8 DMSs. (C) A PCA plot consisting of the methylation levels of the 8 DMSs in HCs and asthma patients.

TABLE 4 | Top nine differentially methylated sites of the differential aging-related genes associated with asthma.

CpG site Gene AUC p-value Optimal diagnostic threshold Sensitivity Specificity

Chr4:75310649-1 AREG 0.716 0.009* 0.086 0.724 0.81
Chr20:32274088 E2F1 0.717 0.009* 0.009 0.517 0.857
Chr20:32274358 E2F1 0.746 0.022* 0.043 1 0.533
Chr6:108883024 FOXO3 0.653 0.066 0.166 0.909 0.667
Chr6:108882977 FOXO3 0.671 0.040* 0.263 0.69 0.714
Chr16:55514392 MMP2 0.763 0.038* 0.038 0.69 0.614
Chr16:55514437 MMP2 0.688 0.024* 0.017 0.414 1
Chr1:163291825 NUF2 0.708 0.010* 0.012 0.862 0.571
Chr17:7591672 TP53 0.721 0.008* 0.015 0.966 0.476

Statistics were done by SPSS 22.0.
*p-value < 0.05 was considered statistically significant.

FIGURE 5 |methylation change rate for asthma patients. (A) The methylation change rate of the 8 DMSs in asthma patients and HCs is represented by pie chart,
and the dark shades indicate the percentage of the methylation change rate. (B) Difference in the methylation rate of single DMS in HCs and asthma patients.
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some extent. Besides, exhaled nitric oxide (FeNO) has a relatively
large individual difference. However, detection of DNAm has
greater clinical feasibility which is noninvasive and cost-effective.
Not only that, DNAm is also an important cause of asthma
exacerbation; the specific role of allergens and environmental
exposure on the epigenetic modification during the exacerbation
of asthma also deserved more attention (Bae et al., 2020).

Although our study provides potential value for diagnosis and
treatment of asthma assessment, there are also some limitations.
First, asthma can be divided into different phenotypes which may
have differential epigenetic modification. Besides, our previous
work is not comprehensive enough to screen all the aging-related
genes. Moreover, the sample size is relatively small.

CONCLUSION

In a word, this study demonstrated that DNAm may regulate the
differential mRNA expression of aging-related genes in the
peripheral blood of asthma patients. Besides, the specific DMSs
in aging-related genes have been strongly associated with the
pulmonary function index of asthma patients. These results shed
new light onDNAm thatmay be involved in regulating aging-related
genes in asthma, which may also provide potential candidate
biomarkers for the early diagnosis of asthma.
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