
1SCiENtiFiC Reports |  (2018) 8:2705  | DOI:10.1038/s41598-018-21017-5

www.nature.com/scientificreports

Estimating dose-specific cell 
division and apoptosis rates from 
chemo-sensitivity experiments
Yiyi Liu1 & Forrest W. Crawford1,2,3

In-vitro chemo-sensitivity experiments are an essential step in the early stages of cancer therapy 
development, but existing data analysis methods suffer from problems with fitting, do not permit 
assessment of uncertainty, and can give misleading estimates of cell growth inhibition. We present 
an approach (bdChemo) based on a mechanistic model of cell division and death that permits rigorous 
statistical analyses of chemo-sensitivity experiment data by simultaneous estimation of cell division 
and apoptosis rates as functions of dose, without making strong assumptions about the shape of 
the dose-response curve. We demonstrate the utility of this method using a large-scale NCI-DREAM 
challenge dataset. We developed an R package “bdChemo” implementing this method, available at 
https://github.com/YiyiLiu1/bdChemo.

In the early stages of cancer therapy development, potencies of candidate compounds are usually tested in vitro 
through chemo-sensitivity studies1,2. Researchers treat cultured tumor cells with different concentrations of com-
pounds, and the numbers of cells remaining after a follow-up time T are recorded via fluorescent signal inten-
sities that measure general metabolism levels or enzymatic activities3. Compounds that achieve desired tumor 
inhibition effects within dose ranges that are not considered clinically toxic are identified for further optimiza-
tion and then tested with animal models and clinical trials1. Given the significant investment required to bring 
drug candidates to preclinical and clinical stages4, screening and selecting the most promising candidates from 
chemo-sensitivity studies is essential for drug development.

Conventionally, the growth inhibition response of a cell line to a compound is modeled with a sigmoid curve. 
The most commonly used are the Gompertz5,6 and logistic curves7,8. Figure 1a (left and middle panels) illus-
trates a typical dataset (cell line AU565 treated with compound 4-HC6), with fitted Gompertz and logistic curves. 
Concentrations needed to achieve certain levels of inhibition effects, such as GI50 (growth of the cell population is 
inhibited by half), TGI (growth of the cell population is eliminated) and LC50 (half of the initial cell population is 
eliminated) are then estimated as assessments of the compound’s potency9.

However, this approach suffers from problems that may hinder its utility in chemo-sensitivity evaluation. First, 
it relies on a parametric form of the growth curve. Different compounds may affect cell growth in physiologically 
distinct ways makes it unreasonable to believe that all inhibition patters, which result from complex interactions 
between compounds and cells, could be modeled with the same parametric form (Fig. 1b, the first two pan-
els). A newer nonparametric method called grofit10 provides a framework for fitting more flexible dose-response 
curves using spline smoothing. However, all these methods, by fitting a single growth curve, only deliver infor-
mation about the combined effects of the compound on cell birth and death processes, while understanding 
these responses individually is critical to designing experiments that more elaborately investigate the compound’s 
mechanism of action11. Moreover, cancer therapy development often begins by designing compounds that target 
pathways either inhibiting cell division or inducing cell death separately12, so it would be helpful to separately 
discern these effects from early-stage chemo-sensitivity experiments. Finally, existing approaches consider only 
“point estimation” of GI50/TGI/LC50, as a summary of the compound inhibition effects without providing meas-
ures of uncertainty for these estimated quantities.

To overcome these limitations, we describe a new analysis approach (bdChemo) for chemo-sensitivity studies. 
This method specifies a mechanistic model of stochastic cell growth, fits semi-parametric dose-response curves 
without strong assumptions on their functional forms, and separately estimates dose-specific “birth” and “death” 
rates for the compound. For a given compound, we assume that a cell line’s per-cell birth and death rates, λ and 
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μ, are time-homogenous and depend on the log10 concentration z, of the compound; a cell community with size 
k has aggregate population-level birth and death rates kλ(z) and kμ(z), respectively. Such a system is known as 
Kendall, or birth-death, process13 (BDP). When the BDP accurately characterizes of the dynamics of cellular 
response to the compound, the estimated rates of birth and death may have a mechanistic interpretation as “cell 
division” and “apoptosis” rates, respectively. To avoid unnecessary assumptions on the dose-dependent shapes of 
λ(z) and μ(z) and allow a flexible relationship between dose and response, we employ a semi-parametric Bayesian 
approach by assigning Gaussian process14 priors, which treats a regression function on a continuous domain as 
an infinite-dimensional random variable. The method assumes that any finite marginal distribution follows a 
multivariate Gaussian distribution without restrictions on the parametric form of the regression function. We 
estimate the dose-response relationships of the per-cell birth and death rates λ(z) and μ(z) as well as other model 
parameters using a Markov Chain Monte Carlo (MCMC) algorithm15. Uncertainty in estimates of birth and death 
rates is appropriately propagated into uncertainty in summary statistics like GI50, TGI and LC50.

We demonstrate the utility of this method on a large-scale chemosensitivity dataset from NCI-DREAM chal-
lenge containing cell population size measurements on 53 breast cancer cell lines treated by 28 compounds. In the 
original work, the authors fit a Gompertz curve5 for each experiment and calculated GI50 to quantify the sensi-
tivity of the cell line to the compound. We apply bdChemo to the dataset and estimate the posterior mean as well 
as the 95% equal quantile credible intervals (CI) of chemosensitivity summary statistics GI50,TGI and LC50, and 
cell birth and death rates, λ(z) and μ(z), for each compound and cell line combination. We compare the results 
of the proposed method with those obtained by conventional Gompertz and logistic curve fitting approaches as 
well as grofit.

Results
We analyze the data from NCI-DREAM drug sensitivity prediction challenge6 to demonstrate the utility of esti-
mates produced by the proposed method. This dataset contains dose-response measurements of 28 compounds 
on 53 breast cancer cell lines. Cells were treated with 9 doses of each compound in triplicate and cell counts at 
72 h post treatment were measured using the Cell Titer Glo assay. In the original work, the authors fit a Gompertz 
curve5 for each experiment (a cell line treated by a compound) and calculated GI50 (a point estimate without 
uncertainty evaluation) to quantify the sensitivity of the cell line to the compound. We summarize the posterior 
mean and 95% equal quantile credible intervals (CI) of λ(z), μ(z), GI50,TGI and LC50 returned by bdChemo in 
Supplementary Table S1 and Figure S1.

bdChemo fits dose-response curve flexibly.  Conventional Gompertz and logistic curve fitting 
approaches rely on specified parametric forms of the dose-response curve. These parametric forms may not be 
flexible enough to describe the observed dose-response data due to the complex interactions between compounds 
and cell lines. Compared to the restricted parametric curve fitting approaches, bdChemo does not put strong 
assumptions on the functional forms of the dose-response curve, and hence provides a flexible and data-driven 
approach to study the effect of a compound on a cell line.

Figure 1.  Dose-response modeling of cell line AU565 treated with compound 4-HC (a) and cell line SUM52PE 
treated with compound Everolimus (b), using Gompertz curve fitting (the first panel), logistic curve fitting (the 
second panel), grofit (the third panel) and bdChemo (the fourth panel). Solid circles and blue curves are data 
points and fitted curves, respectively. For bdChemo, curves and shades represent the posterior mean and the 
95% credible interval of the Kendall Process mean, respectively.
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Figure 1a and b depict two examples of different growth patterns modeled by the four approaches. For com-
pound 4-HC working on cell line AU565 (Fig. 1a), the growth curve follows a sigmoid shape. In such case, all four 
approaches produced good fits. However, for compound Everolimus working on cell line SUM52PE (Fig. 1b), 
where there is a plateau around the waist of the growth curve, the two sigmoid curve fitting approaches (the first 
two panels) could not capture this trend, while grofit (the third panel) and bdChemo (the fourth panel) generated 
curves more concordant with the data.

bdChemo provides separate estimates of cell birth and death rates.  Together, cell division and apop-
tosis, as functions of compound dose, determine the dynamics of cell line response. For these distinct cellular pro-
cesses, model-based estimation of compounds’ effects on cell birth and death rates can serve as a screening tool for 
candidate compounds and provide guidance for hypothesis generation and experiment design to study compounds’ 
cellular mechanisms of action. We depict the percentage changes between the posterior means of birth/death rates 
at the largest and the smallest tested concentrations in Figure 2a (all compounds) and Figure S2 (individual com-
pound). The overall growth, birth and death curves of four examples are included in Figure 2b–e as further illus-
trations. When treated by a compound, most cell lines in this study show decreased birth and increased death rates 
under higher concentrations (top left part of Figure 2a; an example in Figure 2b), while a few exhibit only decreased 
birth rates or increased death rates alone (top right and bottom left parts in Figure 2a; examples in Figure 2c,d). Not 
all compounds in this study appear to inhibit cell growth, resulting in a few other points with large birth rate incre-
ment or death rate decrement effect (bottom right part in Figure 2a; an example in Figure 2e).

These scenarios may suggest different underlying mechanisms of action. For example, in several other cancers, 
Imatinib has been reported to kill tumor cells by decreasing the activity of tyrosine kinase enzymes16, whereas 
Cetuximab was known to hinder uncontrolled tumor cell division as an EGFR inhibitor17; here we observe similar 
effects on breast cancer cell lines: for the compound Imatinib and cell line BT474 (Figure 3a), birth rate λ(z) is 
relatively stable with respect to dose z in the tested range, while death rate μ(z) first stays steady but then increases 
rapidly when dose z becomes large; in contrast, for Cetuximab working on cell line HCC1806 (Figure 3b), birth rate 
λ(z) decreases while death rate μ(z) stays stable. Therefore, we may hypothesize that compound Imatinib mainly 
works by inducing cell apoptosis on BT474 while compound Cetuximab is more likely to target on blocking cell 
division on HCC1806, and design experiments to investigate the effects of these compounds on cell apoptosis and 
division-related pathways, respectively, to better understand their mechanisms on these cell lines. Similar cell death 
induction and birth inhibition effects of Imatinib and Cetuximab are also observed on most other cell lines in this 
dataset (Figure S2). In addition, some other compounds have consistent patterns across cell lines. For example, 
Mebendazole, TCS PIM-11, QNZ and MG-132 demonstrate both birth inhibition and death induction effects on 
most cell lines. Other compounds like 4-HC, Doxorubicin, Olomoucine II, Valproate, Baicalein, Methylglyoxal and 
IKK 16 increase cell death rates on most cell lines, but their effects on cell birth rates differ by cell line.

bdChemo considers uncertainty in chemosensitivity evaluations.  Point estimates of compound 
potency summary statistics, such as GI50, on different experiments can be similar even if the growth curves 
have distinct patterns. In Figure 4a, we plot the lengths of the 95% credible intervals (CI) against the means 
for log10GI50 estimated on all experiments from the NCI-DREAM data. There are many cases where means are 
comparable but lengths of credible intervals differ greatly. For example, on cell line 21NT, compounds Nelfinavir 

Figure 2.  (a) Percentage change between the posterior mean estimates of death rates (μ(z)) at the largest and 
the smallest tested concentrations v.s percentage change between posterior means of birth rates (λ(z)). (b–e) 
Posterior estimations of Kendall Process means (dose-response curves, upper panel), birth rates (middle panel) 
and death rates (lower panel) of cell line HCC1954 treated with compound IKK 16 (b), cell line MCF7 treated 
with compound 4-HC (c), cell line HCC1428 treated with compound MG-132 (d) and cell line HCC202 treated 
with compound PS-1145 (e). Curves and shades represent the posterior mean and the 95% credible interval of 
the corresponding variables, respectively.
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and 4-HC have GI50 values 1.33 × 10−5M and 1.29 × 10−5M respectively, which are close (especially in log10 scale 
the difference is negligible), yet Nelfinavir has a 95% CI [1.17 × 10−5,1.53 × 10−5]M, much narrower than that 
of 4-HC, [8.87 × 10−6,1.74 × 10−5]M. These differences result from the distinct patterns of their growth curves: 
compared to the sharp drop of the growth curve under treatment of Nelfinavir (Figure 4b left panel), the growth 
curve under treatment of 4-HC declines much more slowly as compound concentration increases (Figure 4b right 
panel), resulting in greater uncertainty about the location of GI50.

Comparing point estimates of a summary statistic for different compounds can lead to conclusions about their 
relative potency that lack statistical validity. For instance, on cell line MDAMB415, compounds Disulfiram and 
Imatinib have GI50 values 6.55 × 10−6M and 2.28 × 10−5M, respectively (Figure 4c), based on which, a conclusion 
may be drawn that MDAMB415 cells are more sensitive to Disulfiram. However, as the GI50 CI of Disulfiram 
is [1.36 × 10−10,2.67 × 10−5]M, covering that of Imatinib, [2.00 × 10−5,2.62 × 10−5]M, there is no evidence 

Figure 3.  Posterior estimations of Kendall Process means (dose-response curves, left panel), birth rates 
(middle panel) and death rates (right panel) of cell line BT474 treated with compound Imatinib (a) and cell line 
HCC1806 treated with compound Cetuximab (b). Curves and shades represent the posterior mean and the 95% 
credible interval of the corresponding variables, respectively.

Figure 4.  (a) Length of the credible interval of log10GI50v.s. mean of log10GI50; distribution of mean log10GI50. 
(b,c) Dose-response modeling of cell line 21NT treated with compounds Nelfinavir and 4-HC (b), and cell line 
MDAMB415 treated with compounds Disulfiram and Imatinib (c). Curves and shades in (b,c) represent the 
posterior means and the 95% credible intervals of the Kendall Process means, respectively. Dashed lines are the 
log10GI50’s calculated from the mean estimations of Kendall Process means.
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supporting the statistical significance of such difference. In practice, summary concentrations are often computed 
to quickly compare a large number of compounds. However, rigorous statistical hypothesis testing for differences 
in cell line responses requires taking into account uncertainties in summary statistics used for comparison.

Discussion
Statistically rigorous analysis of chemosensitivity experiment data is of great importance in cancer therapy devel-
opment. The major assumptions of the proposed model, bdChemo, based on the birth-death process13 (BDP), are 
that the per-cell birth and death rates of a cell line under compound treatment are time-homogenous functions of 
the compound concentration, and the population-level birth and death rates are products of the cell community 
size and the per-cell birth and death rates, respectively. Unlike standard analysis methods that rely heavily on 
specific functional forms of the dose-response curve, bdChemo employs a semi-parametric Bayesian approach 
in function estimations to avoid restrictive assumptions. Although other nonparametric methods have been pro-
posed for dose-response curve fitting, bdChemo provides biologically motivated estimates of dose-dependence in 
cell birth and death rates separately, in addition to estimating the combined effects of the compound on cell birth 
and death processes, delivering richer information that may guide subsequent experimental work. The method 
takes uncertainty into account when providing chemosensitivity summary statistics, such as GI50, TGI and LC50, 
to facilitate sound comparisons of compounds’ effects in tumor cell growth inhibition.

We applied bdChemo, as well as two conventional sigmoid-curve fitting approaches (logistic and Gompertz) 
and R package grofit10, to NCI-DREAM drug sensitivity prediction challenge6 data, where dose-response 
measurements of 28 compounds on 53 breast cancer cell lines were provided. The results show that when the 
dose-response curve does follow a sigmoid pattern, bdChemo produces estimates similar to conventional meth-
ods; but when the dose-response curve deviates from a sigmoidal shape, bdChemo and nonparametric spline 
smoothing can better capture growth inhibition dynamics. We observe different patterns of cell birth inhibition 
and death induction effects for difference cell line/compound combinations; while some compound-cell line 
combinations have dose-response curves that look similar, the underlying mechanism of action may be different. 
Separate estimates of cell birth and death rate estimations provided by bdChemo, hence, might be utilized in 
hypothesis generation and experimental design. In addition, even when the point estimates of GI50 are similar, 
credible intervals sometimes differ substantially.

While bdChemo can fit curves flexibly and provides mechanistic inferences about the dose-dependent 
respond of cell birth and death rates, the approach is subject to limitations. First, the Kendall process framework 
assumes that cells undergo birth and death independently, with the same per-cell rates; when there are k cells, 
the population-level birth and death rates are kλ(z) and kμ(z) respectively. The model does not accommodate 
population-level effects, which could result in more complicated nonlinear rates λ(k,z) and μ(k,z). More sophis-
ticated models for population effects of cell response may be warranted when biologically motivated. Second, 
we analyzed each experiment (compound-cell line combination) independently. Jointly modeling inhibition 
responses by compound and cell line could exploit information sharing across experiments, resulting in greater 
statistical precision in estimates, especially when the number of doses is small.

Finally, we point out potential issues that may arise when applying bdChemo in empirical data analysis. We 
observed some large credible intervals of λ and μ in our analysis, which is mainly caused by the small number of 
experimental replicates (three at each dose). Since the mean value of the cell numbers only contains information 
regarding the combined effects of the birth and death processes, the separate identifiability of the birth and death 
rates mainly comes from the variance of cell numbers at different doses. Therefore, a larger number of replicates 
is desirable for increased accuracy in estimates of λ and μ. Additionally, we observed a few outliers in which λ 
and μ are estimated to be much larger than elsewhere (Tables S2 and S3). These estimates are driven by large cell 
count variations in these experiments. For a comprehensive evaluation of our method’s performance on datasets 
of varying qualities, we analyzed all NCI-DREAM experiments here. However, in practice, some quality control 
procedures in data preprocessing, as typically conducted in conventional chemosensitivity analysis18, might also 
be necessary.

Methods
Conventional approaches.  Conventionally a cell line’s response to a compound is modeled with a sigmoid 
curve. The most commonly used include Gompertz curve5,6

ϕ ϕ ϕ ϕ= + − +g z z( ) exp( exp( )), (1)0 1 2 3

and logistic curve7,8
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bdChemo.  Model.  We use birth-death process (BDP) to model cell growth in the experiment. In a general 
BDP19, where N(t) stands for the number of particles at time t, given N(t) = k(k ≥ 1), the birth rate
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and the death rate
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are time-homogeneous but dependent on the number of particles k. A simple linear BDP known as Kendall 
Process assumes λk = λk and μk = μk (we refer λ and μ as per cell birth and death rates, respectively)13. For 
Kendall Process, the transition probability is20
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For a fixed t, N(t) is a random variable whose distribution is fully specified by Pab(t). The mean and variance of 
N(t) given N(0) = n0 are19,21
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As indicated above, to calculate Pab(t) involves computing a large number of combinatorial numbers, making 

it computationally infeasible in real applications22. Therefore, we use normal distribution with matched mean (mt) 
and variance (vt) as an approximation to reduce the computational cost. This approximation is accurate when 
initial cell counts are large, as they generally are in chemosensitivity experiments (see the Supplementary Note for 
a technical justification). Since in one chemo-sensitivity study, treatment duration t is usually fixed and same for 
all experiments (compounds), we omit the notation t for simplicity and interpret the new λ and μ as per cell birth 
and death rates for the entire experiment duration.

For a given compound working on a given cell line, we assume λ and μ are functions of log10 concentration, z, 
of the compound, so the mean and variance of cell counts are
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Note, although the mean as a function of λ and μ is only affected by their difference, the variance has a term 

λ + μ. Therefore, mean and variance of cell counts together provides information to identify λ and μ separately. 
An interesting example is illustrated by the difference between quiescence (λ ≈ 0 and μ ≈ 0) and matched birth 
and death rates (λ ≈ μ). In both cases, we would expect the mean cell count to be unchanged, m(n0, z) ≈ n0. 
However, if both λ and μ are close to 0, the variance v(n0,z) would also be very small; if the rates are large and 
nearly equal, λ ≈ μ ≫ 0, the variance is expected to be much larger.

Our model also takes experimental errors into account by assuming that the measured cell counts Xz = Nz + ∈z 
and ∈z ∼ N(θ,σ2), where θ and σ2 are the mean and variance of background noises, respectively.

Therefore, the likelihood of observing data D = {(n01, z1, x1), (n02, z2, x2), …, (n0n, zn, xn), e1, …, eq} (n0i’s are the 
initial cell population sizes, (zi, xi)’s are compound concentrations and corresponding cell count measurements at 
follow-up, and ei’ s are independent background noise measurements) is
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where fN is the density function of Gaussian distribution.
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Note that we do not require the initial cell population sizes n0i to be the same across different compound con-
centrations, but we treat them as known quantities here. In reality, initial cell population sizes may be uncertain 
in some experiments. However, with only one number provided in most experiment data, it is difficult to assign 
a distribution to the initial cell count. Moreover, uncertainty in the initial count mainly comes from variation in 
cell density and the amount of cell solution injected into each well, both of which, under appropriate experimental 
operation, could be controlled at a relatively low level. Although we do not model its randomness directly, the 
term σ2 models the variance from background noise can be interpreted to reflect variation in initial cell counts 
to some extent. For example, if two datasets have all other conditions similar, whereas one has a much larger 
estimate of σ2, we might suspect that the large σ2 is induced by a poorly controlled initial cell seeding. If future 
experiments provide more data to quantify its fluctuations and suggest the necessity of treating it as a random 
variable, we may add another layer of randomness to n0 under this Bayesian hierarchical model framework.

To avoid unnecessary assumptions on λ(z) and μ(z) and allow more flexible estimations, we employ 
a semi-parametric Bayesian approach by assigning Gaussian process14 priors to φλ(z) = log(λ(z)) and 
φμ(z) = log(μ(z)), i.e.
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Note, unlike conventional approaches, under this Gaussian process framework, we impose no shape con-
straints including monotonicity on the curves.

Hyperparameters α α τ τ θλ μ λ μ λ μl l, , , , , ,2 2 2 2  and σ2are assigned priors
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Fitting algorithm.  We utilize Gibbs sampler embedded with Metropolis updating15 to draw posterior samples for 
parameters φ φ α α τ τ θλ μ λ μ λ μ λ μl l, , , , , , , ,2 2 2 2  and σ2 (see Supplementary Note for details).

Data availability.  The dataset analyzed during the current study is available at http://www.nature.com/
nbt/journal/v32/n12/full/nbt.2877.html. The code used to perform the analysis is available as an R package 
“bdChemo” at https://github.com/YiyiLiu1/bdChemo.
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