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Abstract

Background: Expert systems can help alleviate problems related to the shortage of human resources in critical
care, offering expert advice in complex situations. Expert systems use contextual information to provide advice to
staff. In mechanical ventilation, it is crucial for an expert system to be able to determine the ventilatory mode in
use. Different manufacturers have assigned different names to similar or even identical ventilatory modes so an
expert system should be able to detect the ventilatory mode. The aim of this study is to evaluate the accuracy of
an algorithm to detect the ventilatory mode in use.

Methods: We compared the results of a two-step algorithm designed to identify seven ventilatory modes. The
algorithm was built into a software platform (BetterCare® system, Better Care SL; Barcelona, Spain) that acquires
ventilatory signals through the data port of mechanical ventilators. The sample analyzed compared data from
consecutive adult patients who underwent >24 h of mechanical ventilation in intensive care units (ICUs) at two
hospitals. We used Cohen’s kappa statistics to analyze the agreement between the results obtained with the
algorithm and those recorded by ICU staff.

Results: We analyzed 486 records from 73 patients. The algorithm correctly labeled the ventilatory mode in 433
(89 %). We found an unweighted Cohen’s kappa index of 84.5 % [CI (95 %) = (80.5 %: 88.4 %)].

Conclusions: The computerized algorithm can reliably identify ventilatory mode.
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Background
Monitoring is one of the main reasons for admission to
intensive care units (ICUs). Up to 77 % of admissions to
medical ICUs take place, at least in part, for monitoring
purposes, even though only 10 % of the patients only
monitored will subsequently have indications for major
interventions [1]. Accordingly, huge investments in
monitoring technology have led to the development of a
wide array of monitoring devices (bedside monitors,
mechanical ventilators, special devices, etc.) that gener-
ate large quantities of data. However, these data are

underexploited for two main reasons. First, many data
are typically presented only fleetingly on screens that cli-
nicians see only when they are at the patient’s bedside.
So, unless an alarm is triggered, hours of acquired data
are lost [2]. Trended data is of little use in identifying
asynchronies since asynchronies can occur sporadically
and need to be identified as they occur, and displayed as
occurring at a frequency over time. Trending data is
most useful in identifying physiologic change not short-
term events. Second, data that is not interpreted are use-
less; to become useful, data must become information,
by being processed, organized, structured, and contextu-
alized [3]. Valuable information has often remained bur-
ied even when the data in which it is based were widely
available. For instance, invasive monitoring of arterial
blood pressure has been used since the beginnings of
ICUs, but in recent years the analysis and processing of
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these data has yielded information far more valuable
than arterial blood pressure alone. For example, pulse
contour can be used to estimate cardiac output [4, 5],
and pulse pressure variation can predict the cardiovascu-
lar system’s response to a fluid load [6–8]. Tools to
transform data from mechanical ventilators into mean-
ingful information should help critical care clinicians an-
ticipate harmful events, and expert systems could help
them solve problems quickly and obtain expert advice.
The Better Care® software platform (Better Care S.L.,

Barcelona, Spain) processes (standardizes, resamples,
synchronizes, analyzes, and stores) data from the data
ports of mechanical ventilators or other monitoring de-
vices [9]. It has a set of algorithms that evaluate the be-
havior of airway pressure and flow to automatically
detect potentially harmful events (ineffective inspiratory
efforts, double triggering, airway secretions, short and
long cycles, aborted inspirations). In a previous study
assessing the prevalence and time course of asynchronies
throughout mechanical ventilation, we found a median
of 3.41 % asynchronies in all patients [10]. However, that
study probably underestimated the magnitude of the
problem because many of the analyses were limited to
the expiratory part of the flow tracing, where the shape
of the curve does not depend on the ventilatory mode.
Most device communication protocols do not provide in-
formation about the ventilatory mode in use, and different
manufacturers use different, often meaningless, names for
identical modes [11, 12]. For a system to detect events
during inspiration, it must be able to identify the ventila-
tory mode. A system that could identify the ventilatory
mode would also enable protocols to facilitate communi-
cation between medical devices and expert systems by
converting data from proprietary device languages to stan-
dardized formats guaranteeing interoperability [13]. The
aim of the present study is to validate an algorithm to
identify the most prevalent ventilatory modes based on
the analysis of airflow and airway pressure waveforms.

Methods
Software
The Better Care® system interacts directly with the signal
output of medical devices through a device-specific connec-
tion driver. Mechanical ventilators and bedside monitors
are connected to the system using an ED41000P2-01
remote access server (Lantronix, Irvine, CA, USA). The
system standardizes the signals, associating each recorded
curve with the parameter it represents, translates propri-
etary names into standard names, and resamples signals to
a frequency of 200Hz. Standardized signals are then
analyzed, tagged, converted to Digital Imaging and Com-
munication in Medicine (DICOM) format, and stored in
the hospital’s picture archiving and communication system
(PACS).

Setting
The study took place in two general ICUs (Parc Taulí
University Hospital, Sabadell, Spain and Hospital Sant
Joan de Deu-Fundació Althaia, Manresa, Spain) with 18
beds (4 beds in one hospital and 14 in the other)
equipped with the Better Care® platform and one of the
following ventilators: Evita 4 (Dräger, Lübeck, Germany),
Puritan Bennet 840 (Covidien, Plymouth, MN, USA), or
Servo I (Maquet, Fairfield, NJ, Sweden). The insti-
tutional review board of the Parc Tauli University
Hospital approved the protocol and waived informed
consent because the study was non-interventional,
posed no added risk to the patient, and did not inter-
fere with usual care.

Patients
We studied consecutive patients aged >18 years admit-
ted to one of the equipped beds who underwent mech-
anical ventilation for >24 hours.

Protocol
A team composed of two nurses and one physician
who were not involved in any clinical decisions re-
corded the ventilatory mode at the bedside once a
day; the resulting log (including a timestamp for each
entry) was used as a gold standard against which the
Better Care® system’s automatic assignments were
compared.
The Better Care® software recorded and analyzed air-

way pressure and flow waveforms and calculated tidal
volumes for every breath during the hour preceding the
team’s recording of ventilatory mode and applied a two-
step algorithm to determine the specific ventilatory
mode. The first step analyzes each breath and classifies
it in one of seven categories according to the behavior of
inspiratory time (TI)s, flow, airway pressure (PAW), and
tidal volume (VT) (Table 1). To assess the stability of

Table 1 Breath classification strategy

Breath characteristics

TI Flow Flow Slp PAW PAW lev Volume P300

Type1 V V V V 1 V No

Type2 C C C V 2 C No

Type3 C V C V 2 C No

Type4 C V V C 2 V No

Type5 V V V C 2 V No

Type6 V V V V 2 V Yes

Type7 V V V V 2 V No

Abbreviations: TI inspiratory time, Flow inspiratory flow, Flow Slp inspiratory
flow slope, PAW peek airway pressure, PAW lev number of PAW levels, Volume
tidal volume, P300 300 msec pause between inspiratory an expiratory time,
C constant, V variable
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the different parameters, the system calculates a variabil-
ity index (VI) as follows:

VI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðActual Value −Mean ValueÞ2

Mean Value

s
� 100

where “Actual Value” is the measured value for a given
variable and “Mean Value” is the running mean value for
the same variable over the last 20 breaths (even though
step 1 of the algorithm is breath-based, the stability of a
given parameter is evaluated in the context of the pre-
ceding breaths). In other words, VI represents the vari-
ation in the parameter as a percentage of the mean value
for the last 20 breaths. A variable was considered to be
constant if the VI was less than 10 %.
The second step identifies the ventilator mode in pro-

portion of the breaths classified into each category in
the hour being analyzed (Table 2): continuous positive
airway pressure (CPAP) (at least 90 % of breaths are
classified as Type 1); volume control-continuous
mandatory ventilation or volume-controlled ventilation
with constant flow (VC-CMV) (at least 90 % of breaths
are classified as Type 2: volume control-continuous
mandatory ventilation with decelerating flow or volume
control ventilation with decelerated flow (VC-CMVDF)
(at least 90 % of breaths are classified as Type 3);
pressure control-continuous mandatory ventilation or
pressure-controlled ventilation (PC-CMV) (at least 90 %
of breaths are classified as Type 4); pressure control-
continuous spontaneous ventilation or pressure support
ventilation (PC-CSV) (at least 90 % of breaths are classi-
fied as Type 5); spontaneous proportional assist or pro-
portional assist ventilation (PC-CSVR) (which also
includes neurally adjusted ventilatory assist, NAVA) (at
least 80 % of breaths are classified as Type 6 and no

Type 7 breaths are present); spontaneous proportional
assist or proportional assist ventilation + (PC-CSVR+) (at
least 80 % of breaths are classified as Type 6 or Type 7).
If the proportion of breaths classified did not fall into

one of the above categories, the system labeled the rec-
ord as other modes. This label encompassed modes be-
yond the scope of this algorithm, records that the
system was unable to correctly classify, and hours in
which the ventilatory mode changed.

Statistical analysis
We used the unweighted Cohen’s kappa coefficient to
assess the agreement between the team’s recordings in
the log (gold standard) and the Better Care® mode detec-
tion algorithm.

Results
The team recorded the ventilatory mode 486 times
(Sabadell: n = 301; Manresa: n = 185) in 73 patients
(Sabadell: n = 31; Manresa: n = 42). The algorithm cor-
rectly labeled 433 (89 %) hours of ventilation mode
(Table 2). The unweighted Cohen’s kappa coefficient was
84.5 % [95 % CI: 80.5–88.4 %)].
The system labeled 56 (12 %) records as other modes;

this label was correct in 23 cases (5 % of the total) be-
cause the mode did not fit any of the studied modes.
The system mislabeled a total of 53 (11 %) records; of
these 20 (4 % of the total) corresponded to recordings
mislabeled as one of the predefined modes and 33 (7 %
of the total) corresponded to recordings mislabeled as
other modes. Thus, the BetterCare® System was able to
correctly label the mode 89 % of the time.

Discussion
Successful clinical decision support systems must pro-
vide patient-specific recommendations [14]. To do that,
the system requires unequivocal information, at least for
some critical variables. For systems advising clinicians
about mechanical ventilation, the ventilatory mode being
used is critical information that current ventilator com-
munication protocols do not readily provide. The algo-
rithm incorporated in the BetterCare® system correctly
identified the ventilatory mode in 433 (89 %) of the
486 hours recorded in 73 patients, with a kappa index of
84.5 % [95 % CI: 80.5–88.4 %]. Landis and Koch [15]
proposed the following standards for strength of agree-
ment for the kappa coefficient: ≤0 % = poor, 1–20 % =
slight, 21–40 % = fair, 41–60 % =moderate, 61–80 % =
substantial and 81–100 % = almost perfect. Although a
kappa index of 84.5 % is highly acceptable we still mis-
labeled 11 % of the cases and continue to improve our
recognition algorithms.
Expert systems dealing with mechanical ventilation need

to be able to detect ventilatory modes automatically. The

Table 2 Mode classification strategy

Breath type

1 2 3 4 5 6 7

CPAP >80 %

VC-CMV >80 %

VC-CMVDF >80 %

PC-CMV >80 %

PC-CSV >80 %

PC-CSVR+ >90 %

PC-CSVR 0 % >90 %

Abbreviations: CPAP continuous positive airway pressure, VC-CMV volume
control-continuous mandatory ventilation or volume-controlled ventilation
with constant flow, VC-CMVDF volume control-continuous mandatory ventilation
with decelerated flow; or volume-controlled ventilation with decelerated flow,
PC-CMV pressure control-continuous mandatory ventilation or pressure-controlled
ventilation, PC-CSV pressure control-continuous spontaneous ventilation or
pressure support ventilation, PC-CSVR spontaneous proportional assist or
proportional assist ventilation, PC-CSVR+ spontaneous proportional assist or
proportional assist ventilation +
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number of ventilatory modes has increased dramatically
over the last 30 years. Moreover, within each mode many
features can be activated that transform the basic mode
into what is effectively another mode. To add further con-
fusion, the lack of standards in ventilatory mode naming
[11, 12] has resulted not only in different names for the
same ventilatory mode but also in different ventilatory
modes with the same name. Although manufacturers’
names can be translated into standard names, most com-
munication protocols from mechanical ventilators do not
provide information on the ventilatory mode in use. We
chose these modes because they accounted for 70 % of the
ventilatory time in a recent large international study on
the epidemiology of mechanical ventilation [16], and cor-
responded to 94 % of the modes used in our cohort.
The practical consequences of failing to label a record

are different from those of mislabeling a record. If the
system cannot determine the ventilatory mode, it cannot
provide advice; however, if the system mislabels the
mode, it may provide erroneous advice. For example, air-
way pressure-time profile analysis could provide infor-
mation about two important determinants of ventilator-
induced lung injury: tidal recruitment and overdistention
[17]. This analysis derives an index by fitting the central
part of the inspiratory airway pressure-time profile to an
exponential function. Importantly, however, the index is
valid only if the ventilatory mode is VC-CMV and no pa-
tient inspiratory efforts are present [17]. Unless both
these conditions are met, there is a danger of misinter-
pretation that could lead to incorrect decisions and place
the patient at risk. In the present study, 20 (4 %) records
were mislabeled. Of these, eight resulted from problems
in differentiating between PC-CMV and VC-CMVDF and

four from problems in differentiating between PC-CMV
and PC-CSV. Another six records where the actual
mode was VC-intermittent mandatory ventilation with
pressure support were labeled PC-CSV (two cases) or
PC-CMV (four cases).
A critical aspect of our algorithms is to establish if a

given parameter is (or is not) stable. If a parameter
changed more than 10 %, the algorithm considers it
“variable”. To reduce the threshold below 10 % would
reduce the number of variable parameters considered
constant. Unfortunately, it would also increase the num-
ber of constant parameters considered variable: even
when these thresholds typically are more precise than
required by the ISO standard [18], for delivery of pres-
sures, flows, and volumes by ventilators.
For instance, differentiating PC-CMV from PC-CSV is

based on the variability of inspiratory time and distin-
guishing between VC-CMVDF and PC-CMV, which re-
lies on the variability of airway pressure, the slope of the
inspiratory flow curve and tidal volume. However, a
fixed ventilatory pattern (or the absence of muscular ac-
tivity) leads to a scenario in which patients ventilated in
PC-CMV will have a constant inspiratory volume and
slope of inspiratory flow and patients in VC-CMVDF will
have consistent airway pressure. Our analysis of mis-
labeled records showed that most mistakes occurred in
records with very regular ventilatory patterns where the
variation in parameters expected to vary was below the
tolerance limits we had set. Furthermore, the high in-
spiratory pressure alarm, for instance, can abort inspir-
ation making parameters expected to be constant
become very variable (like inspiratory time in PC-CMV
and VC-CMV or tidal volume in VC-CMV).

Fig. 1 Irregular traces from a patient in PC-CMV. A second inspiratory peak flow in a machine-triggered breath strongly suggests reverse triggering
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A total of 56 (12 %) records were not assigned to
one of the modes. In 23 cases the decision was cor-
rect, because the actual mode was one of the modes
that were outside the scope of the algorithm. In 33
cases, however, the system should have assigned the
mode. The main reason for these mistakes was severe
patient-ventilator asynchrony that resulted in muddled

records that were difficult even for expert physicians
to classify (Figs. 1 and 2). Another problem, specific
to Servo ventilators, is where in VC-CMV the inspira-
tory valve opens to mitigate flow asynchrony, causing
tidal volume to become highly variable and causing
the system to fail to recognize the mode as VC-CMV
(Fig. 3).

Fig. 2 The airway pressure alarm aborts inspiratory cycles, producing highly variable inspiratory times and volumes and making it difficult for the
system to correctly identify the mode as VC-CMV

Fig. 3 Manufacturer’s non-standard implementation of ventilatory modes. With the goal to increase patient comfort and reduce flow asynchrony,
some manufacturers have developed modifications of classic ventilatory modes. For instance, Maquet ventilators in VC-CMV (when airway
pressure shows a concavity, inadequate flow to meet patient inspiratory demand), the ventilator opens its demand valve allowing additional gas
flow to avoid flow asynchrony leading to an increase in tidal volume potentially violating a lung-protective approach. Beyond its advantages and
drawbacks, it causes changes in the inspiratory flow profile and tidal volume that prevent the system from identifying the mode as VC-CMV
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Determining the ventilator mode is also very
important for detecting the occurrence of inspiratory
patient-ventilator asynchrony (flow asynchrony, delayed
triggering, and patient-ventilator inspiratory time mis-
match). In a recent study of patient-ventilator asyn-
chronies in a general population monitoring the entire
period of mechanical ventilation, Blanch et al. [10] found
that asynchronies are very frequent and are associated
with mortality. However, they probably underestimated
the prevalence of ineffective inspiratory efforts because
the inability to determine the ventilatory mode limited
the system’s analyses mostly to the expiratory portion of
the ventilatory cycle [9]. Incorporating an algorithm to
detect the ventilatory mode in use would enable the en-
tire ventilatory cycle to be analyzed and provide a more
complete picture of the problem.
This study’s main strength is that it represents real

problems occurring in ICUs. The records analyzed came
from a wide variety of real ICU patients with asyn-
chronies, cough, airway secretions, etc. Its main limita-
tion is that it considered a limited set of ventilatory
modes. We have not developed algorithms to detect dual
modes because their use remains marginal [16]. More-
over, the low number of proportional pressure support
records in our database precludes the validation of an al-
gorithm to detect those modes. Thus, the reliability of
our algorithms to detect ventilatory modes has been
only established for VC-CMV, VC-CMVDF, PC-CMV,
PC-CSVs PC-CSVR+, and CPAP.

Conclusions
Automatic systems can accurately identify the most
commonly used ventilatory modes, thus providing cru-
cial information that enables the entire ventilatory cycle
to be analyzed. More data must be collected to validate
the algorithm for identifying less frequently used propor-
tional pressure support modes.
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