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Abstract: After spinal cord injury (SCI), the destruction of spinal parenchyma causes permanent
deficits in motor functions, which correlates with the severity and location of the lesion. Despite being
disconnected from their targets, most cortical motor neurons survive the acute phase of SCI, and these
neurons can therefore be a resource for functional recovery, provided that they are properly recon-
nected and retuned to a physiological state. However, inappropriate re-integration of cortical neurons
or aberrant activity of corticospinal networks may worsen the long-term outcomes of SCI. In this
review, we revisit recent studies addressing the relation between cortical disinhibition and functional
recovery after SCI. Evidence suggests that cortical disinhibition can be either beneficial or detrimental
in a context-dependent manner. A careful examination of clinical data helps to resolve apparent para-
doxes and explain the heterogeneity of treatment outcomes. Additionally, evidence gained from SCI
animal models indicates probable mechanisms mediating cortical disinhibition. Understanding the
mechanisms and dynamics of cortical disinhibition is a prerequisite to improve current interventions
through targeted pharmacological and/or rehabilitative interventions following SCI.

Keywords: cortical inhibition; spinal cord injury; neocortex; disinhibition; interneuron; transcranial
magnetic stimulation; TMS

1. Introduction: SCI Harms the Brain

Traumatic SCI is a sudden and unpredictable incident that destroys portions of the
spinal cord, leading to motor and sensory deficits, as well as dysfunctions of the somatic
and autonomic nervous systems [1]. Beyond the loss of movement control, typical deficits
include the loss of bladder and bowel control, declined sexual functions and chronic pain,
among others [1,2]. SCI can occur at any age, and the damage is irreversible. However,
constant improvements in healthcare and treatment, as well as increased awareness about
the needs of patients over the last century, have significantly ameliorated the quality of life
and lifespan following SCI [3–9]. Thus, it is even more pressing to identify interventions
enabling the recovery of functions lost after SCI. The recovery of muscle control is a crucial
element to improve the quality of life and the autonomy of SCI patients. Accordingly,
rehabilitation and active lifestyle have been recognized as crucial processes that help to
regain independence and to reduce health complications resulting from prolonged inactiv-
ity [10–14]. Nevertheless, the timely implementation of efficient strategies remains often
neglected, affecting motor recovery and, together with accompanying morbidities, decreas-
ing the likelihood of returning to a fully independent life routine [15,16]. Furthermore,
various therapies addressing the symptoms of SCI are being developed with promising
outcomes for management and reduction in secondary damage, increased neuroprotection
and improved neuroregeneration [5,17]. However, despite constant improvements, an
effective cure, leading to major functional recovery based on the regeneration of neuronal
connectivity across the lesion, is still missing [17–20].
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Many of the neurons that become disconnected following SCI reside outside the
spinal cord, such as the motor neurons of the primary motor cortex, which are crucial
for the control of voluntary movements. These disconnected neurons are a resource
for the long-term regeneration and functional recovery of the central nervous system.
However, the axotomy resulting from SCI has an impact on the physiology of the cortical
and corticospinal network [21–23], which can complicate or even hinder the recovery
process. Several attempts to address the clinical symptoms of SCI have therefore explored
the possibility to retune neuronal activity in the corticospinal network [24,25]. Finding
ways to reconnect cortical motor neurons to their original targets constitutes a daunting
task. In addition, early assessments of the severity of SCI, especially in an acute situation,
are difficult and inherently inaccurate [26]. This lack of knowledge is a major hurdle
for the design of an effective and patient-specific treatment. Therefore, the assessment
of cortical activity in SCI patients, for example, using electro-encephalography (EEG),
transcranial magnetic stimulation (TMS), etc., has been extremely convenient, as it relies on
non-invasive techniques [27,28]. In addition, animal models are available to resolve the
molecular mechanisms of brain dysfunction after SCI. In this review, we take advantage of
the complementarity of clinical research and basic research to offer a multifaceted overview
about cortical network dysfunction after SCI and putative underlying mechanisms.

2. TMS as a Method to Analyze the Loss of Inhibition after SCI

Following SCI, extensive functional plasticity and the reorganization of neuronal
circuits often involve altered inhibitory neurotransmission [29–37]. Although brain disin-
hibition has been explored extensively for pathologies such as peripheral deafferentation
and stroke [38–43], it remains resolved to a lesser extent in the context of SCI [44]. The
establishment of direct comparisons between cortical output and motor performance after
SCI and after other pathologies, such as peripheral deafferentation or stroke, is hindered
by discrepancies intrinsic to various conditions. Therefore, this review focuses on the
phenomenon of cortical disinhibition as a central component of the pathophysiology of SCI.
Even under such focused premises, disinhibition appears as a startlingly heterogeneous
process that needs to be first disentangled to be considered in the design of therapy and
treatment following SCI.

Here, we consider the specific patterns of functional cortical derangement after SCI,
focusing primarily on works based on TMS. TMS is a technique that evokes neuronal
activity by the juxtaposition of magnetic coils to the skull and the generation of magnetic
fields, delivered as pulses, in selected and focalized cortical areas. Therewith, evoked
electrophysiological activity can be measured from the cortex, spinal cord and muscles
targeted by the stimulated motor areas, and specific parameters in the readout reflect the
relative excitability and inhibition of cortical and corticospinal circuits [45,46]. However,
TMS has limitations, including the poor resolution of direct and indirect stimulus effects,
ambiguities in the causal relationship of therapeutic TMS and behavioral improvement,
and caveats when combining TMS with some other analytical techniques [47,48]. Most
relevantly, the reliability of TMS metrics varies depending on the residual muscle strength
of the tested muscle, which, if not accounted for, can significantly affect measurements
assessing recovery from SCI [49]. Nevertheless, TMS is useful to stimulate the brain safely
and non-invasively in awake patients and to measure specific brain activities and functional
alterations after SCI [50–53]. Therefore, decades of work based on TMS have successfully
outlined the traits of altered brain physiology after SCI (Figure 1) [51,54–56].
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Figure 1. TMS enables measurement of cortical and subcortical excitability and inhibition after SCI. 
(A) TMS-evoked activity reveals the direct and indirect trans-synaptic activation of corticospinal 
neurons evident as D- and I-waves in descending volleys from the spinal cord. Changes in I-waves 
reflect altered cortical inhibition after SCI. Similarly, changes in motor evoked potentials (MEP) and 
cortical silent period (CSP), evoked by TMS pulses and recorded with electromyography, reflect 
altered integrity of the corticospinal tract after SCI. (B) The physiological balance (blue) between 
excitation and inhibition in cortical and corticospinal networks is perturbed (yellow) by SCI. On one 
hand, altered inhibition supports rewiring and motor recovery and appears as an exploitable con-
dition in therapeutic treatments. On the other hand, altered inhibition contributes to detrimental 
aspects, such as exacerbated pain, spasticity and poor motor coordination. (C) Altered balance be-
tween excitability and inhibition of cortical and corticospinal areas is long-lasting and can endure 
for decades after SCI. However, alterations vary qualitatively between patients, and therefore, inhi-
bition may be decreased [2,34,57–62] or increased [50,63,64] as a consequence of SCI. Moreover, 
there may be phases of decreased excitability, weeks and years after SCI, interspersed with transi-
ently decreased inhibition months after SCI [65]. Such transient events can contribute to fluctuation 
in the balance of excitation and inhibition over time during the recovery process. Better resolution 
of the pathophysiological mechanisms of altered inhibition can allow the determination of relevant 
factors for the occurrence, duration, heterogeneity and alternation of such phases. This figure was 
created with biorender.com. Adapted from “Ascending and Descending Spinal Pathways”, by bio-
render.com. Retrieved from https://app.biorender.com/biorender-templates (accessed on 29 March 
2022). 

Figure 1. TMS enables measurement of cortical and subcortical excitability and inhibition after SCI.
(A) TMS-evoked activity reveals the direct and indirect trans-synaptic activation of corticospinal
neurons evident as D- and I-waves in descending volleys from the spinal cord. Changes in I-waves
reflect altered cortical inhibition after SCI. Similarly, changes in motor evoked potentials (MEP) and
cortical silent period (CSP), evoked by TMS pulses and recorded with electromyography, reflect
altered integrity of the corticospinal tract after SCI. (B) The physiological balance (blue) between
excitation and inhibition in cortical and corticospinal networks is perturbed (yellow) by SCI. On one
hand, altered inhibition supports rewiring and motor recovery and appears as an exploitable condition
in therapeutic treatments. On the other hand, altered inhibition contributes to detrimental aspects,
such as exacerbated pain, spasticity and poor motor coordination. (C) Altered balance between
excitability and inhibition of cortical and corticospinal areas is long-lasting and can endure for
decades after SCI. However, alterations vary qualitatively between patients, and therefore, inhibition
may be decreased [2,34,57–62] or increased [50,63,64] as a consequence of SCI. Moreover, there
may be phases of decreased excitability, weeks and years after SCI, interspersed with transiently
decreased inhibition months after SCI [65]. Such transient events can contribute to fluctuation in the
balance of excitation and inhibition over time during the recovery process. Better resolution of the
pathophysiological mechanisms of altered inhibition can allow the determination of relevant factors
for the occurrence, duration, heterogeneity and alternation of such phases. This figure was created
with biorender.com. Adapted from “Ascending and Descending Spinal Pathways”, by biorender.com.
Retrieved from https://app.biorender.com/biorender-templates (accessed on 29 March 2022).
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3. Loss of Inhibition Promotes Motor Recovery after SCI

Early works have suggested that the alteration of inhibitory mechanisms ensues from
SCI and causes increased excitability and plasticity in the central nervous system [34,58].
Accordingly, reduced thresholds for effective TMS of muscles innervated by segments above
the lesion site were measured in patients with complete thoracic SCI, and this observation
was interpreted as evidence for hyper-excitability and remodeling after injury [59]. The
loss of inhibition and network remodeling was also suggested by experiments involving
paired-pulse TMS [60]. Namely, increased Indirect-wave (I-wave) facilitation was detected
after SCI, whereas the motor conduction time remained unaltered. In this context, I-waves
originate from the TMS-evoked output of cortical excitatory neurons, which are regulated
by a network of GABAergic interneurons [66,67]. Thus, it was proposed that increased
I-wave facilitation after SCI results from a loss of cortical inhibition. The modulation of
I-waves resulting from dynamic interaction of the excitatory and inhibitory network is
relevant to determine the extent of spinal motor neuron activation [68–71]. In this scenario,
cortical hyper-excitability resulting from disinhibition may therefore strengthen the output
of spared fibers during motor recovery. Thus, the loss of inhibition can, in this view,
ameliorate the cortical output, strengthen motor control and improve motor recovery [72].

Independent evidence converging towards a similar conclusion, i.e., the occurrence of
the loss of inhibition after SCI, was obtained by measuring cortical silent periods (CSP).
A CSP indicates the duration of the transient decrease in motor neuron excitability after a
TMS pulse. SCI was found to shorten the CSP [57], which can be regarded as a consequence
of disinhibition and a contribution of cortical remodeling to facilitate motor performance
recovery [57,73]. In line with these studies, a clinical study supporting cortical remodeling
and disinhibition after SCI has shown that the peripheral stimulation of lower limbs can
prime contextual hand flection in SCI patients [44]. A more recent work agrees with
the occurrence of disinhibition after SCI [61]. In this case, the experimental readout was
based on measurements of the resting motor threshold and motor evoked potentials (MEP)
upon TMS. Thereby, Nardone and colleagues observed that the input/output ratio (i.e.,
stimulation intensity/MEP) decreased in individuals with SCI, whereas the resting motor
threshold remained constant. Based on previous works, the authors have discussed that
the combined readout associates with increased excitability of spinal rather than cortical
areas [66,74–79]. The observed alteration in motor output is therefore caused by the
remodeling and loss of inhibition, causing the activation of a larger fraction of the pool of
excitatory synapses for a given stimulus intensity. Once more, disinhibition is portrayed as
a rescuing effect contributing to motor recovery.

4. The Loss of Inhibition Aggravates Symptoms after SCI

The works cited so far suggest that disinhibition and increased CNS excitability are
beneficial for motor recovery after SCI. However, there is evidence to suggest that cortical
disinhibition is detrimental: the exacerbated loss of cortical inhibition and hyper-excitability
can lead to maladaptive plasticity and neuropathic pain [80,81]. For example, suppressed
inhibition and damage to the thalamocortical network can lead to neuropathic pain after
SCI [2]. Additional manifestations associated with the loss of central nervous system
inhibition after SCI are “referred phantom sensations” [62]. In this context, repetitive TMS
was used to treat referred phantom sensations, and it was proposed to restore cortical
inhibition through the reactivation of silent intracortical interneurons. Moreover, the
authors studying reduced short-interval intracortical inhibition after SCI argued in favor
of an inhibitory impairment. The latter contributes to defective corticospinal control,
hindering the accurate planning and/or termination of voluntary muscle contractions,
therefore causing poor motor control [82,83].

In summary, a complex clinical scenario reveals that the loss of inhibition following
SCI can be helpful on one side to intensify the output signal of cortical motor neurons
to the spinal cord. On the other hand, excessive disinhibition can also contribute to
the development of chronic pain and maladaptive plasticity, and it can hinder motor
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control [81]. Since disinhibition seems to have both pros and cons, it should be considered
whether a treatment that alters the degree of cortical inhibition would rather cause harm or
benefit. A better resolution over the mechanisms and temporal patterns of disinhibition
can be crucial for personalized choices on therapeutic options.

5. Alternative Mechanisms and Explanations for Imbalanced Cortical Excitability

Even though the loss of CNS inhibition is often observed after SCI, it may not be a
condition that applies to all patients [64] nor fully account for CNS plasticity. Indeed, some
reports describing increased CNS excitability after SCI did not conclude a loss of inhibition
and therefore did not consider retuning the inhibitory network as a putative therapeutic
strategy [52,59,84]. For instance, paired stimulation of peripheral nerve and cortical areas
promotes corticospinal transmission through a form of plasticity which does not involve
the modulation of inhibitory networks [85]. Moreover, paired associative stimulation has
been shown to improve motor recovery [86] and is associated with long-term potentiation
of excitatory neurotransmission [86,87] that has been suggested to involve the structural
reorganization of the corticomotoneuronal synapses of the cervical spinal cord. Finally, TMS
after SCI has been reported to directly increase glutamate receptor activation and strengthen
excitatory neurotransmission [88]. Therefore, increased excitatory neurotransmission may
also be possible independently of processes of disinhibition.

As a consequence, although not always present, disinhibition may well occur con-
comitantly with other plasticity mechanisms, resulting in apparent heterogeneity and
discrepancy between experimental outcomes [50,63,89]. Furthermore, some works have
provided evidence against cortical disinhibition and in favor of increased corticospinal inhi-
bition when using paired-pulse TMS and comparing SCI patients to healthy subjects [50,63].
Moreover, a recent work relying on paired-pulse TMS has measured a specific alteration
of MEP amplitude and kinetics that is best explained by diminished capacity to sum up
descending excitatory volleys after SCI, rather than by cortical disinhibition [69]. In par-
ticular, the authors argue that the most parsimonious explanation for their data was that
early corticospinal volleys are insufficient to bring spinal motoneurons to the threshold
and that such deficiency is compensated by the later volley. On the other hand, the type of
alteration in MEP amplitude and kinetics that was observed in the study was not in line
with the expected effects of cortical disinhibition [70,90].

A further example of conflicting outcomes on the matter of cortical disinhibition in-
volves two works based on TMS related to patients with cervical SCI [57,64]. Whereas the
first study reports the loss of cortical inhibition as a consequence of SCI [57], the second
reveals just the opposite [64]. Remarkably, the second study by Freund and co-workers
combines multiple analytical approaches and a larger sample size, resulting in compelling
evidence that directly correlates CSP duration to the extent of spinal cord atrophy. It is
somehow puzzling to find divergent results in similar studies. However, several factors,
including the type of injury, comorbidities, treatments, age and duration of injury, as
well as patient demography, motivation and access to support, influence the process of
recovery [91], which may contribute to heterogeneity in the course of pathophysiological
remodeling of the central nervous system. In this regard, it should also be considered
that, besides inter-patient variability, clinical studies on altered excitability and inhibition
after SCI are affected by limited accessibility to patients and a lack of options for repeated
analyses covering different stages post-injury. Hence, most works focus on few measure-
ments during the chronic phase of SCI (ranging from years to decades after SCI), which
is the period providing the highest accessibility from a patient-management perspective.
However, it may be revealing to consider what happens to the central nervous system
in the very dynamic period shortly after injury, evolving towards the chronic phase [92].
A remarkable study in such a regard analyzes the cortical plasticity of patients from the
early weeks post-injury up to a few years after SCI [65]. Interestingly, the study reveals
that decreased excitability manifests early (weeks) and lasts for a long time (years) after
SCI. However, cortical inhibition is transiently decreased some months after SCI. Hence,
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an altered balance between excitability and inhibition is the result of alternating events
after SCI, and the authors propose that transient disinhibition may be critical for recovery.
The unique and novel nature of this work prompts cautious interpretations. Nevertheless,
transient loss of inhibition appears once more to be proposed as relevant for motor recovery,
as in other earlier studies. Moreover, alternations of phases may explain discrepancies
among other works.

Taken together, studies describing altered balances between cortical excitation and
inhibition point towards a relevance of this phenomenon in the course of recovery following
SCI. However, many confounding factors need to be addressed to improve the comparabil-
ity of studies made at different clinical centers. Importantly, the severity and position of
injury, as well as the time post-injury, need to be considered in the interpretation of TMS
outcomes. Moreover, each patient receives a personalized regimen of pharmacological
and rehabilitative treatments that has an impact on their cortical plasticity. Therefore, it
is necessary for the field to agree on standardized stimulation protocols and methods of
analysis that can enable studies with a larger number of patients and adequate controls.

6. Possible Causes for the Loss of Inhibition

Pre-clinical research helps to define mechanisms that can converge to an altered ratio of
excitation and inhibition following SCI and to refine hypotheses about the reasons for phe-
notypic heterogeneity, as reported in clinical findings. Focusing on molecular “bottlenecks”
of inhibitory neurotransmission, the likely mechanisms of cortical disinhibition after SCI
are presented in the following section (Figure 2).

6.1. Metabolic Stress

The synthesis of neurotransmitters, such as glutamate and GABA, demand consid-
erable energy consumption [93]. Of these, GABAergic neurotransmission has the highest
demand. For this reason, inhibitory neurons such as parvalbumin-positive and axo-axonic
interneurons are vulnerable and respond to stress with decreased GABAergic neurotrans-
mission [94]. After SCI, the axotomy of corticospinal neurons may cause stress, spreading
from the spinal cord to cortical areas [21–23]. Additional sources of stress may be inflam-
mation [95] and impaired cerebral blood flow [96]. Furthermore, stress may coincide with
high metabolic demand due to increased cortical excitability [22]. Hence, multiple stressors
may affect interneurons, as also suggested by the direct observation of their atrophy after
SCI [32]. The alteration in brain network performance as a consequence of dysfunctional
interneurons may impact cognition negatively [97,98], such as occasionally documented in
SCI patients [99].

6.2. Inflammation

Microglia activation plays a pivotal role in SCI. Furthermore, chronic inflammation
seems to affect supraspinal regions as well [100]. This is not surprising, given the axotomy
of several cortical and subcortical neurons [21–23] and the continuity of the spinal cord and
brain. Regrettably, although the wave of inflammation after SCI has been well time-resolved
near the lesion site [101–103], little is known about the spatial distribution of immune cell
activation across the CNS following various types of injury and treatment. Thus, it is hard
to define which neurons are most exposed to inflammatory processes and which are spared
and exclusively undergo plasticity processes independent of inflammation. Among several
disinhibitory effects [104], activated microglia affect the activity of proteins that transport
chloride across the neuronal cell membrane and cause the dissipation of chloride trans-
membrane gradients with consequent reductions in the GABAergic inhibitory drive [105].
Decreased GABAergic drive causes the neurotransmitter GABA to be intrinsically less
effective in hyperpolarizing the neuronal membrane to mediate inhibition. The dissipation
of chloride gradients upon microglia activation after SCI may therefore contribute to
disinhibition as well, documented in other pathologies [105,106].
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Figure 2. Possible causes for loss of inhibition. Multiple mechanisms contribute to network plasticity
and altered inhibition in cortical and subcortical areas after SCI. These include metabolic stress,
which can be exacerbated by inflammation and by decreased blood flow, as well as altered astrocytic
metabolism. Furthermore, increased excitability of principal (excitatory) neurons may be exacerbated
by altered neuromodulation, contributing to increased output volume in corticospinal circuits. More-
over, disinhibition is associated with decreased GABAergic tone that contributes to plasticity during
network rewiring. Additionally, remodeling of perineuronal nets, which involves atrophy of interneu-
rons, can contribute to complex patterns of altered inhibition in the central nervous system after SCI.
Thus, multiple mechanisms, some of which are yet to be identified (represented by empty octagons)
may coexist and combine heterogeneously amongst each other and/or to other pathophysiological
components, increasing inter-patient variability. This figure was created with biorender.com.

6.3. Remodeling of Perineuronal Nets

The extracellular elements of proteoglycans, known as perineuronal nets, mediate
stability in network architecture as well as protection from stress [107]. Dismantling
perineuronal nets promotes plasticity and network remodeling [108], which are pertinent
for recovery after SCI [109,110]. Furthermore, perineuronal nets are closely associated with
specific categories of cortical interneurons [111,112]. Thereby, these extracellular elements
can control neuronal synaptic connectivity and intrinsic firing properties [112,113]. Thus,
the dismantling of perineuronal nets can affect the activity and connectivity of interneurons,
determining altered cortical inhibition after SCI. Strikingly, the advantage of increased
plasticity derived from the dismantling of perineuronal nets comes along with the challenge
presented by increased metabolic stress. Indeed, perineuronal nets limit excitotoxicity by
sheltering synaptic contacts and reducing oxidative stress to which interneurons are most
vulnerable [94,114,115]. Since neocortical perineuronal nets undergo remodeling after SCI
that is associated with the atrophy of interneurons [32], these extracellular elements may
be involved in both beneficial and detrimental aspects of cortical disinhibition.

biorender.com
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6.4. Altered Astrocyte Metabolism and Physiology

Axotomy and neuronal trauma perturb the physiology of astrocytes [116]. Trauma
suffered by cortical principal neurons upon axotomy [21–23] may therefore alter signaling
from astrocytes to surrounding neurons. Astrocytes can release neuromodulators control-
ling neuronal activity by gliotransmission [117–119]. Moreover, astrocytes are crucial for
the metabolism of neurotransmitters [120,121]. Thus, under pathological conditions, altered
astrocytic activity may affect neurotransmission, and in particular GABAergic inhibition,
via altered metabolic support as well [122]. The involvement of astrocytes in SCI-derived
pathology has been widely studied [123], albeit not in cerebral regions.

6.5. Rewiring of Cortical Circuits

A physiological process closely tied to disinhibitory mechanisms is the rewiring of
cortical circuits after SCI. Like other injuries involving deafferentation of the central nervous
system, SCI involves the rewiring of cortical and subcortical areas, as well as the shift of
somatotopic representations and changes in competence of motor areas, which relay on
significant events of network plasticity [124]. Decreases in GABAergic inhibition appear
crucial for network remodeling [125,126] because plasticity and learning are tightly related
to changes in cortical GABA [127]. For instance, reduced GABAergic inhibition causes
qualitative and quantitative changes in the inducibility of long term potentiation in the
neocortex [128,129]. Furthermore, reduced GABAergic tone, i.e., diminished concentrations
of extrasynaptic GABA, supports motor plasticity and motor recovery in various types
of pathology [126,130]. Thus, several mechanisms that contribute to reduced GABAergic
inhibition in the brain after SCI may also partake into the process of cortical rewiring
and recovery.

6.6. Hyperexcitability of Excitatory Neurons

Some causes of hyperexcitability may be independent from disinhibition. Neverthe-
less, solving pathological hyperexcitability may necessitate retuning inhibitory components.
For instance, axotomy results in the depolarization and hyperexcitability of cortical prin-
cipal neurons after SCI [22]. The retuning of hyperexcitable neurons may benefit from
increased inhibition, for instance, through GABAB receptor signaling, which controls
dendritic excitability via intracellular calcium signaling [131]. In contrast, disinhibition
has additive exacerbating effects on the intrinsic hyperexcitability of principal neurons.
Furthermore, other types of neuromodulation that exert inhibitory control on CNS neu-
rons, e.g., the ones mediated by serotonin, are impaired after SCI [132]. The activation
of serotonin receptors has been directly shown to control the excitability of cortical neu-
rons [133]. Additionally, the enrichment of serotonin receptors at the axonal hillock of layer
V pyramidal neurons implies a crucial role in the control of cortical functional output [134].
Thus, non-GABAergic neuromodulation can directly control the excitability of principal
neurons as well as the excitability of interneurons [135,136]. Since altered serotoninergic
neuromodulation can affect directly and indirectly the volume of corticospinal output,
serotonin neuromodulation may be a key component in controlling cortical output after
SCI. Strikingly, controlling serotoninergic neuromodulation has already proven to support
better recovery after SCI [137–139].

7. Can Therapy Rely on the Loss of Inhibition?

Since disinhibition is integral to plastic rewiring in the central nervous system [124–126]
and supports motor recovery in pathophysiological conditions [130], it is tempting to hy-
pothesize that therapy after SCI may benefit from actively modulating the balance of
excitation and inhibition in cortical and corticospinal networks. Indeed, efforts to improve
interventions against SCI have provided encouraging breakthroughs and better under-
standings of the interconnection between brain plasticity and motor recovery involving the
phenomenon of cortical disinhibition.
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The repetition of TMS pulses, delivered to the motor cortex at short intervals, modulate
corticospinal excitability and improve motor functions, defined as hand movement and
dexterity, in incomplete chronic cervical SCI patients [83,140]. The chosen pattern of
repetitive stimulation mimicks the pattern of descending late I-waves and reproduces the
success of earlier work on incomplete chronic SCI patients [72]. The beneficial effects of
such TMS protocols are reported as relying on the modulation of cortical or corticospinal
inhibition. Furthermore, TMS protocols of paired associative stimulation are also able
to improve corticospinal excitability and provide transient improvements of the motor
performance of chronic incomplete cervical SCI patients [141]. In view of these results,
the authors argue that the underlying mechanisms rely mainly on processes of long-
term potentiation, but a short-term reduction in inhibition facilitates the long-term effects.
Regrettably, some studies (e.g., [142]) could not corroborate the effectiveness of repetitive
TMS treatments. The authors could not rule out that methodological issues or inter-patient
variability contributed to the lack of conclusiveness in their evidence. However, critical
differences between studies may also justify different degrees of success. For instance,
Kuppuswamy and colleagues treated SCI patients with more heterogeneous types of injury
in comparison to the other aforementioned works. Furthermore, Kuppuswamy’s patient
medications involved several drugs that affect central nervous system excitability, including
an agonist for GABAergic receptors, whereas in more recent work, the administration of
drugs known to interfere with cortical excitability was discontinued before the study [141].

Besides TMS-based therapy, periods of loss of cortical inhibition may be useful win-
dows of opportunity for improving recovery based on increased motor exercises. Essentially,
lowered interneuron activity in the cortical circuit may, in some SCI patients, become an as-
set to boost the outcomes of therapy aiming for motor recovery. Following this idea, robotic
training successfully achieved increased smoothness and improved aim of movements
in chronic cervical SCI tetraplegic patients who had no likelihood of further movement
recovery [143]. In such circumstances, motor improvement was monitored with TMS to
assess potential changes in the excitability of the central nervous system. Although no
direct causative evidence could be provided, the authors explained the effect of the therapy
as a modulation of the ratio between excitation and inhibition at the cortical or subcortical
level, based on earlier reports on GABA and network reorganization [144].

8. Conclusions

Amongst the consequences of SCI on the central nervous system, the loss of inhibition
is a common finding, albeit not always observed, and it is likely to fluctuate over time.
Changes in cortical excitability involve a plethora of mechanisms, which individual effects
may combine in complex and variable outcomes. When reported, the loss of inhibition
is mostly proposed to improve motor recovery and can therefore be exploited for that
purpose. On the other hand, the loss of inhibition can under some conditions aggravate
SCI symptoms in some patients. Thus, the extent of alteration in the balance of excitatory
and inhibitory networks should be determined on a patient-to-patient basis and at different
times after injury for optimal therapy design. However, this first requires the standard-
ization of assessment methods and the resolution of molecular pathways causing altered
cortical dysfunctions in patients after SCI.
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