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Abstract: Background: Identifying individual and neighborhood-level factors associated with wors-
ening cardiometabolic risks despite clinic-based care coordination may help identify candidates
for supplementary team-based care. Methods: Secondary data analysis of data from a two-year
nurse-led care coordination program cohort of Medicare, Medicaid, dual-eligible adults, Leveraging
Information Technology to Guide High Tech, High Touch Care (LIGHT2), from ten Midwestern
primary care clinics in the U.S. Outcome Measures: Hemoglobin A1C, low-density-lipoprotein (LDL)
cholesterol, and blood pressure. Multivariable generalized linear regression models assessed indi-
vidual and neighborhood-level factors associated with changes in outcome measures from before to
after completion of the LIGHT2 program. Results: 6378 participants had pre-and post-intervention
levels reported for at least one outcome measure. In adjusted models, higher pre-intervention car-
diometabolic measures were associated with worsening of all cardiometabolic measures. Women
had worsening LDL-cholesterol compared with men. Women with pre-intervention HbA1c > 6.8%
and systolic blood pressure > 131 mm of Hg had worse post-intervention HbA1c and systolic blood
pressure compared with men. Adding individual’s neighborhood-level risks did not change effect
sizes significantly. Conclusions: Increased cardiometabolic risks and gender were associated with
worsening cardiometabolic outcomes. Understanding unresolved gender-specific needs and prefer-
ences of patients with increased cardiometabolic risks may aid in tailoring clinic-community-linked
care planning.

Keywords: care coordination; cardiometabolic risk; clinic-based intervention; nurse-led intervention;
team-based care; neighborhood level factors

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death in the U.S., and car-
diometabolic risk factors for CVD are prevalent and well-known [1,2]. Despite the avail-
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ability of effective treatments, significant disparities in CVD and cardiometabolic outcomes
persist [3–6]. Care coordination can reduce fragmentation in care, and team-based care
with community-based support can help address behavioral and social determinants of
cardiometabolic risks [7–12]. However, most primary care practices do not have the time or
resources to offer widespread care coordination, individual-level social and behavior risk
screenings, and team-based care [13–18]. Tailoring team-based approaches to high-burden
communities, people living in poverty, or those with low literacy is recommended for
reducing CVD disparities [11]. Support outside busy clinic workflows needs to be tailored
to individuals who do not benefit from clinic-based interventions. Advances in geospatial
technologies have increased electronic health record (EHR) access to community-level
geocoded data for social and behavioral risks associated with each patient’s residential
address [19]. Identifying clinical, sociodemographic, and community-level factors that
predict an individual’s health outcomes after participating in clinic-based interventions
can help identify potential candidates for supplementary clinic-community linked in-
terventions [20,21]. We found no studies examining patient-level moderating factors of
cardiometabolic outcomes with nurse-led care coordination. Hence, we aimed to identify
patients’ clinical, sociodemographic, and neighborhood-level factors associated with less
improvement or worsening cardiometabolic outcomes despite participation in a 2-year
clinic-based nurse-led care coordination program.

2. Materials and Methods

We performed a secondary analysis of data from a prospective cohort of University
of Missouri Healthcare (MUHC) system patients enrolled in the Leveraging Information
Technology to Guide High Tech, High Touch Care (LIGHT2) project from 1 July 2013
to 30 June 2015 [22]. The University of Missouri institutional review board determined
the LIGHT2 program to be a quality improvement activity not requiring institutional
review board review. We used the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guidelines for this study [23].

2.1. Study Design and Setting

Funded with a Centers for Medicare and Medicaid Services (CMS) innovation award,
the LIGHT2 program was a combination of information technology components (High Tech)
and health care coordination by nurse care managers (High Touch) [22] (pp. 231–292), [24].
The High-Tech component included dashboards and a patient portal for communication
with physicians and nurse care managers. The High Touch component was care coordi-
nation provided by nurse care managers; 25 nurse care managers worked in 10 family
and community medicine and internal medicine clinics providing services. Patients were
assigned tiers based on their chronic disease diagnoses and health care utilization in the
previous 12 months [25]. Nurse care managers provided as-needed education and support
for patients regarding new chronic disease diagnoses or worsening of chronic conditions. A
documentation system measuring the frequency and time of nurse care manager contacts
was created using the Agency of Healthcare Research and Quality (AHRQ) care coordina-
tion atlas [24,26]. The study compiled data on claims and participants’ EHR data, including
healthcare utilization, clinic visits, basic demographic data, diagnosis, labs, and nurse care
coordination contacts, along with geocoded patient addresses. Cohort recruitment started
in February 2013; 9932 participants were recruited by July 2013. Deaths and relocations
decreased the number of participants to 8593 by March 2015. The goals of the LIGHT2

intervention were to achieve net cost savings, increase preventive service use, and improve
the management of chronic diseases. The final evaluation of the program showed higher
spending and inpatient admissions than the comparison group [22] (pp. 231–292). Nominal
improvements were seen for chronic disease management across all tiers. In higher-risk
tiers, patients’ Hba1c control improved from 18% to 12% but worsened slightly in low-risk
tiered patients from 9% to 10%. The LDL cholesterol did not change in the high-risk tiers,
whereas for patients in low-risk tiers, LDL cholesterol controls improved from 60% to 71%.



J. Clin. Med. 2022, 11, 2897 3 of 14

Hypertension control worsened in low-risk tiered patients by 23% and in high-risk tiered
patients by 29% [22]. The cardiometabolic measures monitored during the LIGHT2 inter-
vention were hemoglobin A1C (HbA1C), blood pressure (B.P.), and low density-lipoprotein
(LDL) cholesterol. Primary results showed minimal changes in cardiometabolic outcomes.
Detailed results of primary outcomes, nurse care coordination implementation and fidelity
of LIGHT2 have been previously published [22] (pp. 231–292), [24].

2.2. Participants

The participants were all Medicare, Medicaid, or dual-eligible patients receiving
primary care services in any of 10 family and community medicine or internal medicine
clinics in the MUHC system during the project period. Because we examined factors
associated with a change in cardiometabolic measures, we included only participants with
at least one of the three outcomes, HbA1C, LDL cholesterol, or B.P. reported before and
after the intervention completion.

2.3. Outcomes

We extracted HbA1C, BP, and LDL-cholesterol levels before and after the LIGHT2

program. The recruitment was complete, and the care coordination documentation system
was implemented on 1 July 2013. We used measures reported within 6 months before
that date or before the first nurse care manager contact within the first 3 months of the
intervention as the pre-intervention values. For post-intervention measures, we used the
values reported within 6 months after the intervention completion date. If there were no
values reported in the 6 months after the completion of the intervention, we used the last
reported value within the last 3 months of the intervention. We used the average of the last
two reported B.P. readings if there were multiple readings in the defined pre-intervention
and post-intervention time-period. Individuals with very low pre-intervention values
were not included in the analyses. More specifically, if pre-intervention LDL < 60 mg/dL,
pre-intervention HbA1C < 5.5%, pre-intervention diastolic B.P. < 40 mm of Hg, and pre-
intervention systolic B.P. < 90 mm of Hg, individuals were excluded from the respective
analysis. We also excluded individuals with two extremely high values (above 350) of
post-intervention LDL cholesterol from the analysis for LDL-cholesterol outcomes. The
population was comprised of 6378 individuals after exclusions.

2.4. Variables

Factors that affect the effectiveness of health interventions: We included clinical and geospa-
tial variables accounting for the majority of the National Academy of Medicine (NAM)
recommended social and behavioral domains and measures that influence health outcomes
and effectiveness of treatments [27,28]. We identified clinical, sociodemographic, and
area-level proxy variables that can be easily extracted from routinely collected clinical
and sociodemographic data in the EHR. The variables included for NAM recommended
domains were: (1) race and ethnicity, which was extracted at the individual-level from EHR;
(2) education, which is also a proxy for health literacy, was extracted at the neighborhood
level; (3) financial resource strain was extracted as poverty and access to healthy food at
the neighborhood level; (4) stress and depression were denoted by the presence of mood
disorders at an individual level from EHR; (5) physical activity opportunities were extracted
at neighborhood level; (6) tobacco and alcohol status was extracted at individual level from
EHR; (7) social connections and isolation were measured by marital status at individual
level in EHR and neighborhood-level social capital; and (8) intimate partner violence was
measured by neighborhood-level domestic violence injury rates.

Clinical and sociodemographic variables: We included basic demographic data such
as age, sex, and race/ethnicity. We extracted smoking and alcohol use status as of the
first day of the intervention. We extracted the total number of comorbidities, nurse care
manager contacts, and presence or absence of a mood disorder reported as of the last day
of the intervention based on the International Classification of Diseases, Ninth Revision,
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Clinical Modification diagnosis codes (ICD 9 codes). As baseline cardiometabolic measures,
including body mass index (BMI), are used by clinicians for CVD risk stratification, we
adjusted for baseline values of cardiometabolic measures. As the LIGHT2 program was
focused on nurse-led care coordination for healthcare utilization and chronic disease
management, we adjusted for health resource utilization, nurse care manager contacts, and
the number of comorbidities. We defined high-resource healthcare utilizers as individuals
with four or more emergency room visits or two or more inpatient encounters in the
previous 12 months.

Geospatial variables: The patient’s residential address and primary care physician’s
(PCP) clinic addresses were geocoded using ArcGIS Online World Geocoding Service [29].
We included neighborhood-level measures of poverty, education, social capital, domestic
violence injury rates, access to healthy food and physical activity, and driving distance
to primary care clinics. If a patient was seen at two or more primary care clinic locations
during the intervention period, we coded the distance to the clinic as missing to avoid
misattributions. For calculating the travel distance to the closest grocery store from patients’
geocoded address, supermarket locations were obtained from the Reference USA US Busi-
nesses dataset [30,31]. The neighborhood-level poverty was extracted using the percentage
of population <200% federal poverty level (FPL) and was extracted at the census-tract level,
and the percentage of the population without high a school diploma was determined at the
census-block group level [32]. Neighborhood social capital for patients’ ZIP-code level was
assessed using the number of civic or social organizations per capita, obtained by summa-
rizing data from the 2017 U.S. Census Bureau ZIP code Business Patterns [33]. Domestic
violence injury rates were extracted at the ZIP-code level of the patient’s geocoded address.
To assess opportunities for physical activity, we generated WalkScore™ values for each
patient’s census block [34]. The visual assessment found that the WalkScore™ dataset did
not represent physical activity opportunities in areas with networks of unpaved trails, such
as our local county and rural areas; hence, we excluded these measures. See Supplementary
File S1 for a detailed description of methods used for determining neighborhood-level
social risks in our analysis.

2.5. Statistical Methods

After adjusting for covariates, we examined post-intervention HbA1C, LDL, and
B.P. controlling for pre-intervention values (from before the 1 July 2013 nurse-led care
coordination start date to after the end of the project in June 2015). A dataset was created
with de-identified records for each patient containing their clinical and sociodemographic
information and geocoded residential addresses. Geocoded residential addresses of patients
were used to extract neighborhood-level variables. The data analysis was conducted on data
between November 2019 and October 2020. We fitted a separate generalized linear model
(GLM) for each of these measures as the dependent variable. We adjusted for covariates,
including pre-intervention measures and pre-intervention body mass index (BMI). The
GLM model assumptions were checked. Using the Pearson correlation between continuous
variables, we chose one variable from each group of variables. Variance Inflation Factors
(VIF) were calculated as 1/(type I tolerance) of the GLM model for categorical variables,
and a cutoff point of 5 was used. The overall fit of the models was assessed using the
coefficient of determinations (R2). The R2 value shows the percentage of variance in the
dependent variable that is predictable from the independent variables collectively and
gives the strength of the relationship. Although there is no standard for acceptable R2, it
is suggested that the R2 values of 0.02, 0.13, 0.26 correspond to small, medium, and large
effect sizes, respectively [35]. We report statistical significance at p < 0.05. The analysis was
performed using SAS software.

Model 1: Included covariates readily available in the clinical chart as follows: age,
gender, race/ethnicity, marital status, smoking status, alcohol use, healthcare utilization
12 months before the study’s start date, pre-intervention cardiometabolic measure levels,
pre-intervention BMI, presence of mood disorder, total number of chronic health conditions,
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and total number of nurse care manager contacts during the study period. Significant
interactions between the covariates and the pre-intervention values were included in the
model.

Model 2: Included the covariates in Model 1 and also included neighborhood-level
measures of poverty, education, social capital, and domestic violence injury rates.

Model 3: Included the covariates in Model 2 and added physical determinants of
access to healthy food (grocery store) and healthcare (PCP clinic location) from the patient’s
geocoded address.

Parsimonious Model: We used a backward-selection technique, with a level of significance
of 0.05 to obtain a parsimonious model. Parsimonious models achieve better predictability
and desired level of goodness of fit with as few explanatory variables as possible.

At the census-block group level, we noted collinearity among the percentage of the
population below 200% of the FPL and the Area Deprivation Index [36]. Thus, we in-
cluded only the percentage of the population below 200% of the FPL in our models. We
dichotomized driving time to PCP clinic location to 30 min or less and over 30 min, as
Health Professional Shortage Area (HPSA) designation utilizes driving time of more than 30
to 40 min to the nearest source of care as one of the scoring criteria [37]. Based on frequency
distributions and outliers, we represented the percentage of the population without a high
school diploma and the number of nurse care manager contacts as categorical variables
by quartiles.

Sensitivity analysis: We performed two additional analyses for each outcome: (1) We
fitted a mixed-effects model to test for random variability across clinics. (2) We fitted a
mixed-effects model to test for random variability across all included patients’ census tracts
(137 census tracts). Various area-level measures included in our analyses were associated
with different geographic areas; hence, an overall nested analysis was not possible.

Power analysis: There were 8593 participants in the LIGHT2 cohort. With 6000 partici-
pants, we were well-powered to detect clinically important differences in CVD risk factors.
For example, we will be able to detect a 4 mm difference in systolic blood pressure at the
0.05 level of significance with greater than 85% power.

3. Results

Of 8593 eligible participants in the LIGHT2 cohort, 6378 participants had at least one
cardiometabolic measure reported both before and after the intervention. The Figure 1
Flow Diagram illustrates the derivation of participants for each cardiometabolic measure.

The cohort description is included in Table 1. Because our cohort was primarily White,
non-Hispanic ethnicity (86.3%), we dichotomized the race/ethnicity variable. The presence
of mood disorder was reported in 1475 (23.13%) participants, of which 32.36% were male
participants and 67.64% were female participants.

Table 1. Characteristics of the study sample (N = 6378).

Variable Total

Demographics

Age (mean, SD) 62.67 (18.5)

Sex (frequency [%])

Female 3928 (61.59)

Male 2450 (38.41)

Race (frequency [%])

White non-Hispanic 5507 (86.34)

Other 871 (13.66)
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Table 1. Cont.

Variable Total

Marital status (frequency [%])

Married 2746 (43.05)

Other 892 (13.99)

Single 1622 (25.43)

Widowed 1118 (17.53)

Cardiometabolic measures (mean, S.D.)

Pre-intervention LDL (mg/dL) 106.26 (31.55)

Post-intervention LDL (mg/dL) 99.41 (36.22)

Pre-intervention HbA1c (%) 6.94 (1.43)

Post-intervention HbA1c (%) 7.09 (1.53)

Pre-intervention systolic BP (mm of Hg) 132.74 (14.17)

Post-intervention systolic BP (mm of Hg) 131.14 (17.61)

Pre-intervention diastolic BP (mm of Hg) 75.83 (7.64)

Post-intervention diastolic BP (mm of Hg) 75.05 (9.69)

Neighborhood characteristics

Percentage of population below 200% of the FPL (mean, SD) for
patient’s census-tract 36.14 (14.30)

Percentage of population that did not graduate from high school
for patient’s census-block group (frequency [%])

Quartile 1: <3.17% 2049 (32.13)

Quartile 2: 3.17–8.79% 1519 (23.82)

Quartile 3: 8.79–14.06% 1325 (20.77)

Quartile 4: >14.06% 1485 (23.28)

Domestic violence injury rates (per 1000) for patient zip codes,
2011–2015 (mean, SD) 0.39 (0.37)

Distance to nearest grocery store from patient’s geocoded address
(miles) 3.42 (3.69)

Number of civic or social organizations per capita for patient zip
codes (mean, SD) 13.10 (4.9)

Health characteristics

Number of comorbidities 4.89 (4.23)

Pre-intervention body mass index (kg/m2) 30.35 (7.71)

Current smoking (frequency [%])

Yes 1455 (22.81)

No 4810 (75.42)

Missing 113 (1.77)

High-risk alcohol use (frequency [%])

Yes 110 (1.72)

Unknown 6368 (98.28)

Presence of mood disorder (frequency [%])

Yes 1475 (23.13)

Unknown 4903 (76.87)
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Table 1. Cont.

Variable Total

Total number of nurse care manager contacts during the study
period (frequency [%])

Quartile 1: <5 1504 (23.58)

Quartile 2: 5–10 1489 (23.35)

Quartile 3: 11–21 1745 (27.36)

Quartile 4: >22 1640 (25.71)

High versus low healthcare resource utilizer (frequency [%])

High utilizer 778 (12.2)

Low utilizer 5600 (87.8)

Travel time to PCP office from geocoded addresses (frequency [%])

<=30 min 4004 (62.78)

>30 min 1331 (20.87)

Unknown 1043 (16.35)
SD = standard deviation, LDL = low density lipoprotein cholesterol, HbA1c = glycosylated hemoglobin,
BP = blood pressure, FPL = federal poverty level, PCP = primary care provider.
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We obtained LDL cholesterol outcomes for 2377 participants, HbA1C for 1290 partici-
pants, and B.P. outcomes for 4619 participants. The results of all models were consistent.
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The final parsimonious models showed significant worsening of LDL-cholesterol associated
with higher pre-intervention LDL-cholesterol levels (β 0.56, 95% CI 0.52 to 0.60, p < 0.001),
significant worsening of HbA1C associated with higher pre-intervention HbA1C levels
(main effect β 0.51, 95% CI 0.43 to 0.59, p < 0.001), significant worsening of systolic and
diastolic BP with higher pre-intervention systolic BP (main effect β 0.95, 95% CI 0.83 to 1.08,
p < 0.001), and higher pre-intervention diastolic BP (main effect β 0.83, 95% CI 0.75 to 0.91,
p < 0.001), respectively. LDL-cholesterol worsened for women compared with men (β 7.76,
95% CI 5.21 to 10.32, p < 0.001). There was a significant interaction between pre-intervention
HbA1C and gender (main effect β−1.29, 95% CI −1.95 to −0.62, p < 0.001; interaction effect
β 0.19, 95% CI 0.09 to 0.28, p < 0.001), with HbA1C worsening if the pre-intervention HbA1C
was more than 6.8% in women compared with men (Figure S3). The interaction between
gender and pre-intervention systolic BP levels (main effect β−7.86, 95% CI −15.55 to −0.17
p = 0.045; interaction effect β 0.06, 95% CI 0.002 to 0.12, p = 0.043) indicates worsening
trend in systolic BP for women compared with men with pre-intervention systolic BP level
>131 mm Hg. All other associations were inconsistent across all cardiometabolic measures.
The coefficient of determinations (R2) did not change significantly with the addition of
neighborhood-level variables. See Tables 2–4 for results from parsimonious models for LDL-
cholesterol, HbA1C, and systolic B.P. outcomes and Supplementary Table S1 for results
from the parsimonious model for diastolic B.P. outcomes. See Supplementary Tables S2–S5
for detailed models for all measures and R2 for all models. See Supplementary Figures S1
and S2 for the interaction of female sex with pre-intervention systolic B.P. on adjusted
change in systolic B.P. and diastolic B.P., respectively. See Supplementary Figure S3 for the
interaction of female sex with pre-intervention HbA1C on adjusted change in HbA1C. The
interaction between female sex and mood disorder was only significant for diastolic BP
outcomes (main effect β −5.33, 95% CI −9.75 to −0.19 p = 0.018; interaction effect β 1.63,
95% CI 0.55 to 2.98, p = 0.003). The results from both the mixed-effects model for clinics
and census tracts show no significant changes in the parameter estimates for significant
associations. Supplementary Tables S6–S9 give the solution to the random effect of clinics
and the variability.

Table 2. Results of Parsimonious model for LDL cholesterol outcome (R2 = 0.29).

Parameter Adjusted β (95%
Confidence Limits) p-Value

Intercept 68.66 (57.87, 79.44) <0.001

Pre-intervention BMI −0.19 (−0.35, −0.02) 0.02

Pre-intervention LDL 0.56 (0.52, 0.60) <0.001

Female (ref = male) 7.76 (5.21, 10.32) <0.001

Non-White race (ref = White) −3.43 (−7.24, 0.38) 0.077

Age −0.26 (−0.36, −0.17) <0.001

Number of comorbidities −0.47 (−0.79, −0.15) 0.004

Percentage of area population below
200% of the FPL −0.14 (-0.23, −0.05) 0.002

Domestic violence injury
hospitalization rate (per
1000 population)

−5.78 (−9.24, −2.33) 0.001

LDL = low density lipoprotein, BMI = body mass index (kg/m2), ref = reference category, FPL = federal poverty
level, R2 = unadjusted coefficient of determinations.
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Table 3. Results of Parsimonious model for HbA1C outcome (R2 = 0.39).

Parameter Adjusted β (95%
Confidence Limits) p-Value

Intercept 3.73 (2.93, 4.53) <0.001

Pre-intervention HbA1C 0.51 (0.43, 0.59) <0.001

Female (ref = male) −1.29 (−1.95, −0.62) <0.001

Pre-intervention HbA1C × female sex 0.19 (0.09, 0.28) <0.001

Non-White race (ref = White) −1.16 (−1.94, −0.37) 0.004

Pre-intervention HbA1C ×
non-White race 0.14 (0.03, 0.25) 0.01

Age −0.006 (−0.012, −0.00001) 0.05

Current smoker (ref = No)
Yes −0.20 (−0.38, −0.017) 0.03
Unknown −0.58 (−1.16, −0003) 0.05

Civic and social associations rate (per
100,000 population) 0.01 (−0.0008, 0.026) 0.06

Distance to nearest grocery store from
patient’s geocoded address in miles 0.01 (−0.007, 0.03) 0.25

HbA1C = hemoglobin A1C; ref = reference category, × = interaction symbol, R2 = unadjusted coefficient of
determinations).

Table 4. Results of Parsimonious model for Systolic B.P. (R2 = 0.43).

Parameter Adjusted β (95%
Confidence Limits) p-Value

Intercept −3.68 (−19.70, 12.34) 0.65

Pre-intervention BMI 0.096 (0.04, 0.15) <0.001

Pre-intervention SBP 0.95 (0.83, 1.08) <0.001

Female (ref = Male) −7.86 (−15.55, −0.17) 0.045

Pre-intervention SBP × female sex 0.06 (0.002, 0.12) 0.043

Age 0.38 (0.17, 0.60) <0.001

Pre-intervention SBP × age −0.003 (−0.004, −0.0008) 0.003

Number of comorbidities 0.10 (0.009, 0.19) 0.03

Female sex × mood disorder 1.81 (0.96, 1.9) 0.058

Percentage of area population below
200% of the FPL 0.30 (0.18, 0.43) <0.001

Pre-intervention DBP × Percentage of
area population below 200% of
the FPL

−0.004 (−005, −0.002) <0.001

Domestic violence injury
hospitalization rate (per 1000) 2.21 (1.16, 3.26) <0.001

BMI = body mass index (kg/m2), SBP = systolic blood pressure, FPL = Federal poverty level, DBP = diastolic
blood pressure, × = interaction symbol, R2 = unadjusted coefficient of determinations.

4. Discussion

In predominantly white suburban and rural participants from a two-year nurse-led
care coordination program, we found higher pre-intervention cardiometabolic measures
were associated with worsening post-intervention levels. Individuals with increased
cardiometabolic risks may not benefit from solely clinic-based care coordination and may
need additional support for self-management between clinic visits. Additionally, we
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found women’s LDL-cholesterol worsened compared with men, and women with high pre-
intervention HbA1C (>6.8%) and B.P. (>131 mm Hg systolic B.P.) became worse compared
with men despite clinic-based, nurse-led care coordination. In women with increased
cardiometabolic risks, there may be additional psychosocial or behavioral contexts that
may not be addressed by solely clinic-based care coordination. While there were some
inconsistent findings across outcomes, the addition of neighborhood-level risks based on
geocoded residential addresses did not significantly change the associations or fit of models
compared to models based on variables that are routinely available in clinical charts. This is
consistent with previous studies investigating the impact of community-level determinants
on risk predictions and outcomes [21,38,39]. There may be additional gender-specific social
and behavioral contexts that impact cardiometabolic risks that are not captured by EHR or
neighborhood-level variables.

Our results differ from several previous studies that have shown nurse case manage-
ment improves diabetes and hypertension control [40,41]. Our results may be different
from previous studies as nurses in the LIGHT2 program provided care coordination and
as-needed chronic disease education during clinic visits. Most other studies of nurse-led
interventions included additional case management or disease management components
delivered during and between clinic visits [40–42]. Individuals with higher baseline car-
diometabolic risks may have unresolved needs and preferences not addressed by solely
clinic-based care coordination. Gender is the only socially stratifying factor present in
>50% of our cohort [43]. Our findings of worsening cardiometabolic outcomes in women
compared with men when baseline B.P. and HbA1c were high may indicate additional
psychosocial contexts for women with uncontrolled hypertension or diabetes that limit
their ability to benefit from solely clinic-based interventions [44–47]. Further research
to understand and address gender-specific needs and preferences in individuals with
increased cardiometabolic risks may help tailor team-based care between the clinic and
community-based team members.

Strengths of our study: Our study is the first study assessing the interaction of clinical
factors and neighborhood-level social risks to identify individuals that may not benefit
from clinic-based care coordination. We only included variables that can be extracted
from clinical charts or based on the patient’s home address in the demographic section of
clinical charts to avoid burdening PCPs with additional individual social and behavioral
risk screenings [15,16]. We separated our models based on covariates available in clinical
charts, covariates extracted at the neighborhood-level (zip code or census tract), and
covariates extracted by calculating the distance from geocoded addresses. In addition to
variables accounting for the NAM recommended social and behavioral domains, our study
included one factor associated with each of the five key areas of social determinants of
health included in the place-based organizing framework developed by Healthy People
2020; namely, economic stability, education, social and community context, neighborhood
environment, and healthcare [48,49].

Weaknesses of our Study: We acknowledge several limitations. First, the cohort consists
of Medicaid, Medicare, or dual-eligible beneficiaries of predominantly white, non-Hispanic
ethnicity from Midwestern primary care clinics, which may limit the generalizability of our
findings. Second, physical activity is one of the primary CVD risk factors, but we could not
identify reliable neighborhood-level measures of physical activity opportunities for our
cohort of suburban and rural participants [50,51]. Third, though burdensome, individual-
level social and behavior risks, rather than neighborhood-level risks, can improve the
ability to predict which patients may benefit from supplementary clinic-community linked
interventions [38,52,53]. Lastly, we acknowledge that the LIGHT2 care coordination pro-
gram focused on super-utilizers and reducing care fragmentation rather than reducing
health disparities [22].
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5. Conclusions

We found higher baseline cardiometabolic risks and gender were commonly associated
with worsening cardiometabolic outcomes in predominantly White suburban and rural
participants from a clinic-based care coordination program. The addition of neighborhood-
level risks based on patients’ residential addresses did not change estimates of associations
beyond routinely collected clinical and sociodemographic data in EHR. Further research to
understand gender-specific needs and preferences of individuals with increased cardiovas-
cular risks may aid in tailoring clinic-community-linked team-based care.
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