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ABSTRACT

Cigarette smoke (CS) is known to dysregulate microRNA expression profiles in 
the lungs of mice, rats, and humans, thereby modulating several pathways involved 
in lung carcinogenesis and other CS-related diseases. We designed a study aimed 
at evaluating (a) the expression of 1135 microRNAs in the lung of Swiss H mice 
exposed to mainstream CS during the first 4 months of life and thereafter kept in 
filtered air for an additional 3.5 months, (b) the relationship between lung microRNA 
profiles and histopathological alterations in the lung, (c) intergender differences in 
microRNA expression, and (d) the comparison with microRNA profiles in blood serum. 
CS caused multiple histopathological alterations in the lung, which were almost absent 
in sham-exposed mice. An extensive microRNA dysregulation was detected in the 
lung of CS-exposed mice. Modulation of microRNA profiles was specifically related to 
the histopathological picture, no effect being detected in lung fragments with non-
neoplastic lung diseases (emphysema or alveolar epithelial hyperplasia), whereas a 
close association occurred with the presence and multiplicity of preneoplastic lesions 
(microadenomas) and benign lung tumors (adenomas). Three microRNAs regulating 
estrogen and HER2-dependent mechanisms were modulated in the lung of adenoma-
bearing female mice. Blood microRNAs were also modulated in mice affected by early 
neoplastic lesions. However, there was a poor association between lung microRNAs 
and circulating microRNAs, which can be ascribed to an impaired release of mature 
microRNAs from the damaged lung. Studies in progress are evaluating the feasibility of 
analyzing blood microRNAs as a molecular tool for lung cancer secondary prevention.

INTRODUCTION

Exposure to cigarette smoke (CS) has been shown 
to extensively dysregulate the expression of microRNAs 
(miRNAs), mostly in the sense of downregulation, in 
pulmonary cells of mice [1], rats [2], and humans [3]. 
CS-related downregulation of miRNAs translates into 
upregulation of gene and protein expression [4, 5]. 
These molecular processes result in the modulation both 
of adaptive mechanisms, protecting the organism from 
noxious CS components, and of mechanisms involved 

in the pulmonary carcinogenesis process, such as 
stress response, DNA repair, protein repair or removal, 
phagocytosis, endocytosis and intracellular vesicular 
traffic, immune response, cell proliferation, apoptosis, 
oncogene activation, inhibition of oncosuppressor genes, 
recruitment of undifferentiated stem cells, inflammation, 
inhibition of gap-junctional intercellular communications, 
and angiogenesis [4, 5].

In a preliminary study, we analyzed miRNA profiles 
in the lung of 2 sham-exposed mice, 3 mice exposed to 
mainstream CS (MCS), and 3 MCS-exposed mice treated 
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with chemopreventive agents. The results suggested that 
miRNA expression was affected by histopathology, with 
specific signatures related to occurrence of pneumonia, 
adenoma, or bronchoalveolar carcinoma [6]. The 
present study had multiple goals. The first one was to 
comparatively evaluate miRNA expression profile in 
samples from sham-exposed mice and mice that had 
been exposed to MCS during the first 4 months of life 
and thereafter kept in filtered air for an additional 3.5 
months. This carcinogenesis model has been developed 
in our laboratories [7] and applied to investigate 
both efficacy and safety of a number of dietary and 
pharmacological agents in CS-related carcinogenesis [8]. 
Both the whole lungs and the lung fragment undergoing 
miRNA analysis were subjected, as blind samples, to lung 
histopathology. This allowed us to evaluate pulmonary 
miRNA expression profiles as related to the occurrence of 
non-neoplastic lesions (lung emphysema), preneoplastic 
lesions (hyperplasia of the alveolar epithelium and 
microadenomas) and benign tumors (adenomas). In 
this way, it was possible to assess both sensitivity and 
specificity of miRNA analysis in characterizing these 
lesions. Such a methodological approach bears relevance 
because these alterations represent a still reversible step 
of the carcinogenesis process, thereby providing an ideal 
target for preventive interventions. Using both male and 
female mice, a second goal of the present study was to 
evaluate intergender differences in order to explore, from a 
mechanistic point of view, the suspected role of estrogens 
in CS-related pulmonary carcinogenesis [8]. Finally, by 
comparing miRNA profiles in the lung and blood serum 
of all mice, we aimed at validating the detection of 
circulating miRNAs as a secondary prevention tool to be 
used in translational studies and in possible applications 
in humans.

RESULTS

Lung histopathology

Table 1 reports the occurrence of emphysema, 
alveolar epithelial hyperplasia, microadenomas, and 
adenomas, as evaluated in 10 sham-exposed mice and 
10 MCS-exposed mice by histopathological analysis 
either of the fragment of right caudal lobe used for 
miRNA analysis (A) or of the whole lungs from the 
same mice (B). The numbers in parentheses indicate 
the number of lesions detected in each mouse positive 
either for microadenomas or adenomas. Examples of the 
microscopic appearance of the above histopathological 
alterations are given in Figure 1.

The results show that none of the sham-exposed 
mice had histopathological lesions, with the exception of 
one female that developed 3 microadenomas detectable 
in the whole lungs. In contrast, a number of lung lesions 
were detected in MCS-exposed mice. Even in exposed 

mice, however, the incidence of emphysema was modest 
(20%), with positive findings in the whole lungs from a 
male and in both whole lungs and caudal lobe fragment 
from a female.

In contrast, the majority of mice (80% of males and 
60% of females) exhibited signs of hyperplasia of the 
alveolar epithelium, mostly by analyzing the whole lungs 
(the 70% of MCS-exposed mice) but also by analyzing the 
caudal lobe fragment (50%). In both cases, the difference 
between sham-exposed mice and MCS-exposed mice was 
statistically significant (P < 0.01).

The large majority of the MCS-exposed mice 
(90%) developed multiple microadenomas, which in 3 
mice became confluent by analyzing the whole lungs. 
Irrespective of gender, the difference in microadenoma 
incidence was statistically significant (P < 0.01) both 
in the caudal lobe fragment and in whole lungs. The 
multiplicity of microadenomas in the caudal lobe fragment 
from MCS-exposed mice (mean ± SE) was 6.0 ± 2.0 in 
males (P < 0.05 as compared with sham-exposed mice), 
5.6 ± 2.1 in females (P < 0.05), and 5.8 ± 1.4 in combined 
genders (P < 0.001). In the corresponding whole lungs, 
the multiplicity of adenomas was 16.0 ± 5.4 in males 
(P < 0.05 as compared with sham-exposed mice, all of 
them microadenoma-free), 13.4 ± 4.0 in females (P < 
0.05 vs. 0.6 ± 0.6 of sham-exposed mice), and 14.7 ± 3.2 
in combined genders (P < 0.001 vs. 0.3 ± 0.3 of sham-
exposed mice).

Adenomas were detected in the whole lungs from 
2 males and 3 females and in the caudal lobe fragment 
from one male. As compared with sham-exposed mice, 
in which no adenoma was detected, the increase in the 
incidence of adenomas in whole lungs was statistically 
significant in females (P < 0.05) and in combined genders 
(P < 0.01). The increase in the multiplicity of adenomas in 
the caudal lobe fragment was not statistically significant. 
In whole lungs it was 1.6 ± 1.4 in males (not significant 
as compared to sham-exposed mice), 4.2 ± 1.9 in females 
(P < 0.05), and 2.9 ± 1.2 in combined genders (P < 0.05). 
The difference in adenoma multiplicity between males and 
females was not statistically significant.

miRNA analyses in lung

Figure 1 (middle column) shows scatter-plots 
comparing the expression of miRNAs as related to 
occurrence of either emphysema (A), alveolar epithelial 
hyperplasia (B), microadenomas (C) or adenomas (D) in 
the caudal lobe fragment of lungs from all mice positive 
for the above lesions, as compared to mice negative for 
the same lesions. The diagonal lines indicate the ±2-fold 
variation interval in miRNA expression between lesion-
bearing mice and lesion-free mice. Little or no alterations 
of miRNA expression were observed in mice bearing 
either emphysema (Figure 1A) or alveolar epithelial 
hyperplasia (Figure 1B) and, as demonstrated by volcano-
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plot analysis, none of them was statistically significant 
(data not shown).

In contrast, miRNA expression profiles were 
profoundly altered in those lung fragments, almost all of 
them from MCS-exposed mice, in which microadenomas 
were detected both in whole lungs and in the same tissue 
fragments in which the miRNA expression was analyzed. 
In particular, line-plot analyses (Figure 2) showed that 
the alterations of miRNA profile progressively increased 
with the multiplicity of microadenomas, and became 
massive when >10 microadenomas were present in the 
lung fragment. A relationship between microadenoma 
multiplicity and alterations of miRNA profiles was also 
evident from scatter-plot analysis (Figure 1C). According 
to volcano-plot analysis, 16 miRNAs altered their 
expression >2-fold and above the statistical significance 
threshold in mice bearing >10 microadenomas, as 

compared to microadenoma-free mice. Of these miRNAs, 
12 were upregulated (miR-34b, miR-138, miR-297a, 
miR-301, miR-449, miR-466, miR-493, miR-579, miR-
582, miR.-673, miR-692, and miR-879) and 4 were 
downregulated (miR-106a, miR-181a, miR-369, and miR-
669k). The trend of alteration (up or downregulation), 
the fold-variation, and the biological functions of these 
miRNAs are reported in Table 2.

A close relationship between alteration of 
miRNA profiles and presence of adenomas was also 
detected in lung fragments (Figure 1D). In particular, 
volcano-plot analyses showed that 36 miRNAs were 
significantly altered in mice bearing adenomas, all of 
them MCS-exposed, as compared to adenoma-free 
mice. Eleven miRNAs were upregulated and 25 were 
downregulated (see their identification in Table 2). 
Three dysregulated miRNAs (miR-301, miR-369, and 

Table 1: Histopathological alterations in the lung of Swiss H mice aged 7.5 months as related to exposure to MCS

Treatment Gender Identif. code Emphysema

Alveolar 
epithelial 

hyperplasia Microadenomas Adenomas

A B A B A B A B

  SM 2 - - - - - - - -

  SM 4 - - - - - - - -

 Males SM 5 - - - - - - - -

  SM 14 - - - - - - - -

Sham  SM 15 - - - - - - - -

  SF 7 - - - - - - - -

  SF 9 - - - - - - - -

 Females SF 11 - - - + - + (3) - -

  SF 12 - - - - - - - -

  SF 16 - - - - - - - -

  MM 2 - + + + + (6) + (6) - -

  MM 3 - - - + + (8) + (25) - -

 Males MM 4 - - - - + (4) + (25) + (1) + (1)

  MM 11 - - + + - - - + (7)

MCS  MM 12 - - + + +(12) + (24) - -

  MF 6 - - + + +(13) + (25) - -

  MF 7 - - - + +(5) + (5) - + (10)

 Females MF 8 - - - - +(4) + (8) - + (5)

  MF 9 + + + + +(6) + (21) - + (6)

  MF 14 - - - - - + (8) - -

A. Fragment of right caudal lobe (1 section/mouse) used for miRNA analysis. B. Whole lungs (10 sections/mouse)
The numbers in parentheses indicated the total number of lesions (microadenomas or adenomas) per mouse. When 
microadenomas were confluent or were >25/mouse, a score of 25 was given.
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miR-669k) overlapped in the lungs of adenoma-bearing 
mice and of microadenoma-bearing mice. In order to 
evaluate intergender differences, miRNA profiles were 
compared in males and females from either adenoma-
free or adenoma-bearing mice. Scatter-plot analyses 
(Figure 3) provided evidence that miRNA profiles 
were influenced by the gender, although the differences 

mainly affected miRNAs that were expressed at low 
and intermediate intensity (blue and yellow colors). 
According to volcano-plot analyses, no miRNA was 
different in males and females from adenoma-free mice, 
whereas 3 miRNAs (miR-10a, miR-125, and miR- 
130a) from adenoma-bearing mice showed intergender 
differences.

Figure 1: miRNA expression intensity in mouse lung and blood serum as related to pulmonary histopathological 
alterations. The column on the left shows examples of microscopic appearance of pulmonary histopathological alterations, including 
emphysema (A), alveolar epithelial hyperplasia (B), microadenomas (C), and adenomas (D). The scatter-plots relate the expression of 
1135 miRNAs, either in the lung (middle column) or in the blood serum (right column) of lesion-bearing mice to that in lesion-free mice. 
Each dot represents a miRNA, whose expression intensity can be inferred from the position on the x and y axes. The central diagonal lines 
indicate equivalence in the intensity of miRNA expression, and the outer diagonal lines indicate 2-fold differences in miRNA expression in 
lesion-bearing mice and lesion-free mice.
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Validation of microarray data was performed by 
real time-qPCR for miR-125, miR-374, and miR-669k. 
The expression levels of these miRNAs were evaluated by 
testing each one of the 20 lung fragments, thus accounting 
for a total of 60 samples tested in triplicates. The results 
were related to the presence or absence of adenomas in 
the lung. Figure 4 reports the amplification curves for 
each sample, either adenoma-free (green) or adenoma-
bearing (purple). The relative expression intensities of 
miR-125 were 2.8 ± 1.6 in adenoma-free mice and 5.6 
± 2.7 in adenoma-bearing mice, thus accounting for a 
2.0-fold upregulation. This trend is similar to the 2.2-
fold upregulation in adenoma-bearing mice detected 
by microarray (see Table 2). The relative expression 
intensities of miR-374 were 8.9 ± 2.4 in adenoma-free 
mice and 21.1 ± 6.9 in adenoma-bearing mice, thus 
accounting for a 2.4-fold upregulation, which is in line 
with the 3.0-fold upregulation detected in adenoma 
bearing mice by microarray (see Table 2). The relative 
expression intensities of miR-669k were 3.4 ± 1.3 in 
adenoma-free mice and 0.9 ± 0.2 in adenoma-bearing 
mice, thus accounting for a 3.5-fold downregulation, 
which is comparable to the 5.8-fold downregulation 
detected in adenoma-bearing mice by microarray (see 
Table 2). On the whole, qPCR results confirmed the 
trends observed by microarray for variations in miRNA 
expression as related to the presence of lung adenomas. 
However, the differences recorded by qPCR were less 

pronounced than those detected by the semi-quantitative 
microarray approach.

MiRNA analyses in blood serum

Scatter-plot analyses (Figure 1, right column) 
provided evidence that miRNA levels in blood serum 
are not changed in mice affected either by emphysema 
(Figure 1A) or alveolar epithelium hyperplasia (Figure 
1B). Likewise, circulating miRNAs were poorly affected 
by the presence of lung microadenomas, as shown both 
by scatter-plot analyses (Figure 1C) and line-plot analyses 
(Figure 2). According to volcano-plot analyses, only 3 
miRNAs were significantly altered in the blood of mice 
bearing >10 microadenomas as compared to the other 
mice (Table 2). MiR-466 was the only miRNA that was 
upregulated both in lung and blood of mice bearing >10 
microadenomas.

A more robust relationship was detected between 
presence of lung adenomas and alterations of miRNA 
profiles in blood serum (Figure 1D). In fact, a total of 18 
blood miRNAs were significantly altered by the presence 
of lung adenomas, 12 of which were upregulated and 6 
were downregulated (Table 2).

Comparison of miRNAs in lung and blood serum

Venn diagram analyses (not shown) compared 
miRNA alterations in lung and blood serum as related 

Figure 2: miRNA expression intensity in mouse lung and blood serum as related to the multiplicity of lung 
microadenomas. Line-plot analyses show miRNA profiles in the lung (upper panel) and blood serum (lower panel) of mice as related 
to the multiplicity of lung microadenomas. miRNAs are distributed in horizontal lines according to their level of expression, the majority 
being located at intermediate levels of expression (central part of the distribution) and the minority being located at high and low levels of 
expression (lower and upper part of the distribution). The distribution profile is progressively modified according to the multiplicity of lung 
microadenomas in lung but not in blood.
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Table 2: List of miRNAs altered in lung or blood as related to the histopathological alteration detected in lung

miRNA
Microadenoma Adenoma

Biological functionLung Blood Lung Blood

let-7a§   ↑2.0  k-Ras inhibition [9]
let-7b   ↓2.0 ↑2.4 Inflammation, Angiogenesis [10]
let-7f   ↓2.1  Proliferation, Apoptosis [11, 12]
miR-15a§   ↓2.1  Proliferation, Inflammation, Apoptosis [13]
miR-21*   ↓2.1  Proliferation, Apoptosis, Invasion [14–17]

miR-22   ↑2.1 ↑2.0 Proliferation, Invasion, Lipid folate catabolism 
[18–20]

miR-26b   ↓5.0  Proliferation, Invasion [21–25]
miR-30§   ↓4.1  Invasion, EMT [26–28]
miR-34b ↑4.9   ↑2.2 P53 Effector, Proliferation, Apoptosis [29]
miR-106a ↓6.5   ↑2.2 Proliferation, Apoptosis [30]

miR-124   ↑2.1 ↑2.0 Proliferation, Invasion, Apoptosis, Angiogenesis, 
EMT [31–34]

miR-125°   ↑2.2 ↑2.7 Proliferation, Invasion, Erbb2 Suppression [35–40]
miR-129   ↑2.5  Proliferation, Invasion, Apoptosis [41–43]
miR-138 ↑2.1    Proliferation, Apoptosis, EMT [44–48]
miR-181a ↓8.4    Proliferation, Angiogenesis, EMT [49, 50]

miR-182§   ↓4.2  Proliferation, Invasion, Differentiation, Ras 
inhibition [51]

miR-206   ↑2.0 ↑2.1 Proliferation, Invasion, Glycolysis suppression, 
EMT [52–56]

miR-208b   ↓5.5  NA
miR-210   ↓2.9  Proliferation, Apoptosis, Angiogensis [57]
miR-297a ↑2.2    Invasion [58]
miR-301 ↑3.2  ↑2.1 ↑2.0 Invasion, Autophagy [59–61]
miR-326   ↓2.4  Proliferation [62]
miR-339   ↑2.1  Proliferation, Invasion, Tumor suppression [63–66]
miR-344   ↓2.0 ↓3.2 NA
miR-346   ↓2.4  Proliferation [67, 68]
miR-362   ↓2.3  Proliferation, Invasion, Apoptosis [69–76]
miR-369 ↓2.8  ↓2.6 ↓2.1 Aerobic glycolysis [77]
miR-374   ↑3.0 ↓2.2 NA
miR-449 ↑2.7   ↑2.4 Proliferation [78–81]
miR-463   ↓2.7  NA
miR-466° ↑2.4 ↑2.1  ↓3.5 NA
miR-483   ↓3.2  Apoptosis [82]
miR-493 ↑2.1   ↓2.2 Proliferation [83–85]
miR-499a   ↓5.0 ↑2.3 Proliferation [86]
miR-504   ↓2.6 ↑2.0 Proliferation, Apoptosis [87, 88]

(Continued )
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miRNA
Microadenoma Adenoma

Biological functionLung Blood Lung Blood

miR-579 ↑2.8    NA
miR-582^ ↑2.4    Proliferation [89]
miR-615   ↓2.1  Proliferation, Invasion [90, 91]
miR-652  ↑2.4   Proliferation, EMT [92, 93]
miR-669b   ↓2.1  NA
miR-669h   ↓3.6 ↑2.3 NA
miR-669i   ↓2.3  NA
miR-669k ↓7.2  ↓5.8  NA
miR-673 ↑2.1    NA
miR-692 ↑2.1    NA
miR-762  ↑2.2   Proliferation [94]
miR-767   ↓2.3  DNA methylation [95]

miR-804§   ↓2.0  Proliferation, Ras inhibition, Intercellular adhesion 
(Cx43) [6]

miR-879 ↑2.2    NA
miR-1193   ↑2.1  NA
miR-3080   ↑3.5 ↓2.9 NA

The numbers indicate the ratio of miRNA expression (fold-variation) between mice bearing either microadenomas and/or 
adenomas and lesions-free mice
NA, not available. EMT, Epithelial-Mesenchymal Transition.
§ Altered in CS induced lung adenocarcinoma [6]
°Downregulated in CS induced pneumonia [6]
^ Different between males and females in mice bearing >10 microadenomas.

Figure 3: Intergender differences in miRNA expression intensity in mouse lung as related to the presence of pulmonary 
adenomas. The scatter-plots relate the expression of 1135 pulmonary miRNAs in the lung of males to that in the lung of females, either 
adenoma-bearing or adenoma-free. Each dot represents a miRNA, whose expression intensity can be inferred from the position on the x and 
y axes. The central diagonal lines indicate equivalence in the intensity of miRNA expression, and the outer diagonal lines indicate 2-fold 
differences in miRNA expression in males and females.
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to occurrence in the lung either of microadenomas or 
adenomas. One miRNA only (miR-466) was altered 
in both body compartments of mice bearing >10 
microadenomas in the lung fragment. Conversely, 13 
miRNAs were altered in both body compartments of 
mice bearing lung adenomas. The identity, fold-change 
variation, direction of alteration, and biological function 
of these miRNAs are reported in Table 2. In mice bearing 
adenomas, 5 miRNAs (miR-34b, miR-106a, miR-499, 
miR-466, and miR-493) were altered in the blood serum 
but not in lung.

DISCUSSION

The results of histopathological analyses confirmed 
that exposure of mice to MCS during the first 4 months 
of life, followed by 3-4 months in filtered air in order to 
allow a better growth of pulmonary lesions, results in 
the appearance of significant alterations and especially 
of alveolar epithelial hyperplasias, microadenomas, and 
adenomas. While malignant lung tumors had been detected 

in broader groups of MCS-exposed mice [96], no such 
lesion was present in the subset of mice that was randomly 
selected for evaluating miRNA profiles. In any case, 
evaluation of MCS carcinogenicity was not the primary 
goal of the present study, the validity of the model used 
[7] having been already validated in a number of previous 
studies [reviewed in ref. 8]. Likewise, downregulation of 
miRNA expression in the lung of MCS-exposed mice and 
its modulation by chemopreventive agents have previously 
been established [1, 6, 97–100].

What differentiates the present study from the above 
cited studies, with one exception [6], is that so far we 
analyzed miRNAs in the lung of currently smoking mice, 
whereas here we evaluated miRNA profiles in both lung 
and blood serum of mice that had discontinued exposure 
to MCS 3.5 months earlier. Therefore, the observed 
changes in miRNA profiles may either reflect long-lasting 
alterations induced by MCS and/or the development of 
histopathological damage. The latter mechanism is clearly 
supported by the finding that miRNA alterations were 
specific and selective for microadenomas and adenomas, 

Figure 4: qPCR analysis of lung miRNAs. The panels report the amplification curves for each one of the 20 mouse lung fragments 
tested, either adenoma-free (green) or adenoma-bearing (purple), relatively to miRNAs miR-125, miR-374, and miR-669k.
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while no alteration was detected in the lung of mice 
affected either by emphysema and/or by alveolar epithelial 
hyperplasia. Microadenomas, which were consistently 
detected in all our studies using the carcinogenesis 
model in MCS-exposed mice [reviewed in ref. 8], are 
lesions larger than hyperplastic foci, some of which 
may progress further to adenomas, although they tend to 
regress spontaneously [101]. The membrane glycoprotein 
CD45, a leukocyte common antigen that is expressed in all 
haematopoietic cells, is not detectable in microadenomas 
[R. Balansky and G. Ganchev, unpublished data]. The 
fact that both lung microadenomas and adenomas were 
detected in the same mice supports the view that adenomas 
originates from microadenomas. This situation raises 
the question whether microadenomas are preneoplastic 
lesions or inflammatory lesions. This is important in order 
to explain the differences in miRNA profiles between 
lung tissue fragments containing microadenomas and 
adenomas. The data reported in this study indicate that 
overlap of miRNA expression changes in microadenoma 
and adenomas occur to a low extent. Indeed, only 3 
miRNAs out of the 1135 examined (0.3%) were altered 
in both lesions. These miRNAs were miR-301, miR-369, 
and miR-669k, whose main functions are to regulate cell 
proliferation, autophagy, and aerobic glycolysis, which are 
mechanisms involved in the initial stage of the functional 
transformation of cells into their neoplastic counterpart. 
The finding that 33 miRNAs were altered in adenoma but 
not in microadenoma highlights the profound biological 
and molecular difference between these lesions. These 
33 adenoma-specific miRNAs are involved in triggering 
the transition from microadenoma to full blown adenoma, 
thus playing an important role in tumor progression. These 
data indicate that miRNAs play a pivotal role in tumor 
progression and that microadenomas are different lesions 
from adenomas and not merely small-size adenomas.

Adenoma-related miRNA alterations were oriented 
both towards upregulation and downregulation. These 
patterns are different from those observed in malignant 
adenocarcinomas, in which miRNA downregulation 
prevails [6]. However, few miRNAs (4 out of the 1135 
tested [0.3%]) were altered in both lesions. These 
miRNAs (miR-15a, miR-30, miR-182, and miR-804) are 
involved in cell proliferation, apoptosis, inflammation, 
epithelial-mesenchymal transition, invasion, oncogene 
inhibition, and intercellular adhesion. Alteration of these 
functions plays a role in driving the progression from 
benign lung tumors (adenomas) to malignant tumors 
(adenocarcinomas). Thus, miRNA profiling indicates 
that progression of microadenomas to adenomas and 
ultimately to adenocarcinomas occurs in a continuous 
fashion by accumulating new molecular alterations driving 
the carcinogenesis process.

The miRNAs altered by MCS exposure regulate 
biological functions playing a major role in the various 
steps of lung carcinogenesis, including expression 

of mutated oncogenes, removal of damaged cells by 
apoptosis, cell proliferation, tissue inflammation, 
epithelial-mesenchimal transition, glycolysis alteration, 
angiogenesis, and invasion. An important difference 
between benign and malignant lung lesions induced by 
MCS is the maintenance of let-7 homeostasis. The data 
obtained in the present study provide evidence that the 
let-7 family, whose a-f isoforms were spotted on the 
microarray used, was not altered in either microadenoma 
or adenoma. Conversely, the let-7 irreversible 
downregulation is a hallmark of malignant lung cancer, 
including adenocarcinoma in mice [6, 102] and nonsmall 
cell lung cancer (NSCLC) in humans [103]. This finding 
underlies the difference of the miRNA molecular 
fingerprint between benign and malignant neoplastic 
lesions in lung. Our previous studies demonstrated that 
an irreversible let-7 downregulation is a necessary step 
for MCS to display its full carcinogenic effect [98, 104]. 
Similarly, miR-34, an established p53 effector that is 
typically downregulated in malignant lung cancer [105], 
was upregulated in microadenomas but not in adenomas, 
as demonstrated in the present study. Thus, maintenance 
of miR-34 expression is a prerequisite to avoid the passage 
from benign to malignant cancer lesions in lung tissue.

A crucial issue in carcinogenesis is the occurrence 
of gender-specific mechanisms that may contribute to 
cancer susceptibility and development. The hypothesis 
that females may be more susceptible than males to 
CS-related lung carcinogenesis is still controversial in 
both humans [106] and mice [8]. Nevertheless, several 
experimental findings support the view that estrogens 
may contribute to the CS pulmonary carcinogenicity. 
For instance, studies in A/J mice showed the presence of 
17β-estradiol in the lung and modulation of cytochrome 
P450 1b1 and other estrogen metabolism genes by CS 
[107]. Studies in heterozygous 129/SvJ Cyp1b1-KO 
mice suggested that CS accelerates the production of 
the 4-OHEs estrogen metabolites within the lung [108]. 
Moreover, the nonsteroidal anti-inflammatory drugs 
(NSAIDs) aspirin and naproxen, which are known to 
have antiestrogenic properties, selectively inhibited lung 
carcinogenesis in female mice exposed either to MCS 
[96] or to environmental CS [109]. In humans, a higher 
expression of CYP1A1 and levels of DNA adducts were 
found in the nontumorous lung tissue collected from 
female NSCLC patients [110]. Estrogens are functional in 
normal lung and tumor cell lines and can directly stimulate 
the transcription of estrogen-responsive genes in the 
nucleus of lung cells, thereby transactivating the epidermal 
growth factor pathway [111]. Our study showed that no 
miRNA was different between males and females in 
adenoma-free mice, while 3 miRNAs (miR-10a, miR-125, 
and miR-130a) were differentially expressed in adenoma-
bearing male and female mice. In particular, miR-10a 
is related to estrogen dependent cancer promotion [112, 
113], miR-130a both to the estrogen and HER2 pathways 
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[114, 115], and miR-125 to HER2/erbb2 estrogen sensitive 
oncogene activation [116, 117]. These findings support the 
view that estrogen and HER2-dependent mechanisms can 
contribute to CS-induced lung carcinogenicity in females.

A major problem in cancer prevention is the use of 
minimally invasive sampling procedures testing surrogate 
blood fluids, such as blood, in order to obtain information 
regarding precancerous lesions in lung. Our results 
demonstrate that the occurrence of miRNA alterations 
in blood serum is only partial and is not directly related 
to lung expression profiles; miRNA alterations were not 
always the same in lung and blood. In fact, the directions 
of miRNA alterations coincided in blood and lung in 7 
cases (5 upregulated and 2 downregulated miRNAs 
in both compartments), while they were divergent in 
6 cases. This complex situation is likely to reflect the 
mechanism of release of miRNAs from the lung and the 
poor specificity of the blood miRNA pool. miRNA release 
from target organs is an active event driven by specific 
mechanisms, especially when occurring in organs exposed 
to carcinogens [118, 119]. Under these circumstances, 
the DICER enzyme is hit by electrophilic metabolites 
of carcinogens thereby blocking the maturation process 
to mature miRNAs [118]. Accordingly, the release of 
miRNA precursor is increased despite the downregulation 
of the corresponding mature miRNA, thus explaining 
the observed discrepancy between lung and blood 
miRNA in MCS-exposed mice developing adenomas. 
Conversely, for other miRNAs, the release from organs 
targeted by the carcinogenesis process is based on the 
extracellular release of mature miRNAs contained in 
microvesicles, which induce systemic effects in either 
neighbor or distant organs. As an example, this situation 
has been demonstrated for miR-29 released from cancer 
tissue and targeting skeletal muscle cells, which triggers 
cytopathic effect and cachexia [120]. The direct release of 
mature miRNAs is the likely mechanism of upregulation 
of miRNAs observed in both lung and blood in MCS-
exposed mice bearing microadenomas or adenomas.

The differences in miRNA expression in lung and 
blood detected in our study also reflect the poor specificity 
of this body fluid, which can presumably be explained by 
the fact that CS is a systemic carcinogen. Indeed, miRNAs 
originating from multiple extra-pulmonary organs targeted 
by the genotoxic effects of cigarette smoke, such as liver, 
heart, kidney, and blood vessels, are released into the 
blood. In order to elucidate this issue, we have in progress 
a study that comparatively evaluates miRNA expression 
profiles in 10 organs and 3 body fluids of mice exposed to 
CS and/or treated with NSAIDs.

The data reported in the present study indicate that 
blood serum miRNAs may be used as biomarkers to detect 
the presence of still benign neoplastic lesions (adenomas) 
in lung, although blood miRNAs are by far less sensitive 
than lung miRNAs. However, the specificity of blood 
miRNAs in detecting lung adenomas is remarkable, since 

no alterations of blood miRNA profiles were detected in 
mice having either alveolar epithelial hyperplasia or lung 
emphysema.

Some of the miRNAs that we have found to be 
altered in either lung or blood of adenoma-bearing mice 
have been proposed for the early diagnosis of lung 
cancer in human trials analyzing peripheral blood. Such 
a situation occurred for miR-26b, miR-30, and miR-374 
downregulation, and for miR-34, miR-301, and miR-352 
upregulation [121]. Many of the miRNAs altered by MCS 
in mice, as shown in the present study, have also been 
found to be altered in the respiratory system of cancer-
free smokers as compared to non-smokers [3], including 
miR-15, miR-30, miR-106, miR-125, miR-181, miR-362, 
and miR-652. These findings support the good translability 
of miRNA data obtained in experimental animal models to 
the human situation. Although differences in lung cancer 
susceptibility may even occur among different mouse 
strains [122], this circumstance supports supports the good 
translatability of miRNA results from mice to human, 
thanks to the high phylogenic stability of this molecular 
domain. However, as previously discussed, the patterns of 
miRNA alterations are remarkably different in benign and 
malignant lung cancer.

In conclusion, the results of the present study 
provide evidence that, even after a period of time from 
discontinuation of exposure to MCS, a number of 
miRNAs remain dysregulated in mouse lung. However, 
the alterations of miRNA profiles specifically occur in 
lung fragments containing preneoplastic lesions, such as 
microadenomas, and benign lesions, such as adenomas. 
Interestingly, miRNA alterations are gender-specific in 
adenoma-bearing lung fragments and involve modulation 
of miRNAs regulating estrogen-dependent mechanisms. 
The identification of circulating miRNAs, revealing 
the occurrence of early neoplastic lesions in lung, is 
particularly relevant for the secondary prevention of the 
most common cause of cancer mortality. Only a relatively 
small percentage of subjects undergoing exposure to 
environmental factors, such as CS, radon, or airborne 
pollution, develop lung cancer after long-term exposures. 
The identification of these high-risk subjects is a serious 
issue in setting up cancer screening programs. The use 
of circulating miRNA to identify subjects developing 
premalignant pulmonary lesions could represent a new tool 
to face these problems, thus providing an improvement in 
preventive strategy and targeted lung cancer screening.

MATERIALS AND METHODS

Design of the study

The present study used 20 strain H neonatal mice. 
Half of them (5 males and 5 females) were kept in filtered 
air for 7.5 months (sham-exposed mice). The other mice 
(5 males and 5 females) were exposed whole-body to 
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MCS during the first 4 months of life, starting within 12 
h after birth, and thereafter were kept in filtered air for an 
additional 3.5 months (MCS-exposed mice). These mice 
were randomized from larger groups of mice (65 sham-
exposed mice and 69 MCS-exposed mice) that were used 
for evaluating the MCS-related genotoxic damage and 
histopathological alterations, along with the effects of 
NSAIDs [96]. We refer to the previous study for details 
on breeding and treatment of mice and for exposure 
conditions to MCS. At 7.5 months of life, all mice were 
euthanized by following the 2013 AVMA guidelines on 
euthanasia using slow introduction of CO2 asphyxiation. 
Death was confirmed by absence of respiration and/or 
heartbeat.

Blood was immediately collected by heart 
puncture and used for preparing serum. The whole lungs 
were collected, divided into 10 sections and used for 
histopathological analysis. In particular, the accessory, 
middle, and caudal lobes of the right lung were cut into 
two pieces each, whereas the cranial lobe was left uncut. 
The left lung was cut into 3 pieces.

A fragment of the right caudal lobe was divided 
into two parts, one fixed in 10% formalin and used for 
histopathological analysis (1 section/mouse), and the other 
one immersed in RNAlater (Qiagen, Valencia, CA) and 
used for miRNA analysis.

miRNA extraction from lung and blood serum

For RNA extraction, the 40 lung fragments (10 mg 
each) were homogenized in QIAzol Lysis Reagent (700 μl) 
by continuous shaking in Tissue Lyser (Qiagen) for 2 min 
at 30 Hz. The homogenates were centrifuged at 14,000 x 
g at 4°C for 15 min to remove cell debris. Lung miRNA 
was purified from the supernatant by using a commercially 
available kit (miRNeasy, Qiagen). Blood serum miRNA 
was isolated by using the Exiqon’s miRCURY™ RNA 
Isolation Kit – Biofluids (Exiqon, Vedbaek, Denmark).

The amount and purity of extracted RNA were 
evaluated by fiber optic spectrophotometer (Nanodrop 
ND-1000), and the 230/260 and 260/280 absorbance 
ratios were calculated. The RNA structural integrity 
was evaluated by capillary electrophoresis using a RNA 
bioanalyzer (Bioanalyzer Agilent 2100, Agilent Santa 
Clara, CA) equipped with a RNA oligonucleotide chip 
(RNA 6000 Nano Ladder Chip, Agilent). The miRNA 
amounts were accurately standardized among blood serum 
samples for microarray and qPCR analyses using Qubit™ 
3.0 Fluorometer (Life Technologies, Gent, Belgium).

miRNA expression analysis by microarray

miRNA expression was evaluated by miRCURY 
LNA™ microRNA Array (Exiqon), which contains 3100 
capture probes covering human, mouse and rat miRNAs. 
In particular, this microarray analyzes the expression of 
1135 mouse miRNAs. RNA from each sample was labeled 

with Label IT® miRNA Labeling Kits, Version 2 (Mirus 
Bio, WI) following the standard protocol. Total RNA 
(500 ng) was mixed with 10 μl of 10x labeling buffer, 4 
μl Label IT reagent (containing Cy 3 or Cy 5 fluorescent 
tracers), and water to 86 μl. The samples were incubated 
at 36°C for 1 h and the reaction was stopped by adding 
10 μl Stop Reagent. The samples were purified onto a 
chromatographic column, and hybridized to the microarray 
in GlassArray Hybridization Cassettes (Invitrogen Ltd, 
Paisley, UK) in a water bath at 37°C for 16 h, and then a 
wash sequence was performed. Microarray was dried by 
centrifugation and scanned by a laser scanner (ScanArray, 
PerkinElmer, Waltham, MA).

miRNA analyses by qPCR

Validation of microarray data was performed by 
real time-qPCR for miR-125, miR-374, and miR-669k. 
SYBRGREEN fluorescent tracers was used to identify 
amplicons whose identity was checked by melting curve 
analysis according to previously published procedures 
[1]. Primer sequences (TIB Molbiol, Italy) were identified 
according to http://www.ncbi.nlm.nih.gov/tools/primer-
blast/database. cDNAs were prepared using Superscript 
II Reverse Transcription kit (Invitrogen). PCR was 
performed in a Rotor-Gene 3000 Corbett Research, 
Mortlake, Australia). Each reaction was carried out using 
10x PCR buffer, 50 mM MgCl2, dNTM mix, primerA 10 
μM, primerS 10 μM, Platinum® Taq DNA polymerase 
(Invitrogen), cDNA (diluted 1:10), and SYBR GREEN® 
(Invitrogen) in a 50-μL reaction volume. The thermal 
profile consisted of hot-start enzyme activation at 95 
°C for 2 minutes, 45 cycles of PCR at 94 °C for 45 s 
(denaturation), gene-specific temperature annealing for 30 
s, and 72 °C for 30 s (elongation). Gene expression was 
normalized to the ribosomal subuint5 (r5S) housekeeping 
gene.

Each sample was tested in triplicate and the results 
were expressed as relative gene expression intensities as 
obtained from the first positive amplification cycle (Ct).

Statistical analysis

The incidence of histopathological lesions was 
expressed as percent of mice affected by the lesions, and 
the statistical significance of the differences between 
groups was evaluated by χ2 analysis. The multiplicity of 
histopathological lesions was expressed as mean ± SE 
within each group of mice, and the statistical significance 
of the differences between groups was evaluated by 
ANOVA followed by Student’s t test for unpaired data. 
P values lower than 0.05 were regarded as statistically 
significant.

Microarray data were log transformed, normalized, 
and analyzed by GeneSpring software (Agilent, Santa 
Clara, CA) after local background subtraction. Expression 
data were median centered by using the GeneSpring 
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normalization option. Comparisons between sets of data 
were done by evaluating the fold variations of duplicate 
data generated for each miRNA. In addition, the statistical 
significance of the differences was evaluated by means 
of the GeneSpring ANOVA applied by using Bonferroni 
multiple testing correction. As inferred from volcano-plot 
analysis, differences between sets of data with P < 0.05 
and >2-fold variations were taken as significant.
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