
fcvm-09-793666 March 11, 2022 Time: 16:49 # 1

ORIGINAL RESEARCH
published: 17 March 2022

doi: 10.3389/fcvm.2022.793666

Edited by:
Hanjoong Jo,

Emory University, United States

Reviewed by:
Katherine Yutzey,

Cincinnati Children’s Hospital Medical
Center, United States

Maurizio Pesce,
Monzino Cardiology Center (IRCCS),

Italy

*Correspondence:
Najma Latif

n.latif@imperial.ac.uk

Specialty section:
This article was submitted to

Heart Valve Disease,
a section of the journal

Frontiers in Cardiovascular Medicine

Received: 12 October 2021
Accepted: 22 February 2022

Published: 17 March 2022

Citation:
Latif N, Sarathchandra P,

McCormack A, Yacoub MH and
Chester AH (2022) Atypical

Expression of Smooth Muscle
Markers and Co-activators and Their

Regulation in Rheumatic Aortic
and Calcified Bicuspid Valves.

Front. Cardiovasc. Med. 9:793666.
doi: 10.3389/fcvm.2022.793666

Atypical Expression of Smooth
Muscle Markers and Co-activators
and Their Regulation in Rheumatic
Aortic and Calcified Bicuspid Valves
Najma Latif1,2* , Padmini Sarathchandra2, Ann McCormack1, Magdi H. Yacoub1,2 and
Adrian H. Chester1,2

1 Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom, 2 National Heart and Lung Institute, Imperial
College London, London, United Kingdom

Objective: We have previously reported that human calcified aortic cusps have
abundant expression of smooth muscle (SM) markers and co-activators. We
hypothesised that cells in bicuspid aortic valve (BAV) cusps and those affected by
rheumatic heart valve (RHV) disease may follow a similar phenotypic transition into
smooth muscle cells, a process that could be regulated by transforming growth factors
(TGFs).

Aims: Cusps from eight patients with BAV and seven patients with RHV were
analysed for early and late SM markers and regulators of SM gene expression by
immunocytochemistry and compared to healthy aortic valves from 12 unused heart
valve donors. The ability of TGFs to induce these markers in valve endothelial cells
(VECs) on two substrates was assessed.

Results: In total, 7 out of 8 BAVs and all the RHVs showed an increased and atypical
expression of early and late SM markers α-SMA, calponin, SM22 and SM-myosin. The
SM marker co-activators were aberrantly expressed in six of the BAV and six of the RHV,
in a similar regional pattern to the expression of SM markers. Additionally, regions of
VECs, and endothelial cells lining the vessels within the cusps were found to be positive
for SM markers and co-activators in three BAV and six RHV. Both BAVs and RHVs
were significantly thickened and HIF1α expression was prominent in four BAVs and one
RHV. The ability of TGFβs to induce the expression of SM markers and myocardin was
greater in VECs cultured on fibronectin than on gelatin. Fibronectin was shown to be
upregulated in BAVs and RHVs, within the cusps as well as in the basement membrane.

Conclusion: Bicuspid aortic valves and RHVs expressed increased numbers of SM
marker-positive VICs and VECs. Concomittantly, these cells expressed MRTF-A and
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myocardin, key regulators of SM gene expression. TGFβ1 was able to preferentially
upregulate SM markers and myocardin in VECs on fibronectin, and fibronectin was
found to be upregulated in BAVs and RHVs. These findings suggest a role of VEC as a
source of cells that express SM cell markers in BAVs and RHVs. The similarity between
SM marker expression in BAVs and RHVs with our previous study with cusps from
patients with aortic stenosis suggests the existance of a common pathological pathway
between these different pathologies.

Keywords: rheumatic, bicuspid, valve, endothelial cells, interstitial cells

HIGHLIGHTS

- Increased and aberrant expression of SM markers and co-
activators was observed in all the BAV and RHV cusps.

- The pattern of expression was diffuse in the RHD and localised
around calcified areas in BAV.

- RHV showed expression of SM markers and SM co-activators
in both VICs, VECs and vessels, BAV showed expression in
VICs and a smaller percentage of VECs.

- Strong HIF1α expression was present in 4 of the BAV and
2 RHV and the pattern of expression did not correlate
with SM markers.

- TGFβ1 did not significantly influence SM expression by
VECs on gelatin.

- Combined fibronectin coating and TGFβ1 treatment
resulted in increased expression of SM markers and
myocardin by VECs.

- BAV and RHV cusps demonstrated enhanced expression of
fibronectin.

INTRODUCTION

Bicuspid aortic valve (BAV) has an estimated prevalence of
0.5–2% (1), a male predominance of about 3:1 and is a
developmental aberration (2). The valves usually exhibit normal
function at birth, however, the development of valve disease
is expedited and typically develops at a much younger age
than in people with tricuspid aortic valves. BAV complications
include moderate to severe aortic regurgitation (prevalence 13–
30%), moderate to severe aortic stenosis (12–37%) and aortic
dilatation (20–40%) with lower incidences of endocarditis
(3). BAVs experience abnormal flow patterns compared to
tricuspid valves resulting in higher mechanical stresses on
the cusps and together with inflammation and increased
lipid deposition, the process of mineralisation is initiated.
It is known that BAV has a heritable nature, however,
the genetic causes are still unravelling with mutations in
NOTCH1 being implicated (4) and a potential role for
GATA5 (5).

Abbreviations: BAV, bicuspid aortic valve; RHV, rheumatic heart valve; SM,
smooth muscle; TGF, transforming growth factor; MRTF-A, myocardin related
transcription factor A; VIC, valve interstitial cell; VEC, valve endothelial cell;
PCNA, proliferating nuclear cell antigen; HIF1α, hypoxia inducible factor 1α.

Rheumatic heart valve (RHV) disease is an autoimmune
disease affecting 0.49% of the population in developing countries
(6). It is a major problem in sub-Saharan Africa, South Asia
and Oceania with an estimated global incidence of 33.4 million
cases and 319,400 deaths (7). Heart valve inflammation is thought
to be triggered by group A streptococcal pharyngitis and in
3.6% this is followed by acute rheumatic fever (8). Rheumatic
fever, if left untreated, can develop into rheumatic heart disease
characterised by chronic inflammation, neovascularisation and
mild calcification (9). The mitral valve is universally affected,
however, concomittant aortic valve disease increases with
age (8) and aortic valve pathology is understudied despite
its clinical significance. Calcification in rheumatic patients is
thought to be actively regulated, not simply dystrophic and
warrants investigation.

Despite having different underlying aetiologies, inflammation,
remodelling, valvular damage and calcification are common
end points in BAV and RHV. The phenotypic changes in
the valve interstitial cells (VICs) and valve endothelial cells
(VECs) populations in BAV and RHV are poorly defined.
Transforming growth factors (TGFs), which exist in three
isoforms, TGFβ1, TGFβ2, and TGFβ3, have been implicated
to play a role in a number of cardiovascular diseases,
including the development of calcific aortic valve disease (10,
11). In BAV, circulating TGFβ1/endoglin has been shown to
be upregulated (12, 13), while in RHV, TGFβ1 levels are
raised in endothelial cells and SM cells of the vessels, in
the perivascular interstitial cells and stroma of the valves
as well as α-SMA positive cells in fibrotic areas cusp tissue
and in the left atrial appendage of patients in chronic atrial
fibrillation (14, 15). One important role for TGFs, together
with increased mechanical strain, inflammatory cytokines and
activation of Notch1, is to drive the process of endothelial to
mesenchymal transformation (EMT) (16–20), which mediates
the de-differentiation of endothelial cells into mesenchymal cells.
This process has been implicated in the increased number of α-
SM actin positive cells in an ovine model of functional mitral
valve disease (21).

We and others have previously shown that differentiated
cells are present in human calcified valves in the form
of myofibroblasts and smooth muscle (SM) cells (22). We
hypothesise that the native cell population in BAV and RHV
undergo a similar transition process with the expression of SM
markers as in aortic valve calcification which can be driven by the
effects of TGFs.
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MATERIALS AND METHODS

In total, 8 BAV cusps (mean age 26 years, age range 4–31, two
females and six males), 7 RHV cusps (mean age 31 years, age
range 7–38, one female and six male) and 12 normal aortic
valve cusps (mean age 48 years, age range 36–55, eight male,
two female) were used for immunocytochemistry and for cell
isolation and culture. In total, 7 of the BAVs were calcified, one
was fused but not calcified and 4 of the RHVs were calcified.

Cell Isolation and Culture
Healthy human aortic valve cusps were excised and washed
in PBS. The valve cusps were incubated in a collagenase
solution (Type A, 0.15% w/v; Roche, Life Sciences, South San
Francisco, CA, United States) for 10 mins at 37◦C under a

forceful agitation to remove the VECs. After centrifugation of
the solution containing the VECs, the resulting VEC pellets
were resuspended in media and plated out in gelatin-coated
tissue culture flasks. VECs were grown until confluent in
endothelial media, defined as Endothelial Cell Growth Medium
2 (ECGM; PromoCell, Heidelberg, Germany) containing 150
U/ml penicillin/streptomycin (P/S; Sigma Aldrich, Dorset,
UK), 2 mM endothelial cell growth supplement, and 20%
heat-inactivated fetal calf serum (FCS; Helena Biosciences,
Sunderland, United Kingdom). VECs were phenotyped using
flow cytometry with antibodies against CD31 and α-SMA (Dako)
and cultures with >95% VEC purity were used.

All human studies have been approved by the North London
Research Ethics Committee (Ref 10H0724818). These studies
have been performed in accordance with the ethical standards

FIGURE 1 | The expression of smooth muscle (SM) markers in a bicuspid aortic valve (BAV) (A) and a rheumatic heart valve (RHV) cusps (B). Expanded panels in
red boxes show staining patterns from consecutive sections with negative control (A2-0), SM22 (A1), α-SMA (A2), calponin (A3), and SM-myosin (A4). Expanded
panels in red boxes show staining patterns from consecutive sections of B with negative control (B3-0), SM22 (B1), α-SMA (B2), calponin (B3), and SM-myosin
(A4). Panel (C) shows graph showing the incidence of aberrant SM +ve staining in BAV and RHV cusps. F and V represent fibrosal and ventricularis side,
respectively. Scale bar in expanded panels represents 200 µm. *p < 0.005.
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laid down in the 1964 Declaration of Helsinki and its later
amendments. All donors gave their written informed consent
prior to their inclusion in the study.

Immunochemistry
Valves were washed with PBS, fixed in 10% formal saline for
24 h, washed in distilled water and immersed in EDTA for
2 weeks at 37◦C after which processing for paraffin sections
was carried out. Five micrometer thick paraffin wax sections
of decalcified human bicuspid and rheumatic valve tissue were
dewaxed and rehydrated into water, washed in phosphate
buffered saline (PBS) for 5 mins. Consecutive (adjacent) sections
were used to allow regional staining patterns to be correlated
with all the markers. The slides were immersed in 0.1 M citrate
buffer (pH 6) and microwaved for 10 mins before blocking
for endogenous peroxidases using 0.3% hydrogen peroxide in
PBS. Sections were washed twice in PBS and blocked using 3%
bovine serum albumin (w/v) (BSA) in PBS containing 1% v/v
Tween-20 followed by staining for: α-smooth muscle actin (α-
SMA), smooth muscle myosin heavy chain (SM-MHC), calponin,
SM22, CD31, vimentin (all Dako), Runx2 (Abcam), myocardin
(Covalab), MRTF-A (Santa-Cruz), fibronectin (Actis), PCNA
(Biotechnology), HIF1α (Novus), GAPDH (Chemicon), TGFs
(R&D), and TGF receptors (Thermofisher, Hemel Hempstead,
UK). Negative controls consisted of 3% BSA in PBS containing
1% v/v Tween 20, isotype controls for the monoclonals and
rabbit serum for the polyclonals. Primary antibodies were then
removed by washing the sections three times in PBS followed by a
second layer of biotinylated goat anti-mouse or swine anti-rabbit
immunoglobulins (IgG-Vector laboratories) in PBS. Sections
were then washed three times in PBS before 1 h incubation with
Avidin-Biotin Complex ABC-Vector laboratories). Reactivity
was detected using diaminobenzidine tetrahydrochloride (DAB
tablets-Sigma) (25 mg/ml) and hydrogen peroxide (0.01% w/v).
Sections were then counter stained with Mayers haematoxylin
and viewed on Ziess Axioskop microscope. Photomicrographs
were taken using Nikon DMX1200 camera.

Immunofluorescence
Valve endothelial cells were seeded onto pre-coated gelatin
or fibronectin coverslips and cultured for 10 days with or
without TGFs. For immunofluorescent staining, coverslips
were washed two times with PBS, fixed in 4% formaldehyde
solution (Sigma Aldrich, Dorset, UK) for 10 mins and washed
three times with PBS to remove the fixative solution. The
coverslips were permeabilised with Triton-X-100 (0.5% v/v)
for 3 mins and blocked for 30 min with BSA (3% w/v) and
then incubated with primary antibodies at RT for 1 h. After
thorough washing in PBS-Tween (PBS-T; Sigma Aldrich, Dorset,
UK, 0.1% v/v), coverslips were stained with FITC-conjugated
secondary antibodies (Invitrogen, Inchinnan, UK) for 1 h at room
temperature and subsequently with DAPI for 10 mins to visualise
the cell nuclei. Coverslips were washed with PBS-T, mounted
on glass slides in Permafluor aqueous mounting fluid (Beckman
Coulter, Fullerton, CA, United States) and analysed with confocal
imaging technology.

Transforming Growth Factors-β
Treatment of Valve Endothelial Cells
Valve endothelial cells were grown on coverslips coated with
1% gelatin or 10 µg/mL fibronectin, serum-starved in DMEM
containing 0.4% FCS for 24 h before being treated with 10 ng/ml
of TGFβ1, TGFβ2, and TGFβ3 (R&D) for 10 days. Cells were
washed with PBS and fixed in 4% paraformaldehyde for 10 mins.
Staining was carried out as above.

Ethics
This study was approved by the Royal Brompton hospital
ethics review board and informed consent was obtained
from the subjects.

Statistics
All data was tested for normality and appropriate tests were
applied. A fisher’s exact test was performed on actual numbers
for Figures 1C, 2G,H, one way ANOVA and Kruskal-Wallis were
used to test for significance using GraphPad Prism 5 and a p value
of <0.05 was considered significant.

RESULTS

Bicuspid Aortic Valves and Rheumatic
Heart Valves Show Aberrant Expression
of Smooth Muscle Markers
The expression of SM cells is localised to the base of the
ventricularis in normal human cusps (Supplementary Figure 1).
Occasionally a few SM cells, by their expression of SM-MHC, can
be seen in the region from the base to the central region of the
cusps in the ventricularis but hardly any SM cells are detected in
the region from the central part of the cusps to the co-apting edge.
These SM cells in normal valves express early SM markers such as
α-SMA and SM22 and also late SM marker SM-MHC.

The expression of α-SMA, calponin, SM22 and SM-MHC
showed mirrored patterns of staining in the same cells and
regions of each valve using consecutive sections. This staining
was present in clusters of cells of varying numbers predominantly
around calcified nodules in BAVs but also distal to calcified zones
(Figure 1A). The co-apting edges of the BAVs were markedly
thickened and calcified and showed this aberrant expression
more frequently than other regions of the cusp. The fibrosa and
spongiosa also showed small clusters of cells expressing SM-
MHC and other SM markers distal to the calcified region without
any signs of calcification or thickening. A band of cells staining
positive for SM markers was observed in the fibrosa in 5 BAVs.
Cells positive for early and late SM markers were increased in
number and present in an atypical, spatiotemporal way in 7 out
of 8 of the BAVs (those that were calcified, not in the fused BAV)
compared to none of the normal controls (p < 0.005; Figure 1C).

Early and late SM markers showed an extensive increase and
atypical expression in all of the RHVs compared to none of the
normal controls (p < 0.005; Figure 1C). This was present in a
patchy manner without any specific pattern and present in all the
layers and from the base to co-apting edge (Figure 1B). A high
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percentage VICs in the cusps stained positive for SM-MHC and
other SM markers. Five of the 7 RHVs revealed the presence
of many of neo-vessels which showed expression of early and
late SM markers in their vasculature and endothelial lining.
Significantly higher numbers of RHVs showed increased SM
staining compared to normal controls (p < 0.005). There was no
significant difference between the numbers of BAVs and RHVs
showing increased SM staining (Figure 1C).

Bicuspid Aortic Valves and Rheumatic
Heart Valves Show Expression of
Smooth Muscle Co-activators
The SM co-activators, myocardin (Figure 2A) and MRTF-A
(Figure 2B) showed no expression in normal cusps except to the
base of the ventricularis mirroring the localisation of the SM cells
(Supplementary Figure 1).

In total, 6 out of 8 BAVs showed an atypical expression
of myocardin (Figures 2C,G) and MRTF-A (Figures 2D,G)
which was co-localised to the pattern of the SM markers in
their previous sequentially cut sections compared to none of the

controls (p < 0.001). This staining was predominantly around the
calcified zones and the co-apting edges but also present distally.
Their expression was also present in all three layers of the valve.

In total, 6 out of 7 RHVs showed an increased atypical
pattern of expression of myocardin (Figures 2E,G) and MRTF-
A (Figures 2F,G) compared to the normal controls (p < 0.001).
This pattern mirrored that of the SM markers in their previous
sequentially cut sections with patchy positive staining of VICs in
all the layers, from the base to the co-apting edge. The vasculature
of all the neo-vessels was positively stained for both markers.
There was no significant difference between the numbers of BAVs
and RHs showing co-factor staining (Figure 2G).

Valve Endothelial Cells From Bicuspid
Aortic Valves and Rheumatic Heart
Valves Aberrantly Express Smooth
Muscle Markers and Co-activators
In total, 3 out of 8 BAVs showed VECs that were positive for SM
markers and co-activators (myocardin and MRTF-A) compared

FIGURE 2 | The expression of co-activators myocardin (A,C,E) and MRTF-A (B,D,F) in normal, BAV and RHV cusps. Graph showing the incidence of BAV and RHD
cusps positive for aberrant co-activator expression (G) and aberrant expression of co-activators in valve endothelial cells (VECs) (H). Panels (I–L) show colocalization
of markers in bottom right panels. No expression of myocardin (red) in a normal cusp in VICs or VECs (#), vimentin (green) present in both cell types (I). RHV valve
showing myocardin (red) in the endothelial cells and SM cells of their vasculature, (CD31, green) of the vessels and colocalisation in endothelial cells (J). Some
surface VECs of a BAV showing co-expression of myocardin (red) with CD31 (green) (K). RHV showing myocardin (red) and SM-MHC (green) in SM of vasculature
and some VICs (left side of vessels) (L). Blue is DAPI staining. Scale bar represents 200 µm. *p < 0.001.
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to none of the normal controls (p < 0.01). These positive VECs
were partly on the valve surface, but mostly on ECs lining small
neovessels (Figures 2C,D,H).

All of the RHVs showed some regions of positive VEC staining
for SM markers and co-activators compared to none of the
normal controls (p < 0.0001). Regions of the endothelium on

both aortic and ventricular surfaces of the cusps, and ECs lining
the small to large neo-vessels were found to be positive for SM
markers and co-activators in RHVs (Figures 2E,F,H).

There was no significant difference between the numbers
of BAVs and RHVs staining positive for SM markers and co-
activators. The pattern of staining for myocardin and MRTF-A

FIGURE 3 | Fluorescent images showing expression of SM-myosin (A1), phase contrast image of the same location showing the edge of the cusp on the left (A2),
expression of Runx2 (A3), and co-localisation of SM-myosin and Runx2 (A4) in a BAV cusp. Expression of SM-myosin (B1), phase contrast (B2), Runx2 (B3), and
co-localisation of SM-myosin and Runx2 (B4) in a RHV cusp. Expression of myocardin (C1–F1), PCNA (C2–F2), DAPI (C3–F3) and co-localisation of all three
respective previous panels (F1–F4) in a normal control (C panel), BAV cusp (D panel), RHV cusp (E panel), and tumour tissue (F panel) as positive control for PCNA.
Scale bar represents 50 µm.
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in VECs and VICs mostly overlapped in each valve for BAVs and
RHVs as could be seen with staining using consecutive sections
(Figures 2C,D).

To definitively identify the phenotype of the cells expressing
the co-activators, co-localisation staining was performed. Normal
valves showed no staining for myocardin in the VICs or VECs
(Figure 2I). RHVs showed myocardin in the endothelial cells
of the vessels (Figure 2J) as well as in the SM cells of their
vasculature (Figures 2J,L) and both BAVs and RHVs showed
expression in VICs expressing SM-MHC (Figure 2L). Some
surface VECs (both ventricular and fibrosal sides) of both BAVs
and RHVs showed co-expression of myocardin (Figure 2K).

Valve Endothelial Cells Co-express
Smooth Muscle Markers and Markers of
Calcification
We questioned whether the VECs that expressed SM markers also
co-expressed markers of calcification. We observed that some
VECs at the surface and just under the surface of 5 BAVs were
able to co-express SM markers and Runx2 (Figures 3A1–4). Four
RHVs showed more co-expression of SM and Runx2 in VECs of
the neovessels than the cusp surfaces (Figures 3B1–4).

Cells Expressing Smooth Muscle
Markers and Co-activators Are Not
Proliferative
The presence of cells expressing SM markers within the BAVs and
RHVs provoked the question of whether these cells are contractile
or synthetic and we assessed this by co-staining for proliferative
markers PCNA and Ki67 with myocardin. We did not observe
any PCNA or Ki67 (not shown) staining that colocalised with the
SM markers (Figures 3C–F).

Assessment of Hypoxia Inducible Factor
1α and Correlation With Smooth Muscle
Markers
Both BAV and RHV were significantly thickened with BAV
having a maximal average thickness of 2.97 ± 1.2 mm and RHV,
2.05 ± 0.56 mm. Cells in such thick BAVs and RHVs may become
hypoxic and initiate pathways to induce hypoxia inducible factor
1α (HIF1α). The expression of HIF1α was correlated with
SM markers by analysing HIF1α in all groups. Normal cusps
showed rare nuclear HIF1α-positive VICs, however, of the seven
normal cusps analysed, three showed some ventricular VEC
nuclear HIF1α positivity with the occasional nuclear positive
VIC (Figures 4A,B). There was no HIF1α expression in the
BAV that was not calcified despite being thickened. Of the
remaining seven calcified, thickened BAVs, four showed many
VICs with nuclear HIF1α expression (Figure 4C) around and
distal to calcified regions, with numbers of positive cells far
outnumbering those expressing SM markers and the remaining
BAVs showed occasional nuclear positive VICs. There was
occasional surface (both sides) nuclear VEC HIF1α expression
in 2 BAVs (Figure 4C) and the endothelial cells of vessels were
marginally positive (Figure 4D). Three of the RHVs showed

no expression of HIF1α. The other four showed strong nuclear
expression of HIF1α on some fibrosal and ventricular VEC
(Figures 4E,F) and weaker expression in the vasculature of the
vessels (Figure 4F). Only 1 RHV showed endothelium positivity
of the vessels and the same RHV showed some HIF1α in VICs.
The pattern of HIF1α did not correspond to the SM marker
expression in BAVs and RHVs.

Smooth Muscle Markers and
Co-activators Are Modulated by
Transforming Growth Factors and
Substrate Coating in Valve Endothelial
Cells
We have previously shown that TGFβ1 was able to upregulate the
expression of SM markers and MRTF-A in VICs so we sought
to address whether TGFβs could modulate their expression in
VECs as well as assessing the role of surface coating with gelatin
and fibronectin. On gelatin coated slides, VECs treated with
TGFβ1 only showed a significant expression of SM22 (p < 0.05),
treated with TGFβ2 showed a significant expression of αSMA
(p < 0.05) and SM22 (p < 0.05) and treated with TGFβ3 showed
a significant expression of αSMA (p < 0.05), SM22 (p < 0.05) and
myocardin (p < 0.01; Figure 5A).

However, when VECs were cultured on fibronectin, TGFβ1
was able to significantly increase calponin (p < 0.05), α-SMA
(p < 0.05) and SM22 (p < 0.01); TGFβ2 was able to significantly
increase calponin (p < 0.05), αSMA (p < 0.05), SM22 (p < 0.01)
and myocardin (p < 0.05); TGFβ3 was able to significantly

FIGURE 4 | The expression of HIF1α in a normal cusp (A,B), BAV (C,D), and
RHV (E,F). Scale bar is 100 µm in panel (A) and 50 µm in all other panels.
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FIGURE 5 | The expression of calponin, α-SMA and SM22 merged, and myocardin in VECs plated on gelatin (A) and on fibronectin (B) and treated with TGFs. Scale
bar represents 50 µm. *p,0.05, **p < 0.01.
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increase αSMA (p < 0.05) and SM22 (p < 0.05) and myocardin
(p < 0.05; Figure 5B).

Fibronectin Is Upregulated in Bicuspid
Aortic Valves and Rheumatic Heart
Valves
As the response of VECs to upregulate SM markers and
myocardin was more pronounced when treated with TGFβs
cultured on fibronectin, we questioned whether the expression
of fibronectin was dysregulated in BAVs and RHVs. Normal
cusps showed moderate staining in the fibrosa and ventricularis
with reduced and patchy staining in the spongiosa (Figure 6A).
6/8 BAVs (Figure 6B) and 5/7 RHVs (Figure 6C) showed

increased intensity of staining for fibronectin in the fibrosa,
ventricularis and in the basal lamina with increased patchy
staining of the spongiosa. Quantitation showed significantly
increased levels of fibronectin in BAVs and RHVs (Figure 6D),
p < 0.05.

Transforming Growth Factor βs Enhance
Fibronectin Expression by Valve
Endothelial Cells Preferentially Plated on
Fibronectin
As fibronectin was increased in BAVs and RHVs, we questioned
whether TGFs were able to differentially upregulate fibronectin
produced by VECs, whether plated on gelatin or fibronectin.

FIGURE 6 | The expression of fibronectin on a normal (A) BAV, (B) RHV, (C) cusp, and quantitative levels (D). The expression of fibronectin by VECs plated on
gelatin (top panel) and on fibronectin (bottom panel) and treated with TGFs (E). Graph showing the level of expression of fibronectin by VECs when plated on gelatin
or fibronectin and treated with TGFs (F) and the corresponding Western blot showing levels of fibronectin at 220 kD and the housekeeping protein GAPDH at 38 kD
(G). Panel (F) represents the fibrosal side. Scale bar in panel (A–C) is 50 µm, in panel (D) is 100 µm. *p,0.05, **p < 0.01, ***p < 0.001.
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FIGURE 7 | The expression of transforming growth factor β1 (TGFβ1), TGFR1, and TGFRII in normal, BAV and RHV cusps. F and V represent the fibrosal and
ventricularis side, respectively. Scale bar is 200 µm.

Untreated VECs plated on gelatin and fibronectin showed
a similar low intensity of staining and level for fibronectin
(Figures 6E–G). TGFβ1 was able to significantly upregulate
the expression of fibronectin by VECs but only when plated
on fibronectin (p < 0.01). TGFβ2 was able to significantly
upregulate the expression of fibronectin by VECs plated on
gelatin and fibronectin (p < 0.001). Increased expression of
fibronectin was observed within the VECs and in the extracellular
spaces (Figure 6E). However, TGFβ3 was unable to upregulate
fibronectin by VECs either on gelatin or fibronectin coated plates
(Figures 6F,G).

Transforming Growth Factor β1, TGFRI,
and TGFRII Are Upregulated in Bicuspid
Aortic Valves and Rheumatic Heart
Valves
There was no to very little expression of TGFβ1 in normal cusps,
however, BAVs and RHVs showed greatly increased numbers
of VICs staining positive for TGFβ1. The antibodies for TGFβ2
and TGFβ3 were found not be suitable for human valve tissue
in paraffin sections. Both TGFRI and TGFRII were found to be
expressed in up to 50% of normal VICs, however, some regions
in cusps from BAVs and RHVs showed 100% expression of
TGFRII (Figure 7).

DISCUSSION

Calcification is expedited in BAVs and occasionally present
in aortic RHVs and this is partly driven by the native cell

population and partly through inflammatory cells, mediators and
disturbed flow patterns. We have shown that both the VECs
and VICs of BAVs and RHVs exhibit an atypical expression
of SM markers and the co-activators myocardin and MRTF-A.
The expression of these markers can be induced in VECs by
TGFβs, an effect that is enhanced when the cells were cultured
on fibronectin. Fibronectin expression in the diseased groups
was found to be enhanced within the cusp layers as well as in
the basement membrane providing a conducive environment
for VEC differentiation. The elevated expression of TGFβ

receptors concomittant with enhanced fibronectin expression
in BAVs and RHVs would facilitate the signalling by TGFs
in BAVs and RHVs.

We have previously shown an upregulated and dysregulated
spatial expression of SM markers and co-activators, myocardin
and MRTFs, in both the VICs and VECs of calcified tricuspid
valves (22). α-SMA has been shown previously in calcified
valves and the valvular cells were ascribed a myofibroblastic
phenotype, however, when these cells also co-express SM-specific
markers such as SM-myosin heavy chain, SM master co-activator
myocardin and structural charactersitics of SM cells, these cells
are best described as SM cells. A minority of cells expressing α-
SMA did not express the SM-MHC in our previous study and
in this study and are thus myofibroblasts. It is quite plausible
that the VICs expressing the early SM marker SM22 without
the late marker SM-MHC are designated myofibroblasts before
they go on to expressing the late SM markers and co-activators.
Remarkably there is scarce published data on the phenotypic
changes occuring in human BAVs. One study reported no
difference in the expression of α-SMA between BAV and TAV
VICs in culture (23), however, it is known that VICs differentiate
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in vitro (24, 25) and this difference would have been nullified by
in vitro culture under their conditions. Similarly, the expression
of SM markers and co-activators have not been previously shown
in VICs and VECs in RHV.

The SM marker and co-activator expressing cells were shown
not to be proliferative by the absence of PCNA in myocardin
positive cells and are most likely to be of the contractile
type as they strongly expressed SM-MHC and myocardin.
Overexpression of myocardin has been shown to inhibit cell
cycle progression (26) and both MRTF-A and -B have anti-
proliferative effects (27). The differentiation of valvular cells into
a contractile nature, as we have shown previously in tricuspid
calcified valves (22) may be a compensatory mechanism to
overcome the stiffening entailed during the disease process.

Valve endothelial cell differentiation into SM types has
been previously reported by us (22) and endothelial cells have
been shown to have transdifferentiation potential into the SM
phenotype by inducing the expression of myocardin (28) and
cyclic strain (29).

Normal aortic cusps have a mean thickness of 0.60 ± 0.21 mm
and this allows diffusion of oxygen without the need for a vascular
system (30). Only 4 BAVs and 1 RHV showed an increase in
HIF1α in VICs despite being significantly thicker. The abundance
of HIF1α in BAVs did not result in significant neoangiogenesis
in the central layers though vessels were observed in the outer
layers of 3 BAVs. Surprisingly, 4 of the 7 RHVs showed strong
HIF1α expression in the surface VECs where hypoxic conditions
would not be expected. There is significance in the expression
of HIF1α in the SM cells of the vasculature as HIF1α has been
shown to play a role in phosphate-induced vascular SM cell
calcification (31). We have previously documented a similar
pattern of expression of HIF1α in rheumatic mitral VICs, surface
VECs and in vessels and the induction of HIF1α by hypoxic
conditions (32). HIF1α can also be induced by disturbed flow
(33) and TNFα (34) and has been shown in stenotic aortic
valves (35). The role of HIF1α warrants further investigation
in diseased cusps.

Proinflammatory cytokines play a role in the progression and
maintenance of valvular cell differentiation and TGFβ1 has been
shown to be present in degenerative calcific aortic stenotic cusps.
Contradictingly, TGFβ1 was shown not to be increased in the
media from BAV or rheumatic valves (36) but in another study
found to be highly present in 70% of rheumatic mitral valves
(14). Elevated TGFβ1 can also result from polymorphisms in
the TGF1 gene and it was shown that RV patients have a lower
frequency of TGFβ1 C?T (509) genotype and a higher frequency
of T?C (869) allele with the latter polymorphism resulting in
raised TGFβ 1 (37).

Transforming growth factor β1-mediated endothelial to
mesenchymal transformation (EMT) has been shown to correlate
with enhanced expression of laminin and fibronectin (38).
TGF-β1 is extremely important in inducing the differentiation
of VICs to myofibroblasts (25, 39). The expression of all
three isoforms of TGFβs will play a significant role in the
differentiation of adult VECs undergoing EMT and further
differentiating to express SM markers. All three isoforms

have been shown to induce EMT in human microvascular
ECs with the effect of TGFβ2 being most pronounced (40).
The presence of SM markers and co-activators in VECs of
BAVs and RHVs is indicative of an on-going EMT process
in these cells. Cues from specific ECM components can also
play a role in the EMT process and fibronectin was shown
to be present at early stages of EMT and appeared as a
progressively expanding gradient of material with the greatest
density nearer the myocardium in the AV canal and outflow
tract (41). Fibronectin is abundant in the ECM through which
endocardial-mesenchymal cells migrate as they begin formation
of the cushion tissue (41) and it is a key component of the
basement membrane on which the VECs reside. EMT is a crucial
process for valve development but is not restricted to embryonic
development as adult ovine mitral VECs have been shown to
undergo EMT (42).

We have previously shown the spatial expression of
fibronectin in normal aortic valves (43) and now show that
BAVs and RHVs demonstrated an enhanced expression of
fibronectin within the valves and at regions of the basement
membrane. This increased expression of fibronectin is expressed
by VICs that have become activated in response to injury (44)
and by the VECs. The combination of increased fibronectin and
TGFs can synergistically provide the signals for VEC EMT and
drive the differentiation process further to express SM markers
and co-activators. Alterations in ECM composition are known to
affect EMT with collagen IV and fibronectin promoting EMT in
ovine mitral VECs (45) and high levels of chondroitin sulphate
have been shown to induce the highest rates of EMT in porcine
VECs (46).

Inhibiting the pathological differentiation of resident cells of
the valve is key in the therapeutic intervention and prevention
of calcification. The high propensity of SM cells to calcify
and result in atherosclerotic lesions suggests that this SM-
type differentiation would be a key step for intervention.
However, it remains to be determined what proportion of
resident cells differentiate to osteoblastic-type cells through
the SM phenotype and whether some cells can bypass
this transition.

This report documents the atypical expression of SM markers
and co-activators in BAVs and RHVs and shows that the
TGFs can preferentially increase these markers dependent on
substrate transformation in terms of composition and stiffness.
It is likely that the SM-positive cells in the diseased BAV and
RHV are derived from endothelial cells, via an EMT process,
from differentiation of the VIC population and possibly from
infiltrating cells. The significance of the SM cells may be
that they have a greater propensity to calcify. The elevated
expression of fibronectin and TGF receptors augments this
efficacy of the signalling pathways that stimulate the VECs to
express SM markers. Further studies are warranted to ascertain
the pathological contribution of SM cells in the valves and
whether strategies aimed at blocking this transformation would
prove beneficial as a therapeutic intervention. This study has
provided an insight into the phenotypic changes in the valve cell
population that occur in BAVs and RHVs. Understanding the
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contribution that specific cell phenotypes make to
valve disease represents an important step toward the
development of novel strategies to control or prevent the
progression of the disease.
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