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Abstract

The inaccuracy of copy number variation (CNV) detection on single nucleotide polymorphism (SNP) arrays has recently been
brought to attention. Such high error rates will undoubtedly have ramifications on downstream association testing. We
examined this effect for a wide range of scenarios and found a noticeable decrease in power for error rates typical of CNV
calling algorithms. We compared power using CNV calls to the log relative ratio and found the latter to be superior when
error rates are moderate to large or when the CNV size is small. It is our recommendation that CNV researchers use intensity
measurements as an alternative to CNV calls in these scenarios.
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Introduction

Copy number variation (CNV) is a significantly large portion of

overall human genetic variation that may influence numerous

diseases and traits. CNVs have been found to be associated with

autism [1], autoimmune disease [2], HIV transmission [3], obesity

[4], and schizophrenia [5] among others. CNVs have been

hypothesized to contribute to the missing heritability left

unexplained by single nucleotide polymorphisms (SNPs) [6,7].

Despite the large fraction of the human genome that CNVs

encompass, genome-wide association studies based on complex

traits and CNVs have been largely unsuccessful compared to SNP

counterparts. Some have even argued that tests based on CNVs

may be unnecessary as common CNVs of disease relevance are

likely well-tagged by neighboring SNPs [8].

There are numerous possibilities why tests based on CNVs have

been less successful than what was once predicted. Many CNVs

are individually rare, and are thus poorly designed for traditional

tests of association. Methods such as those based on the overall

burden of CNV have been proposed [9], but are likely too

imprecise to be used universally. However, a more concerning

issue is that the identification of CNVs on a genome-wide level,

usually based on CNV calling algorithms, often contains numerous

errors. Zhang et al. (2011) [10] recently examined the ability of

popular CNV calling algorithms to detect known CNVs from data

on the Affymetrix 6.0 array. Among their findings, they found

small CNVs and common CNVs have very low recovery rates (i.e.

high rate of false negatives), which no doubt will affect the results

of association tests.

While the impact of SNP genotyping errors on association

analyses has been extensively studied [11,12], a thorough

examination of CNVs has not been done despite there being

marked differences in testing procedures and errors between SNPs

and CNVs. We examined the impact of errors in CNV calling

algorithms on association testing via simulation, and compared the

results to those based on intensity measurements in the form of the

log relative ratio (LRR). We find the LRR to be superior to CNV

calling when the data is wrought with calling errors and when

CNV sizes are small. It is our recommendation, until the accuracy

of CNV calling algorithms improve substantially, that researchers

use functions of the overall copy number intensities to test of trait

associations.

Methods

Typical hidden Markov model (HMM) based CNV calling

algorithms, such as PennCNV [13] or the Birdseye application

within Birdsuite [14], assign integer copy number states to

segments of DNA based on hybridization intensities and software

parameters with state space ranging from zero to four. Any genetic

locus that contains a single copy duplication or deletion on one

parental chromosome can be appropriately modeled by these

algorithms. For example, a deletion on both pairs of parental

chromosomes would have a copy number of zero, while a single

duplication on both pairs of parental chromosomes would have a

copy number of four. Because of the state space limitation, these

algorithms can only differentiate copy number states within its

range – unable to properly model non-integer values resulting

from heterogeneous copy number or regions that include greater

than four states.

Due to this restriction we only consider CNVs with maximum

copy number less than or equal to four. We define X as the true,

but unobserved integer copy number state at a given locus, such

that the sample space of X is {0, 1, 2, 3, 4} with frequencies

defined in Table S1. In practice, X is rarely estimated without

uncertainty. Often specialized laboratory techniques, such as
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quantitative PCR, need to be employed to accurately assess the

existence and boundaries of CNVs. Even so, it is impractical to

perform these tests across the genome for many samples. CNV

researchers are often left using the results from CNV calling

algorithms to perform genome-wide CNV association analyses.

However, studies have shown these algorithms are prone to errors

which may have a profound effect on power [10,15,16].

Errors in CNV Calling Algorithms
We focus on two types of errors that can occur within typical

HMM-based calling algorithms: incorrectly assigning a non-

reference copy number to a sequence that truly is the reference

copy number; and incorrectly assigning the reference copy

number to a sequence that truly is not the reference copy number.

We refer to these errors as false positives and false negatives,

respectively. Although not always the case, we assume copy

number of two represents the reference copy number state.

Therefore the false positive error rate (np) is the frequency at which

a copy number state other than two is assigned to a region present

in two copies; and the false negative error rate (nn) is the frequency

at which a copy number state of two is assigned to a region present

in X = 0, 1, 3, or 4 copies (2 being normal). Zhang et al. (2011)

[10] call one minus nn the recovery rate and show it can be very

low in many situations. We ignore a third type of error: incorrectly

assigning non-reference copy number states (e.g. calling a deletion

as a duplication). Although we believe this type of error is non-

trivial, particularly in CNV regions with high copy number, we

feel that its impact on association testing should be minor, while

modeling this error reduces the overall simplicity and generaliz-

ability of our results.

We define Xo as the observed integer copy number state, such

as that called from a typical HMM CNV calling algorithm, given

the true, underlying copy number state (X) and false positive and

false negative error rates np and nn, respectively. Like X, Xo can

take on integer values between zero and four. The joint

probabilities of these variables are shown in Table S2. The

observed copy number state can also be viewed as the realization

of X after some error (D) is added, such that Xo = X + D.

Derivation of the moments of each variable are included in File

S1. Variance displayed in CNV calling strictly due to errors is

presented in Table 1 and Table 2 for select error rates and types of

CNV loci (Table S3).

Noise in Intensity Measurements
The log relative ratio (LRR) is defined as the logarithm with

base 2 (log2) of the ratio between the overall allelic intensity at a

given locus against the allelic intensity of some reference. In this

manuscript we use the terms LRR and intensity measurements

interchangeably. LRR values for a segment of DNA can be used to

demonstrate the existence, boundary, and break points of a CNV.

There are some issues with using LRR to assess association with

CNVs. First, LRR is non-linear with respect to the underlying

CNV. Without noise, a one copy number segment will have an

LRR value of negative one, a two copy number segment will be

zero, and a three copy number segment will be log2(3/2) < 0.585

when using a two copy number segment as a reference. This will

have a detrimental effect on association results when CNV is truly

has an additive effect. Second, the LRR value for a zero copy

number segment, in theory, should tend towards negative infinity.

However, in practice some intensity is always observed due to

background noise.

LRR values are never observed without some level of noise and

uncertainty. If we define Z as the theoretical LRR given the

underlying copy number state (Table S4) and Zo as the observed

LRR with added noise, then we can write Zo = Z + DZ, where DZ

represents the error in the LRR measurement induced by artifacts

such as poor quality DNA and imprecise hybridization. Based on

observation, standard deviation estimates of DZ from array data

are found to be near 0.15 for high quality DNA. Figure 1 displays

np and nn values for which Var(D) = Var(DZ) = 0.152. That is

error rates for which the variance induced by errors in CNV

calling algorithms is equivalent to the variance induced by noise in

intensity measurements in typically observed array data.

Power Simulation
We examined the impact that the inability to detect CNVs will

have on association testing via simulation. A phenotype (Y) was

simulated based on the model Y = Xb + e, where X is an

indicator variable representing the presence or absence of a true,

underlying CNV; b is the true effect of the CNV; and e is error

from a normal distribution with mean zero and variance s2,

denoted n[0, s2]. The variance of Y was set to 100, b was set to

2.5, and the variance of e was adjusted accordingly. Based on these

parameters, a CNV present in 20% of the population would

explain 1% of variance of the trait. We introduced a full range of

false negative rates into the measurement of X, such that nn M
{0.00, 0.01, …, 0.99, 1.00}, and call this the CNV measurement

observed after error, Xo. We then regressed Y on Xo.

We considered true CNV frequencies of 1%, 5%, 10%, and

20%. For each set of CNV frequencies and false negative error

rates, we performed 10,000 replicates in which phenotype, true

CNV, and observed CNV were simulated for 1,000 subjects.

We calculated power as the number of significant replicates

Table 1. Square root of the variance of D for the deletion and
duplication CNV loci with and false negative (nn) and false
positive error rates (np).

np

0 0.05 0.10

nn 0 0 0.212 0.294

0.2 0.206 0.301 0.368

0.5 0.316 0.392 0.451

0.7 0.367 0.438 0.495

0.9 0.407 0.475 0.532

doi:10.1371/journal.pone.0032396.t001

Table 2. Square root of the variance of D for the multiallelic
CNV locus with and false negative (nn) and false positive error
rates (np).

np

0 0.05 0.10

nn 0 0 0.197 0.279

0.2 0.283 0.345 0.397

0.5 0.447 0.489 0.527

0.7 0.529 0.565 0.598

0.9 0.600 0.632 0.662

doi:10.1371/journal.pone.0032396.t002

CNV Errors and Association
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divided by the total number of replicates. We set the

significance level as a = 0.05 and present results in Figure 2.

Calling Algorithm Simulation
General trends concerning the relationship between CNV size,

type, and recovery rates are known. For example, larger CNVs

have a higher recovery rate than small CNVs, and deletions have a

higher recovery rate than duplications. However, details as to

when intensity measurements may be better suited in association

analyses for certain sizes and types of CNVs are not. If a calling

algorithm estimates copy number state without error, using CNV

calls will be more powerful than intensity measurements which

include noise. However, if a calling algorithm is producing many

errors, such that the variance introduced by D is sufficiently large,

then we expect the LRR to be more powerful to detect an

association than the CNV calls. As the variance D is a function of

error rates, we examined the scenarios in which one method is

superior to the other, and vice versa.

To accomplish this, we first needed a detailed knowledge of the

relationship between the size and type of CNV and the recovery

rate. We simulated a region of DNA containing 10,000 CNV

probes, each 1 kb apart, that was mostly devoid of CNV. In the

center, we simulated a copy number variable region that ranged

from 1 to 25 probes in length. We considered both single copy

deletions and duplications. In each simulation, 200 subjects had a

variant (deletion or duplication) in this region and 800 subjects did

not. We simulated independent LRR values conditional on the

underlying copy number state: non-variant and copy number

invariable regions were simulated from a n[0, s2] distribution;

deletions from n[0.5 6 (21), s2]; and duplications from n[0.5 6
log2(3/2), s2]. Mean values are one-half the theoretical values

(Table S4) – a realization typically observed in array data. We set

s = 0.15. We then used PennCNV [13] to call CNVs and

observed recovery rates (Figure 3).

Figure 1. False positive (np) and false negative rates (nn) for
which the standard deviation of D is equal to 0.15 are
represented as solid lines for a deletion-only or duplication-
only CNV locus (red) or multiallelic locus, including both
deletions and duplications (blue). Shaded areas represent sets of
rates when the variance of D is less than the variance typically observed
in LRR measurements. In these situations CNV calling algorithms are
reducing measurement noise.
doi:10.1371/journal.pone.0032396.g001

Figure 2. Simulated statistical power to detect an association
with a putative CNV as a function of false negative rate (nn). The
CNV explains 1% of the phenotypic variation when present in 20% of
the population. The CNV has a frequency of 1% (red), 5% (orange), 10%
(green), or 20% (blue). False positive rate (np) is zero.
doi:10.1371/journal.pone.0032396.g002

Figure 3. Recovery rate of deletions (red) and duplications
(blue) from PennCNV using simulated intensity measurements
as a function of CNV size.
doi:10.1371/journal.pone.0032396.g003

CNV Errors and Association
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Using the relationships between false negative error rates and

power (Figure 2) and CNV size and recovery rate (Figure 3), we

estimated the power of CNV calls to detect an association as a

function of CNV size. We then calculated power using LRR at a

single locus, as opposed to the CNV call, and present the results

from both methods in Figure 4 for each type of CNV. In this

example the CNV is present in 200 of 1,000 subjects and explains

1% of the phenotypic variance.

Results

For even moderate error rates, the variance introduced in CNV

calling due to errors exceeds the typical variance observed in

intensity measurements (Table 1 and Table 2). In fact, only when

error rates are very low, do we see smaller error variances

(Figure 1). Not surprisingly, these errors cause a drop in the

statistical power to detect association between a phenotype and

putative CNV (Figure 2). The power loss appears to be somewhat

uniform across CNVs of varying frequency. Compared to power

without errors, we saw losses of 50% occurring between false

negative rates of 0.55 and 0.65.

We found single copy deletions smaller than 4 probes and single

copy duplications smaller than 5 probes to be virtually

undetectable by PennCNV (Figure 3). The recovery rates improve

as the size of the variant increases – more rapidly for deletions.

Deletions larger than 7 probes have recovery rates greater than

90%. At 10 probes, nearly all the variants were detected.

Alternatively, single copy duplications that were 10 probes long

had a 39% recovery rate. The recovery rate of duplications did not

exceeded 90% until the variant was 17 probes or larger.

Figure 4 displays the statistical power to detect an association

between a phenotype and a putative CNV as a function of size. The

power to detect an association increases for calls made by PennCNV

as the CNV size (and recovery rate) increases. As deletions are less

prone to error, they are more powerful than duplications at a given

size. The tests achieve maximum power when there are no errors in

the call. We discovered 80% power occurs for deletions larger than

6 probes and duplications larger than 15 probes. Meanwhile, power

using LRR is represented as a dashed line. The calculation is

invariant to the size of the CNV because we examined LRR

associations at a single locus to avoid multiple testing issues and

maintain comparability across methods. The power of LRR is 0.71

for deletions and 0.49 for duplications. Interesting points occur at

the intersection of the methods for each type of variant. To the left,

LRR is more powerful for smaller variants; and to the right, calls

from CNV calling algorithms are more powerful for larger variants.

We found LRR was more powerful for deletions smaller than 6

probes and duplications smaller than 11 probes.

Discussion

We have shown that variance added to CNV genotyping calls

due to errors in calling algorithms often exceeds the variance

typically observed in LRR measurements. As error rates tend to be

moderate to very high for many CNVs, the application of calling

algorithms potentially creates additional, yet unseen variance. We

have shown that this will have an impact on the power of association

– explicitly showing this behavior as a function of error rates and

CNV size. According to Zhang et al. (2011) [10], the lowest recovery

rates occur for small CNVs, common CNVs, and duplications.

Given that large losses in power occur with large error rates, it is not

surprising that tests of association based on data from CNV calling

algorithms have mostly identified large, rare deletions associated

with disease risk and susceptibility. Perhaps only these types of

CNVs have been sufficiently powered.

The results presented in this manuscript should be evaluated

within the context of some limitations. Much of what we have

shown is based on simulations performed under the assumptions

that genetic data is consistent and follows a predictable pattern.

While we do not feel that changes in our simulation parameters

will have a drastic effect on the generalizability of our results,

we do realize that the points and thresholds we noted with

respect to recovery rate, power, and CNV size will likely be

imprecise when applied other experimental conditions, including

array-specific, locus-specific, and sample-specific differences. For

these reasons, we tried to be conservative in our procedures.

If a CNV calling algorithm could entirely eliminate errors, then

this method would be preferred. However, in the current

environment that realization is not the case. Platforms for CNV

genotyping and the calling algorithms themselves need to improve

substantially. In the meantime, we suggest the LRR be used as the

independent variable in association analyses when examining

sufficiently small variants, or regions that appear to be invariant in

copy number.

Supporting Information

File S1 Moments of the true CNV (X), the observed CNV
(Xo), and the error (D).
(DOCX)

Table S1 CNV genotype frequencies for given copy
number states.
(DOCX)

Table S2 Joint probabilities of the true copy number
state (X) and observed copy number state (Xo), given
CNV genotype frequencies, and false negative (nn) and
false positive error rates (np).
(DOCX)

Figure 4. Statistical power to detect an association with a
putative CNV as a function of CNV size. Red lines represent
deletions and blue lines represent duplications. Solid lines represent
power from calls made from CNV calling algorithms and dashed lines
represent power from LRR.
doi:10.1371/journal.pone.0032396.g004
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Table S3 CNV genotype frequencies for each type of
simulated CNV locus.
(DOCX)

Table S4 Theoretical values of LRR (Z), given the
underlying copy number state X.
(DOCX)
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