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Gene regulation is one of the most ubiquitous processes in biol-
ogy. However, while the catalog of bacterial genomes continues
to expand rapidly, we remain ignorant about how almost all of
the genes in these genomes are regulated. At present, character-
izing the molecular mechanisms by which individual regulatory
sequences operate requires focused efforts using low-throughput
methods. Here, we take a first step toward multipromoter dissec-
tion and show how a combination of massively parallel reporter
assays, mass spectrometry, and information-theoretic modeling
can be used to dissect multiple bacterial promoters in a systematic
way. We show this approach on both well-studied and previously
uncharacterized promoters in the enteric bacterium Escherichia
coli. In all cases, we recover nucleotide-resolution models of
promoter mechanism. For some promoters, including previously
unannotated ones, the approach allowed us to further extract
quantitative biophysical models describing input–output relation-
ships. Given the generality of the approach presented here, it opens
up the possibility of quantitatively dissecting the mechanisms of
promoter function in E. coli and a wide range of other bacteria.

gene regulation | massively parallel reporter assay | quantitative models |
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The sequencing revolution has left in its wake an enor-
mous challenge: the rapidly expanding catalog of sequenced

genomes is far outpacing a sequence-level understanding of
how the genes in these genomes are regulated. This ignorance
extends from viruses to bacteria to archaea to eukaryotes. Even
in Escherichia coli, the model organism in which transcriptional
regulation is best understood, we still have no indication if or how
more than one-half of the genes are regulated (SI Appendix, Fig.
S1) [RegulonDB (1) or EcoCyc (2)]. In other model bacteria,
such as Bacillus subtilis, Caulobacter crescentus, Vibrio harveyii,
or Pseudomonas aeruginosa, far fewer genes have established
regulatory mechanisms (3–5).

New approaches are needed for studying regulatory architec-
ture in these bacteria and others. Chromatin immunoprecipita-
tion (ChIP) and other high-throughput techniques are increas-
ingly being used to study gene regulation in E. coli (6–11), but
these methods are incapable of revealing either the nucleotide-
resolution location of all functional transcription factor binding
sites or the way in which interactions between DNA-bound
transcription factors and RNA polymerase (RNAP) modulate
transcription. Although an arsenal of now classic genetic and
biochemical methods has been developed for dissecting pro-
moter function at individual bacterial promoters [reviewed in the
work by Minchin and Busby (12)], these methods are not readily
parallelized and often require purification of promoter-specific
regulatory proteins.

In recent years, a variety of massively parallel reporter assays
have been developed for dissecting the functional architecture of
transcriptional regulatory sequences in bacteria, yeast, and meta-
zoans. These technologies have been used to infer biophysical
models of well-studied loci, to characterize synthetic promoters

constructed from known binding sites, and to search for new
transcriptional regulatory sequences (13–19). CRISPR assays
have also shown promise for identifying longer-range enhancer–
promoter interactions in mammalian cells (20). However, no
approach for using massively parallel reporter technologies to
decipher the functional mechanisms of previously uncharacter-
ized regulatory sequences has yet been established.

Here, we take a first step toward quantitative, multipromoter
dissection and describe a systematic approach for identifying
the functional architecture of previously uncharacterized bacte-
rial promoters at nucleotide resolution using a combination of
genetic, functional, and biochemical measurements. A massively
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parallel reporter assay [Sort-Seq (13)] is performed on a pro-
moter in multiple growth conditions to identify functional tran-
scription factor binding sites. DNA affinity chromatography and
mass spectrometry (21, 22) are then used to identify the reg-
ulatory proteins that recognize these sites. In this way, one is
able to identify both the functional transcription factor binding
sites and cognate transcription factors in previously unstudied
promoters. Subsequent massively parallel assays are then per-
formed in gene deletion strains to provide additional validation
of the identified regulators. The reporter data thus generated are
also used to infer sequence-dependent quantitative models of
transcriptional regulation. In what follows, we first illustrate the
overarching logic of our approach through application to four
previously annotated promoters: lacZYA, relBE, marRAB, and
yebG. We then apply this strategy to the previously uncharacter-
ized promoters of purT, xylE, and dgoRKADT, showing the ability
to go from regulatory ignorance to explicit quantitative models of
a promoter’s input–output behavior.

Results
To dissect how a promoter is regulated, we begin by perform-
ing Sort-Seq (13). As shown in Fig. 1A, Sort-Seq works by first
generating a library of cells, each of which contains a mutated
promoter that drives expression of green fluorescent protein
(GFP) from a low copy plasmid [5–10 copies per cell (23)] and
provides a readout of transcriptional state. We use fluorescence-
activated cell sorting (FACS) to sort cells into multiple bins gated
by their fluorescence level and then sequence the mutated plas-
mids from each bin. We found it sufficient to sort the libraries
into four bins and generated datasets of about 0.5–2 million
sequences across the sorted bins (SI Appendix, Fig. S3 A–D).
To identify putative binding sites, we calculate “expression shift”
plots that show the average change in fluorescence when each
position of the regulatory DNA is mutated (Fig. 1B, Left). Muta-
tions to the DNA will, in general, disrupt binding of transcription
factors (24), and therefore, regions with a positive shift are sug-
gestive of binding by a repressor, while a negative shift suggests
binding by an activator or RNAP.

The identified binding sites are further interrogated by per-
forming information-based modeling with the Sort-Seq data.
Here, we generate energy matrix models (13, 25) that describe
the sequence-dependent energy of interaction of a transcription
factor at each putative binding site. For each matrix, we use a
convention that the wild-type sequence is set to have an energy
of zero (an example energy matrix is in Fig. 1B, Right). Mutations
that enhance binding are identified in blue in Fig. 1B, while muta-
tions that weaken binding are identified in red in Fig. 1B. We
also use these energy matrices to generate sequence logos (26),
which provide a useful visualization of the sequence specificity
(Fig. 1B, above energy matrix).

To identify the putative transcription factors, we next perform
DNA affinity chromatography experiments using DNA oligo-
nucleotides containing the binding sites identified by Sort-Seq.
Here, we apply a stable isotopic labeling of cell culture [SILAC
(27–30)] approach, which enables us to perform a second refer-
ence affinity chromatography that is simultaneously analyzed by
mass spectrometry. We perform chromatography using magnetic
beads with tethered oligonucleotides containing the putative
binding site (Fig. 1C). Our reference purification is performed
identically, except that the binding site has been mutated away.
The abundance of each protein is determined by mass spec-
trometry and used to calculate protein enrichment ratios, with
the target transcription factor expected to exhibit a ratio greater
than one. The reference purification ensures that nonspecifically
bound proteins will have a protein enrichment near one. This
mass spectrometry data and the energy matrix models provide
insight into the identity of each regulatory factor and poten-
tial regulatory mechanisms. In certain instances, these insights

-
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Fig. 1. Overview of the approach to characterize transcriptional regulatory
DNA using Sort-Seq and mass spectrometry. (A) Schematic of Sort-Seq. A
promoter plasmid library is placed upstream of GFP and is transformed into
cells. The cells are sorted into four bins by FACS, and after regrowth, plas-
mids are purified and sequenced. The entire intergenic region associated
with a promoter is included on the plasmid, and a separate downstream
ribosomal binding site sequence is used for translation of the GFP gene.
The fluorescence histograms show the fluorescence from a library of the
rel promoter and the resulting sorted bins. (B) Regulatory binding sites
are identified by calculating the average expression shift due to mutation
at each position. In the schematic, positive expression shifts are sugges-
tive of binding by repressors, while negative shifts would suggest binding
by an activator or RNAP. Quantitative models can be inferred to describe
and further interrogate the associated DNA–protein interactions. An exam-
ple energy matrix that describes the binding energy between an as yet
unknown transcription factor (TF) and the DNA is shown. By convention,
the wild-type nucleotides have zero energy, with blue squares identify-
ing mutations that enhance binding (negative energy) and red squares
identifying mutations that reduce binding (positive energy). The wild-type
sequence is written above the matrix. (C) DNA affinity chromatography and
mass spectrometry are used to identify the putative transcription factor for
an identified repressor site. DNA oligonucleotides containing the target
binding site are tethered to magnetic beads and used to purify the tar-
get transcription factor from cell lysate. Protein abundance is determined
by mass spectrometry, and a protein enrichment is calculated as the ratio
in abundance relative to a second reference experiment where the target
sequence is mutated away.

then allow us to probe the Sort-Seq data further through addi-
tional information-based modeling using thermodynamic models
of gene regulation. As further validation of binding by an iden-
tified regulator, we also perform Sort-Seq experiments in gene
deletion strains, which should no longer show the associated
positive or negative shift in expression at their binding site.

Sort-Seq Recovers the Regulatory Features of Well-Characterized
Promoters. To first show Sort-Seq as a tool to discover regula-
tory binding sites de novo, we began by looking at the promoters
of lacZYA (lac), relBE (rel), and marRAB (mar). These promot-
ers have been studied extensively (31–33) and provide a useful
testbed of distinct regulatory motifs. To proceed, we constructed
libraries for each promoter by mutating their known regulatory
binding sites (SI Appendix, Fig. S3 E and F shows additional
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Fig. 2. Characterization of the regulatory landscape of the lac, rel, and mar
promoters. (A) Sort-Seq of the lac promoter. Cells were grown in M9 minimal
media with 0.5% glucose at 37 ◦C. Expression shifts are shown, with anno-
tated binding sites for CRP (activator), RNAP (−10 and −35 subsites), and
LacI (repressor) noted. Energy matrices and sequence logos are shown for
each binding site. (B) Sort-Seq of the rel promoter. Cells were also grown in
M9 minimal media with 0.5% glucose at 37 ◦C. The expression shifts iden-
tify the binding sites of RNAP and RelBE (repressor), and energy matrices
and sequence logos are shown for these. (C) Sort-Seq of the mar promoter.
Here, cells were grown in LB at 30 ◦C. The expression shifts identify the
known binding sites of Fis and MarA (activators), RNAP, and MarR (repres-
sor). Energy matrices and sequence logos are shown for MarA and RNAP.
Annotated binding sites are based on those in RegulonDB.

characterization). We begin by considering the lac promoter,
which contains three Lac repressor (LacI) binding sites, two of
which we consider here, and a cAMP receptor protein (CRP)

binding site. It exhibits the classic catabolic switch-like behavior
that results in diauxie when E. coli is grown in the presence of
glucose and lactose sugars (31). Here, we performed Sort-Seq
with cells grown in M9 minimal media with 0.5% glucose. The
expression shifts at each nucleotide position are shown in Fig. 2A,
with annotated binding sites noted above the plot. The expres-
sion shifts reflect the expected regulatory role of each binding
site, showing positive shifts for LacI and negative shifts for CRP
and RNAP. The difference in magnitude at the two LacI binding
sites likely reflects the different binding energies between these
two binding site sequences, with LacI O3 having an in vivo disso-
ciation constant that is almost three orders of magnitude weaker
than that of the LacI O1 binding site (31, 34).

Next, we consider the rel promoter that transcribes the toxin–
antitoxin pair RelE and RelB. It is 1 of about 36 toxin–antitoxin
systems found on the chromosome, with important roles in cell
physiology, including cellular persistence (35). When the toxin,
RelE, is in excess of its cognate binding partner, the antitoxin
RelB, the toxin causes cellular paralysis through cleavage of
mRNA (36). Interestingly, the antitoxin protein also contains a
DNA binding domain and is a repressor of its own promoter (37).
We similarly performed Sort-Seq with cells grown in M9 mini-
mal media. The expression shifts are shown in Fig. 2B and were
consistent with binding by RNAP and RelBE. In particular, a
positive shift was observed at the binding site for RelBE, and the
RNAP binding site mainly showed a negative shift in expression.

The third promoter, mar, is associated with multiple antibi-
otic resistance, since its operon codes for the transcription factor
MarA, which activates a variety of genes, including the major
multidrug resistance efflux pump, ArcAB-TolC, and increases
antibiotic tolerance (33). The mar promoter is itself activated by
MarA, SoxS, and Rob (via the so-called marbox binding site) and
further enhanced by Fis, which binds upstream of this marbox
(38). Under standard laboratory growth, it is under repression by
MarR (33). We found that the promoter’s fluorescence was quite
dim in M9 minimal media and instead, grew libraries in LB at
30 ◦C (39). Again, the different features in the expression shift
plot (Fig. 2C) seemed to be consistent with the noted binding
sites. One exception was that the downstream MarR binding site
was not especially apparent. Both positive and negative expres-
sion shifts were observed along its binding site, which may be
due to overlap with other features present, including the native
ribosomal binding site. There have also been reported binding
sites for CRP, Cra, CpxR/CpxA, and AcrR (1). However, the
studies associated with these annotations required overexpres-
sion of the associated transcription factor, were computationally
predicted, or were shown in in vitro assays and not necessarily
expected under the growth condition considered here.

While each promoter qualitatively showed the expected reg-
ulatory behavior in each expression shift plot, it was important
to show that we could also recover the quantitative features of
binding by each transcription factor. Here, we inferred energy
matrices and associated sequence logos for the binding sites of
RNAP, LacI, CRP, RelBE, MarA, and Fis. These are shown in
Fig. 2 and SI Appendix, Fig. S4, and indeed, the matrices agreed
well with those generated from known genomic binding sites for
each transcription factor (Pearson correlation coefficient r =
0.5–0.9) (SI Appendix).

For the repressors RelBE and MarR, there were no data avail-
able that characterized their sequence specificity with which to
compare. Here, instead, we validated our data by performing
Sort-Seq in strains where the relBE or marR genes were deleted.
In each case, this resulted in a loss of the expression shift associ-
ated with binding by these repressors (Fig. 3) and an inability of
the energy matrices to explain the data in the deletion strain (SI
Appendix, Fig. S7), suggesting that the observed features in the
wild-type strain data are due to binding by these transcription
factors.
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Fig. 3. Expression shifts reflect binding by regulatory proteins. (A) Expres-
sion shifts for the rel promoter but in a ∆relBE genetic background. Cells
were grown in conditions identical to Fig. 2B but no longer show a sub-
stantial positive expression shift across the annotated RelBE binding site. (B)
Expression shifts for the mar promoter but in a ∆marR genetic background.
The positive expression shift observed where MarR is expected to bind is no
longer observed. Binding site annotations are identified in blue for RNAP
sites, green for repressor sites, yellow for activator sites, and gray for ribo-
somal binding site and start codons. These annotations refer to the binding
sites noted on RegulonDB that were observed in the Sort-Seq data.

Identification of Transcription Factors with DNA Affinity Chromatog-
raphy and Quantitative Mass Spectrometry. Next, it was important
to show that DNA affinity chromatography could be used to
identify transcription factors in E. coli. In particular, a challenge
arises in identifying transcription factors in most organisms due
to their very low abundance. In E. coli, the cumulative distri-
bution in protein copy number shows that more than one-half
have a copy number less than 100 per cell, with 90% having a
copy number less than 1,000 per cell. This is several orders of
magnitude below that of many other cellular proteins (40).

We began by applying the approach to known binding sites for
LacI and RelBE. For LacI, which is present in E. coli in about
10 copies per cell, we used the strongest binding site sequence,
Oid (in vivo Kd ≈ 0.05 nM), and the weakest natural binding
site sequence, O3 (in vivo Kd ≈ 110 nM) (31, 34, 41). In Fig.
4A, we plot the protein enrichments from each transcription fac-
tor identified by mass spectrometry. LacI was found with both
DNA targets, with fold enrichment greater than 10 in each case,
and it was significantly higher than most of the proteins detected
(indicated by the shaded region in Fig. 4A, which represents the
95% probability density region of all proteins detected, includ-
ing non-DNA binding proteins). Purification of LacI with about
10 copies per cell using the weak O3 binding site sequence
is near the limit of what would be necessary for most E. coli
promoters.

To ensure that this success was not specific to LacI, we also
applied chromatography to the RelBE binding site. RelBE pro-
vides an interesting case, since the strength of binding by RelB to
DNA is dependent on whether RelE is bound in complex to RelB
[with at least a 100-fold weaker dissociation constant reported in
the absence of RelE (42, 43)]. As shown in Fig. 4B, we found
over 100-fold enrichment of both proteins by mass spectrometry.
To provide some additional intuition into these results, we also
considered the predictions from a statistical mechanical model
of DNA binding affinity (SI Appendix). As a consequence of
performing a second reference purification, we find that fold
enrichment should mostly reflect the difference in binding energy
between the DNA sequences used in the two purifications and
be much less dependent on whether the protein was in low or
high abundance within the cell. This seemed to be the case

when considering other E. coli strains with LacI copy num-
bers between about 10 and 1,000 copies per cell (SI Appendix,
Fig. S5C). Additional characterization of the measurement
sensitivity and dynamic range of this approach is noted in
SI Appendix.

Sort-Seq Discovers Regulatory Architectures in Unannotated Regu-
latory Regions. Given that more than one-half of the promoters
in E. coli have no annotated transcription factor binding sites
in RegulonDB, we narrowed our focus by using several high-
throughput studies to identify candidate genes to apply our
approach (44, 45). The work by Schmidt et al. (45) in partic-
ular measured the protein copy number of about one-half the
E. coli genes across 22 distinct growth conditions. Using these
data, we identified genes that had substantial differential gene
expression patterns across growth conditions, thus hinting at the
presence of regulation and even how that regulation is elicited by
environmental conditions (additional details are in SI Appendix,
Fig. S2). On the basis of this survey, we chose to investigate the
promoters of purT, xylE, and dgoRKADT. To apply Sort-Seq in
a more exploratory manner, we considered three 60-bp muta-
genized windows spanning the intergenic region of each gene.
While it is certainly possible that regulatory features will be out-
side of this window, a search of known regulatory binding sites
suggests that this should be sufficient to capture just over 70% of
regulatory features in E. coli and provide a useful starting point
(SI Appendix, Fig. S6).
The purT promoter contains a simple repression architecture and
is repressed by PurR. The first of our candidate promoters is asso-
ciated with expression of purT, one of two genes found in E. coli
that catalyze the third step in de novo purine biosynthesis (46,
47). Due to a relatively short intergenic region about 120 bp in
length that is shared with a neighboring gene yebG, we also per-
formed Sort-Seq on the yebG promoter [oriented in the opposite

A B

Fig. 4. DNA affinity purification and identification of LacI and RelBE by
mass spectrometry using known target binding sites. (A) Protein enrich-
ment using the weak O3 binding site and strong synthetic Oid binding
sites of LacI. LacI was the most significantly enriched protein in each
purification. The target DNA region was based on the boxed area of
the lac promoter schematic but with the native O1 binding site sequence
replaced with either O3 or Oid. Data points represent average protein
enrichment for each detected transcription factor measured from a sin-
gle purification experiment. (B) For purification using the RelBE binding
site target, both RelB and its cognate binding partner RelE were signifi-
cantly enriched. Data points show the average protein enrichment from
two purification experiments. The target binding site is shown by the
boxed region of the rel promoter schematic. Data points in each purifica-
tion show the protein enrichment for detected transcription factors. The
gray shaded regions show where 95% of all detected protein ratios were
found.

Belliveau et al. PNAS | vol. 115 | no. 21 | E4799

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722055115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722055115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722055115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722055115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722055115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722055115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722055115/-/DCSupplemental


A

E

CB

D

Fig. 5. Sort-Seq distinguishes directional regulatory features and uncov-
ers the regulatory architecture of the purT promoter. (A) A schematic is
shown for the approximately 120-bp region between the yebG and purT
genes, which code in opposite directions. Expression shifts are shown for
60-bp regions where regulation was observed for each promoter, with posi-
tions noted relative to the start codon of each native coding gene. Cells
were grown in M9 minimal media with 0.5% glucose. The −10 and −35
RNAP binding sites of the purT promoter were determined through infer-
ence of an energy matrix and are identified in blue. (B) Expression shifts
for the purT promoter but in M9 minimal media with 0.5% glucose supple-
mented with adenine (100 µg/ml). A putative repressor site is annotated in
green. (C) DNA affinity chromatography was performed using the identi-
fied repressor site, and protein enrichment values for transcription factors
are plotted. Cell lysate was produced from cells grown in M9 minimal media
with 0.5% glucose. Binding was performed in the presence of hypoxanthine
(10 µg/ml). Error bars represent the SEM calculated using log protein enrich-
ment values from three replicates, and the gray shaded region represents
the 95% probability density region of all protein detected. (D) Identical
to B but performed with cells containing a ∆purR genetic background.
(E) Summary of regulatory binding sites and transcription factors that bind
within the intergenic region between the genes of yebG and purT. Energy
weight matrices and sequence logos are shown for the PurR repressor and
RNAP binding sites. Data were fit to a thermodynamic of simple repression,
yielding energies in units of kBT .

direction (48)] (schematic in Fig. 5A). To begin our exploration
of the purT and yebG promoters, we performed Sort-Seq with
cells grown in M9 minimal media with 0.5% glucose. The asso-
ciated expression shift plots are shown in Fig. 5A. While we
performed Sort-Seq on a larger region than shown for each pro-
moter, we have only plotted the regions where regulation was
apparent.

For the yebG promoter, the features were largely consistent
with prior work, containing binding sites for LexA and RNAP.
However, we did find that the RNAP binding site is shifted 9
bp downstream from what was identified previously (48). The
previous annotation was based on a computational search and
not confirmed experimentally. We were also able to confirm that
the yebG promoter was induced in response to DNA damage
by repeating Sort-Seq in the presence of mitomycin C [a potent
DNA cross-linker known to elicit the DNA damage response and
proteolysis of LexA (49)] (SI Appendix, Fig. S8 A, B, and D).

Given the role of purT in the synthesis of purines and the
tight control over purine concentrations within the cell (46), we
performed Sort-Seq of the purT promoter in the presence or
absence of the purine adenine in the growth media. In growth
without adenine (Fig. 5A, Right), we observed two negative
regions in the expression shift plot. Through inference of an
energy matrix, these two features were identified as the −10 and
−35 regions of an RNAP binding site. While these two features
were still present on addition of adenine, as shown in Fig. 5B, this
growth condition also revealed a putative repressor site between
the −35 and −10 RNAP binding sites, indicated by a positive
shift in expression (green annotation in Fig. 5B).

Following our strategy to find not only the regulatory
sequences but also, their associated transcription factors, we
next applied DNA affinity chromatography using this putative
binding site sequence. In our initial attempt, however, we were
unable to identify any substantially enriched transcription fac-
tor (SI Appendix, Fig. S8C). With repression observed only when
cells were grown in the presence of adenine, we reasoned that
the transcription factor may require a related ligand to bind
the DNA, possibly through an allosteric mechanism. Impor-
tantly, we were able to infer an energy matrix to the putative
repressor site with sequence specificity that matched that of the
well-characterized repressor, PurR (r = 0.82) (SI Appendix, Fig.
S4). We also noted ChIP-chip data of PurR that suggest that
it might bind within this intergenic region (47). We, therefore,
repeated the purification in the presence of hypoxanthine, which
is a purine derivative that also binds PurR (50). As shown in
Fig. 5C, we now observed a substantial enrichment of PurR with
this putative binding site sequence. As further validation, we per-
formed Sort-Seq once more in the adenine-rich growth condition
but in a ∆purR strain. In the absence of PurR, the putative
repressor binding site disappeared (Fig. 5D), which is consistent
with PurR binding at this location.

In Fig. 5E, we summarize the regulatory features between the
coding genes of purT and yebG, including the features identi-
fied by Sort-Seq. With the appearance of a simple repression
architecture (51) for the purT promoter, we extended our anal-
ysis by developing a thermodynamic model to describe repres-
sion by PurR. This enabled us to infer the binding energies
of RNAP and PurR in absolute kBT energies (52), and we
show the resulting model in Fig. 5E (additional details are in SI
Appendix).
The xylE operon is induced in the presence of xylose mediated
through binding of XylR and CRP. The next unannotated pro-
moter that we considered was associated with expression of xylE,
a xylose/proton symporter involved in uptake of xylose. From our
analysis of the data from Schmidt et al. (45), we found that xylE
was sensitive to xylose and proceeded by performing Sort-Seq
in cells grown in this carbon source. Interestingly, the promoter
exhibited essentially no expression in other media [the work by
Schmidt et al. (45)] (SI Appendix, Fig. S8E). We were able to
locate the RNAP binding site between −80 and −40 bp rela-
tive to the xylE gene (annotated in blue in Fig. 6A). In addition,
the entire region upstream of the RNAP seemed to be involved
in activating gene expression (annotated in orange in Fig.
6A), suggesting the possibility of multiple transcription factor
binding sites.
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Fig. 6. Sort-Seq identifies a set of activator binding sites that drive expression of RNAP at the xylE promoter. (A) Expression shifts are shown for the
xylE promoter, with Sort-Seq performed on cells grown in M9 minimal media with 0.5% xylose. The −10 and −35 regions of an RNAP binding site (blue)
and a putative activator region (orange) are annotated. (B) DNA affinity chromatography was performed using the putative activator region, and protein
enrichment values for transcription factors are plotted. Cell lysate was generated from cells grown in M9 minimal media with 0.5% xylose, and binding
was performed in the presence of xylose supplemented at the same concentration as during growth. Error bars represent the SEM calculated using log
protein enrichment values from three replicates. The gray shaded region represents the 95% probability density region of all proteins detected. (C) An
energy matrix was inferred for the region upstream of the RNAP binding site. The associated sequence logo is shown above the matrix. Two binding sites
for XylR were identified (SI Appendix, Figs. S4 and S8F) along with a CRP binding site. (D) Summary of regulatory features identified at xylE promoter, with
the identification of an RNAP binding site and tandem binding sites for XylR and CRP.

We applied DNA affinity chromatography using a DNA tar-
get containing this entire upstream region. Due to the stringent
requirement for xylose to be present for any measurable expres-
sion, xylose was supplemented in the lysate during binding with
the target DNA. In Fig. 6B, we plot the enrichment ratios from
this purification and find XylR to be most significantly enriched.
From an energy matrix inferred for the entire region upstream
of the RNAP site, we were able to identify two correlated
15-bp regions (dark yellow shaded regions in Fig. 6C) (Pearson
correlation r = 0.74 between energy matrices from each binding
site). Mutations of the XylR protein have been found to diminish
transport of xylose (53), which in light of our result, may be due
in part to a loss of activation and expression of this xylose/proton
symporter. This is in addition to the loss of activation expected
by XylR of the high-affinity xylose uptake system XylFHG (53).
These binding sites were also similar to those found on two other
promoters known to be regulated by XylR (xylA and xylF pro-
moters), which also exhibit tandem XylR binding sites and strong
binding energy predictions with our energy matrix (SI Appendix,
Fig. S8F).

Within the upstream activator region in Fig. 6A, there still
appeared to be a binding site unaccounted for upstream of
the tandem XylR binding sites. From the energy matrix, we
were further able to identify a binding site for CRP, which is
noted in Fig. 6C. While we did not observe a significant enrich-
ment of CRP in our protein purification, the most energetically
favorable sequence predicted by our model, TGCGACCNA-
GATCACA, closely matches the CRP consensus sequence of
TGTGANNNNNNTCACA. In contrast to the lac promoter,
binding by CRP here seems to depend more on the right half of
the binding site sequence. CRP is known to activate promoters
by multiple mechanisms (54), and CRP binding sites have been
found adjacent to the activators XylR and AraC (53, 55), in line
with our result. While additional work will be needed to char-
acterize the specific regulatory mechanism here, it seems that
activation of RNAP is mediated by both CRP and XylR, and
we summarize this result in Fig. 6D (considered further in SI
Appendix).
The dgoRKADT promoter is autorepressed by DgoR with tran-
scription mediated by class II activation by CRP. As a final
illustration of the approach developed here, we considered the
unannotated promoter of dgoRKADT. The operon codes for
D-galactonate–catabolizing enzymes; D-galactonate is a sugar
acid that has been found as a product of galactose metabolism

(56). We began by measuring expression from a nonmutagenized
dgoRKADT promoter reporter in response to glucose, galactose,
and D-galactonate. Cells grown in galactose exhibited higher
expression than in glucose as found by Schmidt et al. (45), and
they exhibited even higher expression when cells were grown in
D-galactonate (SI Appendix, Fig. S9A). This likely reflects the
physiological role provided by the genes of this promoter, which
seems necessary for metabolism of D-galactonate. We, therefore,
proceeded by performing Sort-Seq with cells grown in either
glucose or D-galactonate, since these appeared to represent dis-
tinct regulatory states, with expression low in glucose and high in
D-galactonate. Expression shift plots from each growth condi-
tions are shown in Fig. 7A.

We begin by considering the results from growth in glucose
(Fig. 7A, Upper). Here we identified an RNAP binding site
between −30 and −70 bp relative to the native start codon for
dgoR (SI Appendix, Fig. S9B). Another distinct feature was a pos-
itive expression shift in the region between −140 and −110 bp,
suggesting the presence of a repressor binding site. Apply-
ing DNA affinity chromatography using this target region, we
observed an enrichment of DgoR (Fig. 7B), suggesting that the
promoter is indeed under repression and regulated by the first
coding gene of its transcript. As further validation of binding by
DgoR, the positive shift in expression was no longer observed
when Sort-Seq was repeated in a ∆dgoR strain (Fig. 7D and
SI Appendix, Fig. S9C). We also were able to identify addi-
tional RNAP binding sites that were not apparent due to binding
by DgoR. While only one RNAP −10 motif is clearly visible
in the sequence logo shown in Fig. 7C (top sequence logo;
TATAAT consensus sequence), we used simulations to show
that the entire sequence logo shown can be explained by the con-
volution of three overlapping RNAP binding sites (SI Appendix,
Fig. S9F).

Next, we consider the D-galactonate growth condition (Fig.
7A, Lower). Like in the expression shift plot for the ∆dgoR strain
grown in glucose, we no longer observe the positive expression
shift between −140 and −110 bp. While there are still several
positions between −120 and −100 bp that are still positive, this
can be attributed to a nonoptimal −10 binding site sequence for
RNAP (wild type, TACATT) (Fig. 7C). The loss of the repres-
sive feature, therefore, suggests that DgoR may be induced by
D-galactonate or a related metabolite. However, in comparison
with the expression shifts in the ∆dgoR strain grown in glucose,
there were some notable differences in the region between −160
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Fig. 7. The dgoRKADT promoter is induced in the presence of D-galactonate due to loss of repression by DgoR and activation by CRP. (A) Expres-
sion shifts due to mutating the dgoRKADT promoter are shown for cells grown in M9 minimal media with either 0.5% glucose (Upper) or 0.23%
D-galactonate (Lower). Regions identified as RNAP binding sites (−10 and −35) are shown in blue, and putative activator and repressor binding
sites are shown in orange and green, respectively. (B) DNA affinity purification was performed targeting the region between −145 bp and −110
bp of the dgoRKADT promoter. The transcription factor DgoR was found most enriched among the transcription factors plotted. Error bars rep-
resent the SEM calculated using log protein enrichment values from three replicates, and the gray shaded region represents the 95% probability
density region of all proteins detected. (C) Sequence logos were inferred for the most upstream 60-bp region associated with the upstream RNAP
binding site annotated in A. Multiple RNAP binding sites were identified using Sort-Seq data performed in a ∆dgoR strain grown in M9 minimal
media with 0.5% glucose (further detailed in SI Appendix, Fig. S9). Below this, a sequence logo was also inferred using data from Sort-Seq per-
formed on wild-type cells grown in D-galactonate, identifying a CRP binding site [class II activation (54)]. (D) Expression shifts are shown for the
dgoRKADT promoter when performed in a ∆dgoR genetic background grown in 0.5% glucose. This resembles growth in D-galactonate, suggesting
D-galactonate may act as an inducer for DgoR. (E) Summary of regulatory features identified at the dgoRKADT promoter, with the identification of
multiple RNAP binding sites and binding sites for DgoR and CRP. The interaction energy between CRP and RNAP, εi , was inferred to be −7.3+1.9

−1.4kBT ,
where the superscripts and subscripts represent the upper and lower bounds associated with 95 percent of the inferred parameter value distribution,
respectively.

and −140 bp. Here, we find evidence for another CRP binding
site. The sequence logo identifies the sequence TGTGA (Fig.
7C, Lower), which matches the left side of the CRP consensus
sequence. In contrast to the lac and xylE promoters, however,
the right half of the binding site directly overlaps with where we
would expect to find a −35 RNAP binding site. This type of inter-
action by CRP has been previously observed and is defined as
class II CRP-dependent activation (54), although this sequence
specificity has not been previously described.

To isolate and better identify this putative CRP binding site,
we repeated Sort-Seq in E. coli strain JK10 grown in 500 µM
cAMP. Strain JK10 lacks adenlyate cyclase (cyaA) and phospho-
diesterase (cpdA), which are needed for cAMP synthesis and
degradation, respectively, and it is thus unable to control intra-
cellular cAMP levels necessary for activation by CRP [derivative
of TK310 (41)]. Growth in the presence of 500 µM cAMP
provided strong induction from the dgoRKADT promoter and
resulted in a sequence logo at the putative CRP binding site
that even more clearly resembled binding by CRP (SI Appendix,
Fig. S9E). This is likely because expression is now dominated by
the CRP-activated RNAP binding site. Importantly, these data
allowed us to further infer the interaction energy between CRP
and RNAP, which we estimate to be −7.3 kBT (further detailed
in SI Appendix). We summarize the identified regulatory features
in Fig. 7E.

Discussion
We have established a systematic procedure for dissecting the
functional mechanisms of previously uncharacterized regulatory
sequences in bacteria. A massively parallel reporter assay, Sort-
Seq (13), is used to first elucidate the locations of functional
transcription factor binding sites. DNA oligonucleotides con-
taining these binding sites are then used to enrich the cognate
transcription factors and identify them by mass spectrometry
analysis. Information-based modeling and inference of energy
matrices that describe the DNA binding specificity of regula-
tory factors provide further quantitative insight into transcription
factor identity and the growth condition-dependent regulatory
architectures.

To validate this approach, we examined four previously anno-
tated promoters of lac, rel, mar, and yebG, and our results were
consistent with established knowledge (13, 31, 33, 34, 39, 43).
Importantly, we find that DNA affinity chromatography exper-
iments on these promoters were highly sensitive. In particular,
LacI was unambiguously identified with the weak O3 binding
site, although LacI is present in only about 10 copies per cell (34).
Emboldened by this success, we then studied promoters having
little or no prior regulatory annotation: purT, xylE, and dgoR.
Here, our analysis led to a collection of regulatory hypotheses.
For the purT promoter, we identified a simple repression archi-
tecture (51), with repression by PurR. The xylE promoter was
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found to undergo activation only when cells are grown in xylose,
likely due to allosteric interaction between the activator XylR
and xylose and activation by CRP (53, 55). Finally, in the case
of dgoR, the base pair resolution allowed us to tease apart over-
lapping regulatory binding sites, identify multiple RNAP binding
sites along the length of the promoter, and infer further quanti-
tative detail about the interaction between the identified binding
sites for CRP and RNAP. We view these results as a critical first
step in the quantitative dissection of transcriptional regulation,
which will ultimately be needed for a predictive understanding
of how such regulation works.

While our results show the successful identification of reg-
ulatory binding sites and regulatory mechanism at previously
unannotated promoters, there also remain important challenges.
The uncharacterized genes were selected based on genome-wide
studies (44, 45), and indeed, the hints of regulation in these
data were a necessary part of our strategy to systematically dis-
sect each promoter. Datasets that quantitate protein abundance
across a number of growth conditions, like those available in E.
coli (45) and yeast (57), or alternatively, transcript abundance
using RNA sequencing (RNA-Seq) will provide an important
starting point for the dissection of regulatory mechanism in other
bacteria.

An important aspect of the presented approach is that it can
be applied to any promoter sequence, and there are a number
of ways that throughput can be increased further. Microarray-
synthesized promoter libraries and measurement of expression
from barcoded transcripts using RNA-Seq instead of flow cytom-
etry can be used to allow multiple loci to be studied simulta-
neously (14, 18). Landing pad technologies for chromosomal
integration (58–60) should enable massively parallel reporter
assays to be performed in chromosomes instead of on plasmids.
Techniques that combine these assays with transcription start site
readout (61) may provide additional resolution, further allow-
ing the molecular regulators of overlapping RNAP binding sites
to be deconvolved or the contributions from separate RNAP
binding sites, like those observed on the dgoR promoter, to be
better distinguished. As the number of regulatory regions under
study increases, it will also be important to develop additional
analysis tools that provide automated identification of regulatory
binding sites.

To identify transcription factors across many target binding
sites, DNA affinity chromatography samples can be further mut-
liplexed using isobaric labeling strategies (62, 63). Continued
performance improvements in mass spectrometer sensitivity and
sample processing (64–66) will also make this assay less onerous
to apply across many targets and different binding conditions.
This will be especially important for situations where the data
suggest that a small molecule effector might be acting to mod-
ulate binding of the transcription factor to its target sequence,
requiring multiple binding conditions to be tested. Perform-
ing reporter assays in transcription factor deletion strains will
continue to play an important role in promoter dissection as
we have shown for a variety of the promoters, and it will
provide a secondary means with which to identify and vali-
date binding sites. Genome-wide gene deletion libraries are
now available for a wide variety of bacteria (67–72), and it is
now possible to perform genetic perturbations using CRISPR
interference (73, 74) that should open up the possibility of
applying such perturbation strategies more easily in less studied
organisms.

Although our work was directed toward regulatory regions
of E. coli, there are no intrinsic limitations that restrict the
analysis to this organism. Rather, most bacteria contain small
intergenic regions several hundred base pairs in length that make
this approach especially suitable. The sequence specificity of
most characterized prokaryotic transcription factors (75, 76) and
the sigma factors that allow RNAP to recognize each promoter

(54, 77) suggest that this approach will permit regulatory dissec-
tion in any bacterium that supports efficient transformation by
plasmids. Additionally, although we have focused on bacteria,
our general strategy should be feasible for dissecting regula-
tion in a number of eukaryotic systems—including human cell
culture—using massively parallel reporter assays (14–16) and
DNA-mediated protein pull-down methods (21, 22) that have
already been established.

Materials and Methods
SI Appendix has extended experimental details.

Bacterial Strains. All E. coli strains used in this work were derived from
K-12 MG1655, with deletion strains generated by the lambda red recom-
binase method (78). In the case of deletions for lysA (∆lysA::kan), purR
(∆purR::kan), and xylE (∆xylE::kan), strains were obtained from the Coli
Genetic Stock Center (Yale University) and transferred into a fresh MG1655
strain using P1 transduction. The others were generated in house and
include the following deletion strains: ∆lacIZYA, ∆relBE::kan, ∆marR::kan,
and ∆dgoR::kan. Details on strain construction are provided in SI
Appendix.

Sort-Seq. Mutagenized single-stranded oligonucleotide pools were pur-
chased from Integrated DNA Technologies. Library oligonucleotides were
PCR amplified, inserted into the PCR-amplified plasmid backbone (i.e., vec-
tor) of pJK14 (SC101 origin) (13) by Gibson assembly, and electroporated
into cells after drop dialysis in water. Cell libraries were then grown to
saturation in LB and diluted 1:10,000 into the appropriate growth media
for the promoter under consideration, and grown to an optical density
at 600 nm of 0.2–0.4. A Beckman Coulter MoFlo XDP cell sorter was used
to sort cells by fluorescence, with 500,000 cells collected into each of the
four bins. Sorted cells were then regrown overnight in 10 mL of LB media
under kanamycin selection. The plasmids in each bin were miniprepped
(Qiagen) after overnight growth, and PCR was used to amplify the mutated
region from each plasmid for Illumina sequencing. SI Appendix has addi-
tional details on library construction and Sort-Seq as well as on calculating
expression shift plots and energy matrices.

DNA Affinity Chromatography and Liquid Chromatography-MS/MS. SILAC la-
beling (27, 28, 30) was implemented by growing cells (MG1655 ∆lysA) in
either the stable isotopic form of lysine (13C6H14

15N2O2) or natural form. SI
Appendix has details on lysate preparation.

DNA affinity chromatography was performed by incubating cell lysate
(∼150 mg/mL protein) with magnetic beads (Dynabeads MyOne T1;
ThermoFisher) containing tethered DNA (streptavidin-biotin linkage).
ssDNA was purchased from Integrated DNA Technologies with the biotin
modification on the 5′ end of the oligonucleotide sense strand. Cell lysates
were incubated on a rotating wheel with the DNA tethered beads overnight
at 4 ◦C. Elution was achieved by cleaving the DNA with the restriction
enzyme PstI, and samples were then prepared for mass spectrometry by in-
gel digestion with endoproteinase Lys-C. Liquid chromatography tandem
mass spectrometry experiments were carried out as previously described
(79), and they are further detailed in SI Appendix. Thermo RAW files were
processed using MaxQuant (v. 1.5.3.30) (80).

Code Availability and Data Analysis. All code used for processing data and
plotting as well as the final processed data, plasmid sequences, and primer
sequences can be found on our GitHub repository (https://www.github.com/
RPGroup-PBoC/sortseq belliveau; DOI: 10.5281/zenodo.1184169). Thermo
RAW files for mass spectrometry are available at the jPOSTrepo repository
(81) (accession no. PXD007892). Sort-Seq sequencing files are available at
the Sequence Read Archive (accession no. SRP121362).
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