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Université de Lausanne, Lausanne, Switzerland

* marc.robinson-rechavi@unil.ch

Abstract

Many genes have nycthemeral rhythms of expression, i.e. a 24-hours periodic variation, at

either mRNA or protein level or both, and most rhythmic genes are tissue-specific. Here, we

investigate and discuss the evolutionary origins of rhythms in gene expression. Our results

suggest that rhythmicity of protein expression could have been favored by selection to mini-

mize costs. Trends are consistent in bacteria, plants and animals, and are also supported by

tissue-specific patterns in mouse. Unlike for protein level, cost cannot explain rhythm at the

RNA level. We suggest that instead it allows to periodically reduce expression noise. Noise

control had the strongest support in mouse, with limited evidence in other species. We have

also found that genes under stronger purifying selection are rhythmically expressed at the

mRNA level, and we propose that this is because they are noise sensitive genes. Finally,

the adaptive role of rhythmic expression is supported by rhythmic genes being highly

expressed yet tissue-specific. This provides a good evolutionary explanation for the obser-

vation that nycthemeral rhythms are often tissue-specific.

Author summary

For many genes, their expression, i.e. the production of RNA and proteins, is rhythmic

with a 24-hour period. Here, we study and discuss the evolutionary origins of these

rhythms. Our analyses of data from different species suggest that the rhythmicity of pro-

tein level may have been favored by selection for cost minimization. Furthermore, we

have shown that cost cannot explain the rhythmic variations in RNA levels. Instead, we

suggest that it periodically reduces the stochasticity of gene expression. We also found

that genes under stronger purifying selection are rhythmically expressed at the mRNA

level, and propose that this is because they are noise-sensitive genes. Finally, rhythmic

expression involves genes that are often highly expressed and tissue-specific. This provides

a good evolutionary explanation for the tissue-specificity of these rhythms.
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Introduction

Living organisms have to adapt to complex and changing environments. Physiological systems

able to accommodate themselves to changing but predictable circumstances are expected to

have a higher stability of survival and reproduction [1]. The strongest predictable change for

most organisms is the light/dark cycle and the associated nycthemeral temperature variations.

In an organism, “circadian rhythms” denote entities characterized by an endogenous and

entrainable oscillator clock which is able to persist in constant conditions (such as in constant

darkness) and whose phases can be altered (reset or entrained). However, many physiological

systems display non-autonomous nycthemeral rhythms, directly or indirectly controlled by

the local clock or mainly by the environment itself, or by both [2–6]. Such rhythms are found

at all levels: molecular, cellular, organs, and behavioural, and several regulatory networks

appear to play roles in the synchronization of these levels [7].

Here, we studied some of the evolutionary costs and benefits that shape the rhythmic nature

of gene expression at the RNA and protein levels. For this, we analysed several characteristics

that we expect to determine the rhythmic nature of gene expression in a the trade-off between

its advantages (economy of energetic costs over 24h, ribosomal non-occupancy) and disadvan-

tages (costs of complexity due to precise temporal regulation). We have not studied here the

potential negative effect of proteins when they are not needed, such as mis-interaction of pro-

teins, or unwanted enzymatic activity. We call “rhythmic genes” all genes displaying a

24-hours periodic variation of their mRNA or protein level, or of both, constituting the

nycthemeral transcriptome or proteome. Their rhythmic expression can be entrained directly

by the internal clock but also directly or indirectly by external inputs, such as the light-dark

cycle or food-intake [2–6]. Hence we use the term “nycthemeral” to avoid confusion with the

specific features of “circadian” rhythms, although these are included in the nycthemeral

rhythms, which includes downstream regulated genes. Because the alternation of light and

dark can be considered as a permanent signal for most life on earth [8], we consider that the

entirety of nycthemeral biological rhythms are relevant as a phenotype under selection.

Rhythmic gene expression: An adaptation in cycling environments

The endogenous nature of circadian rhythms is a strategy of anticipation. The ability to antici-

pate improves the adaptation of organisms to their fluctuating environment. Most rhythmic

genes are tissue-specific [9–11], i.e. a given gene can be rhythmic in some tissues, and con-

stantly or not expressed in others, which means that their rhythmic regulation is not a general

property of the gene and is therefore expected to be advantageous only in those tissues in

which they are found rhythmic. This argues that rhythmic regulation has costs, since it is not

general. These costs are probably related to the complexity of regulation to maintain precise

temporal organisation, and could also be related to toxicity. Thus, cyclic biological systems are

expected to have adaptive origins. Gene expression is costly for the cell in terms of energy and

cellular materials usage. Wang et al. [12] have shown that in the liver of mice, abundant pro-

teins that are required at one time are down-regulated at other times, apparently to economize

on overall production. Wang et al. also reported that at each time-point, the total metabolic

cost was 4 fold higher for the set of cycling genes compared to the non-cycling genes set at

both transcriptional and translational levels [12]—although the proteomic data used from

mouse fibroblasts appear to have been underestimated and have since been corrected [13].

Furthermore, we have shown in our previous work that rhythmic genes are largely enriched in

highly expressed genes and that the differences in rhythm detection obtained between highly

and lowly expressed genes either reflect true biology or a lower signal to noise ratio in lowly

expressed genes [14]. Here, we present results supporting the hypothesis that cyclic expression
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of highly expressed proteins were selected as part of a “low-cost” strategy to minimize the over-

all use of cellular energy. Thus, a first evolutionary advantage given by rhythmic biological pro-

cesses would be a reduction of the overall cost (over a 24-hour period), compared to the costs

generated over the same period by a sufficient constant level of proteins. Furthermore, we pro-

vide a first explanation for the tissue-specificity of rhythms in gene expression by showing that

genes are more likely to be rhythmic in tissues where they are specifically highly expressed.

Noise and cost reduction

Expression costs at the protein level are at least 160 times higher than at the RNA level (section

3 in S1 File). Thus, it requires considerably more metabolic activity to produce a significant

change in protein than in transcript levels. Moreover, small increases in protein expression lev-

els have been shown to incur energy costs large enough to be opposed by natural selection, at

least in bacteria [15, 16]. Consequently, protein synthesis costs are more constraining than

RNA synthesis costs, especially in eukaryotes for which translation is the major contribution

to making expression costs visible to selection [16].

Many transcripts show nycthemeral fluctuations without rhythmicity of their protein abun-

dances, even when measured in the same study. This is the case for instance in mouse liver

[17] or in plants [18]. Yet relative to protein synthesis costs, costs at RNA level are probably

too small to provide a satisfactory evolutionary explanation of rhythms at mRNA level.

Thattai et al. [19] and Hausser et al. [20] propose that living systems have made tradeoffs

between energy efficiency and noise reduction. Indeed, the control of noise (stability against

fluctuations) plays a key role in the function of biological systems (i.e. in the robustness of

gene expression) as supported by observations of a noise reduction during key periods, e.g. in

development [19, 21]. These considerations lead to predictions which we study here: i) a strat-

egy to periodically decrease stochasticity for genes with rhythmically accumulated mRNAs; ii)

a cost-saving strategy for genes whose protein expression is rhythmic; and iii) a combined

strategy for genes rhythmic at both levels.

Results

Cyclicality of costliest genes

Expression costs at the protein level are at least 160 times higher than at the RNA level (section

3 in S1 File). They are dominated by the cost of translation [15, 16]. This is mainly due to the

higher abundance of proteins relative to transcripts, by a factor of 1000 (section 3 in S1 File).

Thus, based on the calculation developed by Lynch and Marinov [16], we estimated the expres-

sion cost (Cp) of each gene by the formula (1) which takes into account the averaged amino-

acid (AA) synthesis cost (�cAA) of the protein (S1 Table), protein length (Lp), and protein abun-

dance (Np).

Cp ¼ NpLp�cAA ð1Þ

Other costs such as AA polymerization or protein decay are not expected to change our

results, since longer or higher expressed proteins need more chain elongation activity and deg-

radation (section 4 in S1 File). We show in S1 File (section 4) that the costs of maintaining pro-

teins is higher for highly expressed than for lowly expressed proteins, even taking into account

that highly expressed proteins have longer half-lives (also see Discussion). Thus, the cost pro-

vided by formula (1) is representative of gene expression costs and can be used for comparison

between genes. To compare expression costs between rhythmic and non-rhythmic proteins,

we calculated the average and the maximum protein expression level over time-points (see
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Methods, Eqs (2) and (3)) (Fig 1d). The AA biosynthesis costs estimated in E. coli (S1 Table)

were used as representative for all species since biosynthetic pathways are nearly universally

conserved [15].

If the biological function of a protein is periodic, we expect the rhythmic regulation of its

expression to be determined by a trade-off between the benefits of not producing proteins

when they are not needed (energy costs saved, as we did not include the potential toxicity of

unneeded proteins) and the potential costs involved in making it rhythmic and temporally

coordinated (costs of complexity) (Fig 1b).

This leads to expect costlier genes to be more frequently rhythmic. First, we confirm that

cycling genes are indeed enriched in highly expressed genes, as previously reported [12, 14].

The higher cost of cycling genes (Fig 2a and S2 Fig) was especially correlated with their higher

expression levels, observed both at the protein level (Fig 2d and 2e) and at the RNA level (S1

Fig). We find rhythmic proteins to be longer only in mouse and in cyanobacteria (Fig 2c).

However, conserved genes are known to be longer [22, 23] and are often more expressed [24,

25], therefore more expensive to produce, which could explain the rhythmic expression we

observe for longer proteins. On the other hand, the higher cost for rhythmic proteins in Syne-
chococcus elongatus appears only due to their length. Finally, in mouse liver, cycling proteins

seem to contain more expensive amino acids than non-rhythmic proteins (Fig 2b).

Overall, results are consistent with the expectation that costlier genes are preferentially

under rhythmic regulation. Furthermore, our results show that while rhythmicity at protein

level lowers costs, it does not drive the costs of rhythmic genes down to the level of constant

proteins. A more specific prediction from this hypothesis is that each gene should be found

rhythmic specifically in tissues where a high expression of that gene is needed, i.e. where its

function is costlier.

Genes tend to be rhythmic in the tissues in which they are highly expressed

To test this hypothesis, we used a mouse circadian dataset with 11 tissues (transcriptomics

from Zhang et al. [9], S2 Table). For each gene we separated the tissues into two groups, those

for which the gene was rhythmic (Rhythmic detection method, GeneCycle: p-value�0.01) and

those for which it was not (Rhythmic detection method, GeneCycle: p-value>0.5). Because of

the difficulty of setting reliable thresholds for rhythmicity [14], we ignored intermediate p-val-

ues. For each gene, we estimated the difference δ of expression levels between these two groups

of tissues (see Formula 7 in Methods). As expected, genes tend to be more highly expressed in

tissues where they are rhythmic (Student’s test, testing the hypothesis that the δ distribution

mean is equal to 0: δmean = 0.0146, t = 28.29, df = 11683, p-value<2.2e–16, 95% CI [0.0136,

0.0156]). We also provide results obtained from other datasets in S3 Table, although they must

be taken with caution since only 2 to 4 tissues were available, and sometimes data were coming

from different experiments. Of note, for proteomic data, the distributions of δ are bimodal (S3

Fig), separating rhythmic proteins into two groups, with low or high protein levels in the tis-

sues in which they are rhythmic. A hypothesis is that for some tissue-specific proteins the

rhythmic regulation is not tissue-specific, making them rhythmic also in tissues where they are

lowly expressed. But the very small sample size does not allow us to test it, and we caution

against any over-interpretation of this pattern before it can be confirmed.

Rhythmic genes are tissue-specific

To clarify whether rhythmic genes tend to be tissue-specific highly expressed genes, we also

analysed the relation between the number of tissues in which a gene is rhythmic and its tissue-

specificity of expression τ [26, 27]. For the mouse circadian dataset (transcriptomic) with 11
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Fig 1. a) Gene expression contributes to organismal fitness. b) Rhythmic protein regulation presents a trade-off between the costs generated by

integration into the rhythmic system (costs of complexity) and the advantages provided plus the costs saved over 24 hours. The middle exemplifies two

extreme behaviors, while the right shows the distribution expected from populations of genes which follow these behaviors. c) The range of high fitness

protein levels depends on the sensitivity of the function to deviations from an optimal level. We use the term “narrower” following Hausser et al. [20].

Noise sensitive genes have narrower fitness function, i.e. a small deviation from the optimum rapidly decreases the contribution to fitness. Precision is

less important for genes with flat fitness functions. d) Mean or maximum expression level calculated from time-series datasets (see Methods). We

assume that, in the absence of rhythmic regulation, the constant optimal level is included between the mean and the maximum expression level

observed in rhythmic expression.

https://doi.org/10.1371/journal.pcbi.1010399.g001
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tissues, partial correlations show that genes whose rhythmicity is tissue-specific have tissue-

specific expression (τ, Formula 8, versus number of rhythmic tissues: Pearson’s correlation =

-0.37, t = -5.3e+01, p<2.2e−16; see S4 Table for Spearman’s correlation test). Results obtained

with other datasets are in S4 Table; results for the baboon dataset should be taken with caution

for reasons discussed in our previous work [14]. The partial correlation seems to be stronger at

the transcriptional level, although data was available in much less tissues at the pro- tein level

(only mouse forebrain, cartilage, liver, and tendon). Moreover, for tissue-specific genes (τ
>0.5), the signal of rhythmicity correlates with expression level over tissues (S4(a) Fig). While

Spearman’s correlation is clearly skewed towards negative correlations, i.e. lower p-values thus

Fig 2. Among the factors of expression costs, expression level is the main factor explaining the higher cost observed in rhythmic proteins. a) The total cost of

rhythmic proteins is higher than those of other proteins. b) With the exception of mouse liver, rhythmic proteins do not contain more expensive amino-acids than

other proteins. c) Rhythmic proteins can be longer in some species. d-e) Mean or maximum expression level calculated from time-series datasets: rhythmic proteins

are highly expressed proteins. Boxplots are log scaled except for the averaged AA synthesis cost. The first 15% of proteins from p-values ranking (from the most

rhythmic to the most un-rhythmic genes) obtained from the rhythm detection algorithms were classified as rhythmic.

https://doi.org/10.1371/journal.pcbi.1010399.g002
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stronger signal of rhythmicity in the tissue where genes are more expressed, Pearson’s correla-

tion also has a smaller peak of positive correlations (S4(a) Fig), suggesting a subset of genes

which are less rhythmic in the tissues where they are most expressed. We show that tissue-spe-

cific genes which are mostly rhythmic in tissues where they are highly expressed are under

stronger selective constraint than those which are rhythmic in tissues where they are lowly

expressed (S4(b) Fig). Thus, rhythmic expression of this second set of genes might be under

weaker constraints. The dominant signal overall is that in a given tissue, rhythmically

expressed genes tend to be those which are tissue-specifically expressed in this tissue.

Lower cell-to-cell variability of genes with rhythmic transcripts

Increasing transcription for a fixed amount of protein can decrease the noise in final protein

levels [20], thus, genes with rhythmic mRNAs can have lower noise at their mRNA level peak.

We predict that genes with rhythmic mRNAs are noise-sensitive genes (Fig 1c). To test this,

we compared the noise distribution between rhythmic and non-rhythmic genes. We used F�

of Barroso et al. [28] to control for the correlation between expression mean (μ) and variance

(σ2). It was the most efficient compared with other methods (section 6.4 in S1 File). To evaluate

expression noise, we used single-cell RNA data from Mus musculus liver, lung, limb muscle,

heart, and aorta [29] and Arabidopsis thaliana roots [30] (S2 Table). These data are from a sin-

gle time-point each time. In the absence of other data, we have to assume that this noise calcu-

lated at the transcriptional level is representative of noise at the protein level, or in any case

functionally relevant. If anything, we expect this to provide an under-estimation of any rela-

tion between noise and rhythmicity, since noise at other time points is missed. Then, we

assessed rhythmicity based on time-series datasets: RNA and proteins from Arabidopsis leaves

and mouse liver from the data used above; and RNA only in mouse lung, kidney, muscle,

heart, and aorta (S2 Table). Results are given in a simplified way in Table 1 for the mouse; full

results, which include Arabidopsis, are provided in S5 Table. In most cases, we found lower

noise for genes with rhythmic mRNA (row a of Table 1 and S5 Table).

We obtained the same results using less stringent cut-offs when calling genes rhythmic

(p<0.05, results not shown). Genes with both rhythmic proteins and mRNA had lower noise

(row c of Table 1), although differences weren’t significant. Our results show that noise esti-

mated at a single time-point is globally reduced for genes with rhythmic regulation at the tran-

scriptional level. Since rhythmic genes are not all in the same phase (Fig 2a and S1 File), we

expect this result obtained for a given time-point (average noise estimated at a single time-

point from scRNA) to be general to all time-points (section 6.3 in S1 File). Assuming that

genes with low noise are noise-sensitive (and thus noise is tightly controlled), these results sug-

gest that rhythmic genes have, individually, their noise periodically and drastically reduced

through periodic high accumulation of their mRNAs. In Arabidopsis, the single-cell data used

are from the root, while transcriptomic time-series data used to detect rhythmicity are from

the leaves, which limits the interpretation. Despite this limitation, we found no evidence of

lower noise for genes that are rhythmic at the protein level (rows b and e of Table 1, and S5

Table), and trends towards lower noise in almost all cases for genes with rhythmic mRNAs

(rows a, c, and d of Table 1).

Genes with rhythmic transcripts are under stronger selection

Finally, we compared protein evolutionary conservation (estimated by the dN/dS ratio)

between rhythmic and non-rhythmic genes. Results are given in a simplified way in Table 2;

full results are provided in S6 Table. In all cases, in plants, vertebrates, and insects, we found

that genes with rhythmic mRNA levels were significantly more conserved (triangles in S8
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Table). We obtained similar results after controlling for gene expression bias (Table 2 and

background boxes in S8 Table), since higher expressed genes are known to be more conserved

genes. Interestingly, we didn’t find a clear tendency for higher conservation in rhythmic pro-

teins (Table 2). In Arabidopsis, genes rhythmic at both levels were less conserved than genes

rhythmic at only one level (Table 2), and results were unclear for mouse. These results suggest

that rhythmic expression at the transcriptional level plays an important role for genes under

strong purifying selection, consistent with the results for tissue-specific rhythmic genes.

Discussion

In this work, we investigate the evolutionary origins of rhythms in gene expression that

respond to factors oscillating on a 24-hour time scale. This scale is longer than those of many

biological oscillators at the molecular level, which are ultradian; for instance *3h for the

p53-Mdm2 system, or on the order of minutes to seconds for calcium oscillations. Hence, nat-

ural selection was probably instrumental in reaching the longer nycthemeral period of gene

expression for many genes.

The endogenous generation of circadian rhythms is an anticipation strategy, which is opti-

mized if the internal clock resonates with the external cycle [31, 32]. The autonomous nature

of such mechanisms provides a clear advantage to the organism able to anticipate its environ-

mental changes before they take place, allowing it to be “ready” before organisms who would

not be endowed with such capacity. In terms of adaptability in a given environment, if we con-

sider nycthemeral rhythms without considering their endogenous or exogenous nature, one

can ask the question of the evolutionary origin of maintaining large cyclic biological systems,

with gene and tissue specific regulation. Indeed, they are very widely found among living

organisms, at every level of biological systems, highlighting their necessity for adapted

phenotypes.

Table 1. Simplified table showing the results of the Welch two sample t-test testing the hypothesis that the noise is

equal between rhythmic versus non-rhythmic transcripts (a), or proteins (b), or between rhythmic versus non-rhyth-

mic transcripts among rhythmic proteins (c) or among non-rhythmic proteins (d), and between rhythmic versus non-

rhythmic proteins among genes with constant transcripts (e). F� is an estimation of the noise based on Barroso et al.

method [28]. Complete results are provided in S5 Table.

Mus musculus
Liver Lung Muscle Heart Kidney Aorta

a
All genes:
rRNA VS nrRNA

b
All genes:
rProtein VS nrProtein

Noise r < Noise nr ; p<0.05

Noise r < Noise nr ; p¸0.05
c

rProteins (p∙0.05):
rRNA VS nrRNA

Noise r > Noise nr ; p<0.05

Noise r > Noise nr ; p¸0.05
d

nrProteins (p>0.2):
rRNA VS nrRNA

Welch two sample t-test

e
nrRNA (p>0.2):
rProtein VS nrProtein

r: rhythmic
nr: non-rhythmic

https://doi.org/10.1371/journal.pcbi.1010399.t001
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An important question which we have addressed is why some genes are rhythmic at the

RNA but not the protein level, and vice versa. Apart from mechanistic causes that explain

how, it was not clear why in some cases the rhythmicity is initiated early then lost over the

processes (from transcription initiation to protein decay), while in others it is initiated later. In

some cases, these lost or gained rhythms might be by-products of the evolution of regulatory

processes, but it seems unlikely that all nycthemeral genes be due only to genetic drift. Our

previous results showing that rhythmicity of gene expression tends to be a conserved property

[14] support this perspective. Indeed, we have found a stronger conservation signal of rhyth-

mic expression for evolutionarily closer species [14]. Moreover, a reasonable assumption is

that rhythmic expression can have costs, e.g., of regulation, and thus it is not always obvious

that it should be adaptive. For instance, regulatory dynamics can cause substantial changes in

noise levels, e.g. the noise strength immediately following gene induction is almost twice the

final steady-state value [19].

Rhythmic proteins: Reduction of overall costs

Our calculation of energetic costs is based on the costs that the cell needs to produce a given

steady state protein level. The cell also consumes energy to maintain the steady state protein

level. We argue that these costs should correlate with our estimation of expression costs (see

section 3 in S1 File). Indeed, the costs of maintaining a steady state protein level are higher for

highly expressed than for lowly expressed genes, even if higher expressed proteins have longer

half-lives (see section 4 in S1 File). Thus, even taking into account a more complex cost calcu-

lation would not change our observation that rhythmic genes are costlier.

Table 2. Simplified table showing the results of the Welch two sample t-test testing the hypothesis that dN/dS ratio is equal between rhythmic versus non-rhythmic

transcripts (a), or proteins (b), or between rhythmic versus non-rhythmic transcripts among rhythmic proteins (c), and between rhythmic versus non-rhythmic pro-

teins among genes with rhythmic transcripts (d). In S8 Table, triangles give the result of the Welch two sample t-test without controlling for the effect of gene expression

level. Complete results are provided in S6 Table.

All genes: rRNA vs.

nrRNA

All genes: rProtein vs.

nrProtein

rProteins (p�0.05): rRNA vs.

nrRNA

rRNA (p�0.01): rProtein vs.

nrProtein

PLANT Arabidopsis Leaves

VERTEBRATES Mouse Liver

Lung

Muscle

Heart

Kidney

Aorta

Tendon

Forebrain

Cartilage

Rat Lung

INSECTS Anopheles Head

Body

Aedes Head

dN/dS of rhythmic genes < dN/dS of non-rhythmic genes; p<0.05

dN/dS of rhythmic genes < dN/dS of non-rhythmic genes; p�0.05

dN/dS of rhythmic genes > dN/dS of non-rhythmic genes; p<0.05

dN/dS of rhythmic genes > dN/dS of non-rhythmic genes; p�0.05

https://doi.org/10.1371/journal.pcbi.1010399.t002
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Our results suggest that rhythmicity of protein expression has been favored by selection for

cost control of gene expression, while keeping sufficient expression levels. In the case of rhyth-

mic genes, what would this sufficient constant level be? We can propose two hypotheses. The

first is that it would be the mean expression over the period, since this maintains the same

overall amount of protein. The second is that it would be the maximum over the rhythm

period, since that is the level needed at least at some point. The second hypothesis explains bet-

ter the existence of this maximum level during the cycle. Of note, it also strengthens the case

for selection on expression cost. Our results also suggest that rhythmicity at the protein level

only minimizes costs within the constraints of the rhythmic proteins, without making these

costs similar or smaller than those of constant proteins. They also suggest that rhythmic regu-

lation of transcription of highly expressed genes does impact the energy expenditure, consis-

tent with Cheng et al. [33], but as a by-product of the selection acting at protein level. Finally,

rhythmic regulation of highly expressed genes might be driven by other costs than energy, i.e.
high expression levels could be detrimental, e.g. because of toxicity. For instance, by altering

protein-protein interactions, generating undesirable enzyme activities, or by antagonistic plei-

otropy of genes. Thus, for rhythmic genes, the constant level should at least correspond to the

mean expression level (Fig 1d). We provide results obtained using both the maximum and the

mean of expression in Fig 2a.

Another hypothesis is that rhythmicity at protein level could have been selected for noise

adjustment. If that were the case, we would expect that for a given mRNA level, the peak level

of proteins (i.e., the highest translation rate) would be associated with lower noise to increase

the precision when the protein level is highest. However, both theoretical and empirical argu-

ments contradict this expectation. For a given mRNA level, theoretical models predict that

protein level will be negatively correlated with noise [20, 34] (section 6.2 in S1 File). Moreover,

measurements of cell-to-cell variability of protein level show that for a given mRNA level,

changes in protein level have little to no impact on gene expression precision [20] (section 6.2

in S1 File). Thus, translational efficiency does not seem to be the main driver of expression

noise, and selection on noise can- not explain rhythmicity at protein level.

Rhythmic mRNAs: Noise reduction

Transcription rather than translation seems to be the main source of overall expression noise

(section 6.1 in S1 File). However, we can only conclude regarding the transcriptional noise.

Small fluctuations of expression away from the optimal wild-type expression have been shown

to impact organismal fitness in yeast, where noise is nearly as detrimental as sustained (mean)

deviation [35]. Furthermore, noise-increasing mutations in endogenous promoters have been

found to be under purifying selection [36], and noise has been shown to be under selection in

fly development [21]. In this study, we found lower noise at least at a single time-point among

rhythmic transcripts, compared to constant genes. Rhythmic expression of RNAs might be a

way to periodically reduce expression noise of highly expressed genes (Fig 2 and S1 Fig), which

are under stronger selection. Indeed, we found that genes with rhythmic transcripts are under

stronger selection, even controlling for expression level effect. As proposed by Horvath et al.

(2019) and supported by results in mouse by Barroso et al. (2018), genes under strong selection

could be less tolerant to expression noise. Thus, periodic accumulation of mRNAs might be a

way to periodically reduce transcriptional noise of noise-sensitive genes (Fig 1c), i.e. genes

under stronger selection. However, our results are limited by the fact that noise estimation is

based on a single time-point measurement since no scRNA time-series data are currently avail-

able for these species. Since the peak time of rhythmic transcripts is distributed across all times

(Fig 2a in S1 File), the mean noise estimated at a given time-point includes the noise of the
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genes that are peaking at that time (lowest noise) and all the others that have a higher noise

than those at their own peak time-point (Fig 2b in S1 File). Thus, genes peaking at the time-

point of the scRNA measurement had sufficiently low noise to produce an averaged noise in

rhythmic genes much lower than constant genes. We suggest that, over a gene-specific thresh-

old of mRNA level, the likelihood that ribosomes interact with mRNA molecules increases

much faster than under this threshold, allowing to maximize expression accuracy at the peaks.

Future experiments would allow to test this suggestion.

We are aware that this theory is difficult to test experimentally. An interesting direction

would be the measurement the cell-to-cell protein fluorescence at different time-point for dif-

ferent tissues and species, providing real-time information on the noise fluctuations at various

levels. Moreover, the fitness effect of noise could be estimated from growth rates in unicellular

organisms measured at different time-point, under conditions which favor rhythmicity or

which don’t.

Stochasticity of gene expression could also allow to maintain an oscillator system that

would be damped otherwise, according to deterministic simulations [37]. Furthermore,

expression noise could generate phenotypic diversity, and improve fitness in fluctuating envi-

ronments [38–43]. Thus, rhythmicity of transcripts might lead to periodic stochasticity that

maintains the amplitude of oscillations as well as lead to alternative molecular phenotypes.

Higher precision allows to increase the robustness of gene expression when the function is

most needed, while higher stochasticity allows to present diverse molecular phenotypes. Thus

alternating between these two states might improve the fitness of organisms in fluctuating

environments. We also found that rhythmic expression involves highly expressed, tissue-spe-

cific genes, consistent with the observation of tissue-specific rhythms. Selection for rhythmic

regulation of highly expressed genes might be due to an efficient reduction of periodic pro-

tein-protein misinteractions. Finally, since genes under strong selection could also become less

tolerant to high expression noise levels, our results suggest that rhythmicity at the mRNA level

might have been under strong selection for these noise-sensitive genes.

Materials and methods

Datasets

Details of the datasets are available in S2 Table.

Mus musculus. Mouse liver transcriptomic and proteomic time-series datasets come

from Mauvoisin et al. [17]. Original protein counts dataset was downloaded from ProteomeX-

change (PXD001211) file Combined_WT, and cleaned from data with multiple Uniprot.IDs

affectations between raw peptides data. Time-serie transcriptomic data was downloaded from

the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO)

accession (GSE33726) [44] Multi-tissues time-serie transcriptomic data used for tissue-speci-

ficity expression comparisons are microarray data from Zhang et al. [9] downloaded from the

NCBI GEO accession GSE54652 (see Materials of Laloum and Robinson-Rechavi [14] for

more details). Tissues analysed are: adrenal gland, aorta, brain stem, brown adipose, cerebel-

lum, heart, kidney, liver, lung, muscle, and white adipose. We have volontarily excluded the

hypothalamus since it contains the Supra-Chiasmatic Nucleus known to have core clock genes

that synchronise the body. Therefore, their rhythmicity is probably dominated by other causes

than a regulation of cost.

Multi-tissues time-serie proteomic data come from: Mauvoisin et al. [17] for the liver, Noya

et al. [45] for the forebrain, Chang et al. [46] for the tendon, and Dudek et al. [47] for the carti-

lage. Finally, single-cell data of thousand of cells in organs for which we had time-series data-

sets, i.e. liver, lung, kidney, muscle, aorta, and heart, were downloaded from figshare using R
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objects from FACS single-cell datasets [29]. We kept cellular sub-types which were found in at

least 100 cells and that we considered to be characteristic of the tissue. This leads to keep:

endothelial cell of hepatic sinusoid and hepatocyte for the liver; epi-
thelial cell of lung, lung endothelial cell, and stromal cell for the

lung; endothelial cell, mesenchymal stem cell, and skeletal muscle
satellite cell for the muscle; cardiac muscle cell, endocardial cell,

and endothelial cell for the heart; endothelial cell for the aorta; endothe-
lial cell, epithelial cell of proximal tubule, and kidney collect-
ing duct epithelial cell for the kidney.

Arabidopsis thaliana. Leaves time-series proteomic data are the Dataset I from Krahmer

et al. [48], cleaned from data with multiple protein identifications. Leaves time-series tran-

scriptomic data were downloaded from the NCBI GEO accession (GSE3416) [49]. Single-cell

data of twenty root cells were downloaded from the NCBI GEO accession (GSE46226) [30].

Ostreococcus tauri. Unicellular alga proteomics time-series dataset (normalized abun-

dances) come from Noordally et al. [50]. Transcriptomic time-series dataset come from Mon-

nier et al. [51], was downloaded from the NCBI GEO accession (GSE16422) and was cleaned

for genes with too much missing values (more than seven).

Synechococcus elongatus (PCC 7942). Unicellular cyanobacterium proteomics time-

series dataset come from Guerreiro et al. [52]. Transcriptomic time-series dataset come from

Ito et al. [53] and was recovered from Guerreiro et al. [52].

Drosophila melanogaster. Transcriptomic time-series datasets for the body, the head,

and the heart, come from Gill et al. [54] and were downloaded from the NCBI GEO accession

(GSE64108) (see Materials of Laloum and Robinson-Rechavi [14] for more details).

Papio anubis [Olive baboon]. Multi-tissues time-series transcriptomic data used for tis-

sue-specificity expression comparisons are RNA-seq data from Mure et al. [55] (see Materials

of Laloum and Robinson-Rechavi [14] for more details).

Pre-processing

For each time-series dataset, only protein coding genes were kept. ProbIDs assigned to several

proteins were removed. Probesets were cross-referenced to best-matching gene symbols by

using either Ensembl BioMart software [56], or UniProt [57].

Rhythm detection

To increase power of rhythm detection [14], we considered biological replicates as new cycles

when it was possible. We used GeneCycle R package (version 1.1.4) [58] available from

CRAN and used the robust.spectrum function developped by [59]—with parameters periodic-
ity.time = 24 and algorithm = “regression”—that computes a robust rank-based estimate of the

periodogram/correlogram and that we improved with the try-catch function to avoid

error of dimension with MM-estimation method. When the p-values distribution obtained did

not correspond to the expected distribution—skewed towards low p-values because of the

presence of rhythmic genes—we used the results obtained by the rhythm detection method

used by the original paper from where the data came after checking they presented a classic

skewed p-values distribution. Finally, for each gene or protein having several data (ProbIDs or

transcripts), we combined p-values by Brown’s method using the EmpiricalBrowns-
Method R package (S1 File). Thus, for each dataset, we obtained a unique rhythm p-value per

gene or per protein. Due either to low-amplitude or less-accurate measurements, it was more

challenging to identify rhythms in proteomics data. That is why, in general, we used lower

stringency for proteins.
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Consistent gene expression levels

Tissue-specific mRNA or protein abundances were the average or the maximum level of the n
time-points such as for gene i:

maxNi ¼
max1Ni;jþmax2Ni;j

2
with max1Ni;j 6¼max2Ni;j 0 � j � n ð2Þ

meanNi ¼

Pn
j¼1

Ni;j

n
with n: the number of time � points ð3Þ

Npi: for the abundance of the protein i

NRNAi: for the abundance of the transcript i

In mouse, we have used peptide level data to compare protein abundances in the calculation

of expression costs.

Expression costs

Energetic costs of each AA (unit: high-energy phosphate bonds per molecule) come from Aka-

shi and Gojobori [60], or Wagner [15] which are linearly correlated (S5 Fig). The averaged AA

synthesis cost of one protein of lenght Lp is:

�cAA ¼
PLp

j¼1 cAAj
Lp

ð4Þ

Protein sequences come from FASTA files downloaded from EnsemblPlants [56] or Uni-

Prot [57] for: Proteome UP000002717 for Synechococcus elongatus PCC 7942, Uniprot

Reviewed [Swiss-Prot] for Mus musculus, Proteome UP000009170 for Ostreococcus tauri.
Main results use Wagner [15] AA costs data. We provide supplementary results using Aka-

shi and Gojobori [60] AA costs data (S6 Fig).

Multi-tissues analysis

To obtain comparable expressions levels between different tissues or datasets, we normalized

expression values by Z-score transformation such as in the dataset of n genes, the mean expres-

sion of the gene i becomes:

meanZi ¼
meanNi �

�N

maxZ:s
with meanNi: the average expression level of gene i ðformula ð3ÞÞ

�N ¼
Pn

i¼1
Ni

n
s: the standard deviation of meanNi

maxZ: the maximal value of the meanZ� scores

n: the number of genes

ð5Þ
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and the maximal expression of the gene i becomes:

maxZi ¼
maxNi �

�N

maxZ:s
with maxNi: the maximal expression level of gene i ðformula ð2ÞÞ

maxZ: the maximal value of the maxZ� scores

s: the standard deviation of maxNi

ð6Þ

Zi 2 ½0; 1�

To compare the expression levels between the set of nr rhythmic tissues and the set of n�r

non-rhythmic tissues, we estimated the difference (δ) of expression levels between these two

groups for each gene i such as:

di ¼

Pnr
jr¼1
ðmeanZi;jr

Þ

nr
�

Pn�r
j�r¼1
ðmeanZi;j�r

Þ

n�r

ð7Þ

with nr: the number of tissues in which gene i is rhythmic ðp � 0:01 or 0:05Þ

n�r : the number of tissues in which gene i is not rhythmic ðp > 0:1 or 0:5Þ

meanZi;jr
: the mean expression level Z � score normalized of gene i in

the tissue jr in which it is rhythmic

meanZi;j�r
: idem for non � rhythmic tissue

meanZi 2 ½0; 1�; defined as formula ð5Þ

Finally, we analysed the distribution of δi and generated a Student’s t-test to compare its

mean distribution with an expected theoretical mean of 0.

Tissue-specificity of gene expression

To calculate a tissue-specificity τ for each gene i, we log-transformed the averaged gene expres-

sion and followed Kryuchkova-Mostacci and Robinson-Rechavi [27] to make expression val-

ues manageable. Thus, among the n tissues, the tissue-specificity of gene i is:

ti ¼

Pn
j¼1
ð1 � N̂ i;jÞ

n � 1
with n: the number of tissues

N̂ i;j ¼
logðmeanNi;jÞ

max1�j�nðlogðmeanNi;jÞÞ

max
1�j�n
ðlogðmeanNi;jÞÞ is the maximal expression level of gene i

among the n tissues

N̂ i;j 2 ½0; 1�

ð8Þ

This tissue-specificity formula was described by Yanai et al. [26]. Finally, we performed lin-

ear regressions to analyse the respective and the interaction influences of gene expression level

and tissue-specificity into the rhythmicity. For mouse [9], we used RNA-seq data to estimate

the mean expression used for the calculation of τ, and used rhythm p-values obtained from
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microarray dataset since there was more time-points in the microarray time-series (as dis-

cussed in benchmark paper). S7 Fig shows the distributions of τ obtained.

Gene expression noise quantification

We estimated a unique expression noise per gene by taking advantages of Arabidopsis thaliana
roots [30] and Mus musculus liver, lung, kidney, muscle, aorta, and heart [29] (from figshare

using R objects of FACS single-cell datasets) single-cell RNAseq data (see Materials). For Ara-

bidopsis, we obtained gene expression for twenty root quiescent centre (QC) cells for which a

total of 14,084 genes had non-zero expression in at least one of the 20 single cells. For mouse,

we obtained gene expression for a number of cells ranging from 180 to 3772 cells, for which a

total of genes with non-zero expression was around 19,000 genes. As in Barroso et al. [28], we

kept only genes whose expression level satisfied log[FPKM + 1] >1.5 in at least one single cell.

We calculated the stochastic gene expression (F�) defined by Barroso et al. [28] as a measure

for gene expression noise (cell-to-cell variability) designed to control the biases associated with

the correlation between the expression mean (μ) and the variance (σ2) by using the lowest

degree polynomial regression which decorrelate them. We tested different degrees of the poly-

nomial regression to estimate log(σ2) in the calculation of F� and measured the correlation

based on Kendall’s rank and linear regression slope (see section 6.4 in S1 File). The F� polyno-

mial degree of Barroso et al. (2018) was the best method because it removed the correlation

between mean expression and F� (smallest linear regression slope and Kendall’s) and keep a

large range of noise values for every mean expression (smallest R2) (section 6.4 in S1 File).

Finally, since the peak times of rhythmic genes is largely distributed (Fig 2a in S1 File), we

expect the mean noise of a given time-point to be general to all time-points (Fig 2b in S1 File),

therefore giving a good indicator to estimate its biologically relevant.

dN/dS analysis

dN/dS data have been downloaded from Ensembl BioMart Archive 99 [56]. The homologous

species used are: Mus musculus—Rattus norvegicus; Arabidopsis thaliana—Arabidopsis lyrata;

and Anopheles gambiae—Aedes aegyti. We first tested the hypothesis that rhythmic (p-

value�cutoff.1) versus non-rhythmic genes (p-value>cutoff.2) have equal ratio of non-synon-

ymous to synonymous substitutions. Then, since rhythmic genes are now known to be

enriched in highly expressed genes and because highly expressed genes are under purifying

selection, we controlled for the effect of gene expression on dN/dS ratio by testing the hypothe-

sis that rhythmic (p-value�cutoff.1) versus non-rhythmic (p-value>cutoff.2) genes among

residuals of the linear regression fitting gene expression level and dN/dS ratio. Complete

results are given in S6 Table and in a simplified way in Table 2.

In R code it gives:

> lmTest = lm(log(dNdS)*log(gene.expr.level), data)
> rhythmic.residuals = lmTest$residuals[data$rhythm.

pvalue�cutoff.1]
> nonrhythmic.residuals = lmTest$residuals[data$rhythm.

pvalue>cutoff.2]
> t.test(rhythmic.residuals, nonrhythmic.residuals)
Plots have been generated using ggplot2 package (version 3.3.2) run in R version 4.0.2.
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Supporting information

S1 Fig. Mean or maximum mRNA expression level calculated from time-series datasets.

Rhythmic transcripts are highly expressed transcripts.

(TIFF)

S2 Fig. Linear regression analysis between the order of the rhythmicity signal (from the

most rhythmic to the most un-rhythmic genes) and the total expression cost (Cp, calcu-

lated from the mean expression level).

(TIFF)

S3 Fig. Distribution of the difference of expression levels (δ) between rhythmic tissues

group and non-rhythmic tissues group obtained for every gene (δ calculated from mean

expression levels; see Methods). δ shows a bimodal distribution at protein level.

(TIFF)

S4 Fig. a) Histograms of Pearson’s and Spearman’s coefficients testing the correlation between

the expression level and the rhythmicicity signal (rhythm p-value) measured across the body

for every tissue-specific genes (τ>0.5). b) Student’s t-test comparing the mean of dN/dS

between gene sets A and B: Tissue-specific genes which are mostly rhythmic in tissues where

they are highly expressed are under stronger selective constraint than those which are rhyth-

mic in tissues where they are lowly expressed.

(TIFF)

S5 Fig. Linear relationships of amino acid (AA) biosynthesis costs estimated by Akashi and

Gojobori [60], and Wagner [15].

(EPS)

S6 Fig. Comparison of the averaged AA synthesis costs calculated in both groups: Rhyth-

mic VS random genes group, using Akashi and Gojobori versus Wagner AA costs data.

(EPS)

S7 Fig. Histograms of tissue-specificity τ.

(TIFF)

S1 Table. Energetic costs estimated for each amino acid.

(XLSX)

S2 Table. Protein and RNA time-series datasets & single-cell RNA datasets.

(XLSX)

S3 Table. Comparison of expression level of genes in tissues in which they are rhythmic or

not.
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S4 Table. Pearson and Spearman correlation test: τ vs. the number of tissues in which the

gene is rhythmic.

(XLSX)

S5 Table. Comparison of expression noise level (F�) between rhythmic versus non-rhyth-

mic genes: Welch two sample t-test.

(XLSX)

S6 Table. Student’s test testing the hypothesis that the dN/dS distributions are equal

among rhythmic versus non-rhythmic genes.
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