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Abstract: Photodynamic therapy (PDT) is a promising alternative to conventional cancer treatment
methods. Nonetheless, improvement of in vivo light penetration and cancer cell-targeting
efficiency remain major challenges in clinical photodynamic therapy. This study aimed to develop
multifunctional magnetic nanoparticles conjugated with a photosensitizer (PS) and cancer-targeting
molecules via a simple surface modification process for PDT. To selectively target cancer cells and
PDT functionality, core magnetic (Fe3O4) nanoparticles were covalently bound with chlorin e6
(Ce6) as a PS and folic acid (FA). When irradiated with a 660-nm long-wavelength light source,
the Fe3O4-Ce6-FA nanoparticles with good biocompatibility exerted marked anticancer effects
via apoptosis, as confirmed by analyzing the translocation of the plasma membrane, nuclear
fragmentation, activities of caspase-3/7 in prostate (PC-3) and breast (MCF-7) cancer cells. Ce6,
used herein as a PS, is thus more useful for PDT because of its ability to produce a high singlet oxygen
quantum yield, which is owed to deep penetration by virtue of its long-wavelength absorption band;
however, further in vivo studies are required to verify its biological effects for clinical applications.

Keywords: multifunctional magnetic nanoparticles; chlorin e6; folic acid; in vivo penetration depth;
cancer cell targeting

1. Introduction

Cancer is a leading cause of mortality worldwide. Every year, an estimated 11 million individuals
are diagnosed with cancer, and approximately 7 million individuals die of cancer according to the
World Health Organization (WHO) [1]. Therefore, cancer currently ranks among the deadliest diseases,
and advancements in medical technology have yielded various methods for cancer treatment over
the last few decades [2]. Among them, traditional chemotherapy is limited by its severe toxicity,
poor tumor-specific delivery, and the possibility of inducing multi-drug resistance [3–5]. However,
in comparison with chemotherapy, photodynamic therapy (PDT) offers certain unique advantages
including minimal invasiveness, fewer side effects, negligible chemotherapeutic resistance, and low
systematic toxicity [6–8].
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In PDT, photosensitizers (PS) are the key components that transfer photo-energy to the
surrounding O2 molecules, generating reactive oxygen species (ROS), primarily singlet oxygen
(1O2), to eliminate proximal cancer cells [9–12]. According to a recent study, various PSs have
developed, which absorb light over a broad range from ultraviolet (UV) to the near-infrared (NIR)
range [13,14]. However, the absorption bands of many PSs are primarily in the UV-Vis region [15,16].
Furthermore, the PSs with the absorption band in the NIR range have low 1O2 quantum yield
owing to a low population of PSs in the triplet state [17,18]. Therefore, these PSs are often limited
by their low 1O2 quantum yields, and low depth of penetration resulting from a short excitation
wavelength [15,16]. In addition, currently available PSs are mostly nonspecifically activated and have
poor water solubility and stability and low accumulation at the target site, resulting in treatment-related
toxicity, light-induced degradation of drug molecules, and other side effects on adjacent normal tissue
and blood cells [6,19–21]. To overcome these limitations, various inorganic and organic nanocarriers,
including Fe3O4 nanoclusters, Au nanoparticles, graphene oxide, mesoporous silica nanoparticles,
and polymer micelles, have been used to improve the stability and therapeutic outcomes of these
PSs [22–26]. Nonetheless, the development of multifunctional nanoparticles with enhanced anticancer
efficiency remains a major challenge in PDT.

Herein, to achieve enhanced photodynamic anticancer activity, we designed and fabricated a novel
Fe3O4 nanoparticle conjugated with chlorin e6 (Ce6) and folic acid (FA) (Fe3O4-Ce6-FA) via simple
surface modification. To enhance the PDT efficiency, magnetic core particles were conjugated with
Ce6 and FA as PDT agents to increase the in vivo penetration depth of the light source and selectively
eliminate cancer cells. In addition, we evaluated the efficiency of the Fe3O4-Ce6-FA nanoparticles
for specific targeting and photodynamic anticancer activity in vitro. The Fe3O4-Ce6-FA nanoparticles
developed herein could be a promising multifunctional nanoreagent for photodynamic tumor therapy
and multifunctional drug delivery in the future.

2. Results and Discussion

2.1. Characterization of Multifunctional Fe3O4-Ce6-FA

Multifunctional 20-nm Fe3O4-Ce6-FA nanoparticles were fabricated via a simple surface
modification via a wet chemical process as shown in Scheme 1. Ce6, having a long-wavelength
absorption band and high singlet oxygen quantum yield, was conjugated with Fe ions on the
surface of the Fe3O4 nanoparticles via esterification. Additionally, the multifunctional nanoparticles
were functionalized with FA used as a targeting molecule to deliver these particles to the cancer
cell membrane.
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Scheme 1. Fabrication procedure for the multifunctional magnetic nanoparticles.

Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM),
and X-ray diffraction (XRD) analysis were performed to confirm the appearance, size distribution,
and crystallinity of the Fe3O4-Ce6-FA nanoparticles. As shown in Figure 1a,b, Fe3O4-Ce6-FA
nanoparticles had a uniform spherical structure and a rough surface, measuring approximately
20 nm in diameter (Figure 1a inset). High-resolution TEM (HRTEM) images revealed regular parallel
lattice fringes, indicating the high crystallinity of the Fe3O4-Ce6-FA nanoparticles (inset of Figure 1b).
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The lattice spacing of 0.26 nm was consistent with the in-plane lattice spacing of the (311) planes in the
typical spinel structure of magnetite nanoparticles. The size histogram indicates that the average size
of the particles was 19.8 nm with a distribution of 1.16 nm (Figure 1c). The wide-angle XRD pattern
of Fe3O4-Ce6-FA nanoparticles can be indexed to the typical cubic structure of spinel Fe3O4 (JCPDS
No. 19-629). The six strong Bragg reflection peaks (2θ = 30.2◦, 35.7◦, 43.4◦, 53.6◦, 57.4◦, 63.0◦), marked
by their Miller indices ((220), (311), (400), (422), (511), and (440)) were obtained from standard Fe3O4

powder diffraction data (Figure 1d).
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Figure 1. Structural analysis of the cholrin6- and folic acid-conjugated magnetite (Fe3O4-Ce6-FA)
nanoparticles. (a) Field emission scanning electron and (b) transmission electron micrographs of the
Fe3O4-Ce6-FA nanoparticles; (c) histogram of particle size distribution; (d) X-ray diffraction pattern of
the Fe3O4-Ce6-FA nanoparticles.

Figure 2a shows the magnetic hysteresis loops of pure Fe3O4 and Fe3O4-Ce6-FA nanoparticles
at room temperature. As shown, both samples exhibited superparamagnetic behavior without
obvious remnant magnetization and coercivity owing to their small magnetite nanocrystal composition.
The saturation magnetization (Ms) of pure Fe3O4 was 80.5 emu/g. After coating with PS and FA,
the Ms of Fe3O4-Ce6-FA nanoparticles decreased to 58.5 emu/g. The minor reduction in magnetization
primarily resulted from the reduction in the density of Fe3O4 due to the presence of non-magnetic
coating layers. However, the Fe3O4-Ce6-FA nanoparticles (20 nm) still showed strong magnetization,
thereby suggesting their suitability for magnetic separation and magnetic resonance (MR) imaging.

Figure 2b shows the photoluminescence (PL) and photoluminescence excitation (PLE) spectra
of the pure Ce6 and the Fe3O4-Ce6-FA nanoparticles in THF. Ce6 displayed three main UV-Vis
absorption peaks with an intense Soret band at 400 nm and two relatively weak Q-bands at 500 and
662 nm, respectively. After encapsulation of the Fe3O4 nanoparticles, a remarkable red shift and
peak broadening in the UV-Vis spectrum of Fe3O4-Ce6-FA nanoparticles were observed, indicating
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the strong bonding between Ce6 and the magnetite nanoparticle [27]. Upon excitation at 660 nm,
free Ce6 exhibited two strong emission peaks at 672 and 707 nm. The Fe3O4-Ce6-FA nanoparticles
also exhibited a red shift and broadening compared with free Ce6, concurrent with the phenomenon
observed during absorption.
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Figure 2. Magnetic and optical properties of the cholrin6- and folic acid-conjugated magnetite
(Fe3O4-Ce6-FA) nanoparticles. (a) Room temperature magnetic hysteresis loops of pure Fe3O4 and
Fe3O4-Ce6-FA nanoparticles; (b) Photoluminescence and photoluminescence excitation spectra of free
Ce6 and the Fe3O4-Ce6-FA in THF.

We used 1,3-diphenylisobenzofuran (DPBF), a specific 1O2 probe, to quantify the 1O2 generated
from the Fe3O4-Ce6-FA nanoparticles by monitoring the absorbance of DPBF at 424 nm. Figure 3a
exhibits the time-dependent UV-Vis absorption spectra of complexes of DPBF and Fe3O4-Ce6-FA in
ethanol, which were irradiated with a red light-emitting diode (LED) light source. Upon excitation at
660 nm, the intensity of the absorbance peak of DPBF at 424 nm decreased gradually with the increase in
irradiation time in the presence of the Fe3O4-Ce6-FA nanoparticles (Figure 3b). In the blank condition,
no appreciable degradation of DPBF was observed after irradiation for 35 min. Near-complete
photodegradation of DPBF in the presence of Fe3O4-Ce6-FA nanoparticles was observed within 35 min.
This clearly indicates that the Fe3O4-Ce6-FA nanoparticles can effectively generate the 1O2 ROS.
Based on the reaction kinetics, which was well fitted into the equation In(C/C0) = −kobs × time (min),
the apparent first-order rate constant, kobs, of DPBF photo-oxidation was 0.05094 min−1 for the
Fe3O4-Ce6-FA nanoparticles (Figure 3c).
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folic acid-conjugated magnetite (Fe3O4-Ce6-FA) nanoparticles in accordance with the irradiation time
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as a function of irradiation time; (c) Comparison of first-order degradation rates of DPBF.

2.2. In Vitro Cytotoxicity of Multifunctional Fe3O4-Ce6-FA Nanoparticles

For biomaterials to be used for biomedical applications, a basic biocompatibility assay is necessary
to evaluate their cytotoxicity. Therefore, the in vitro cytotoxicity of Fe3O4-Ce6-FA was evaluated in
normal fibroblast (L-929), breast cancer (MCF-7), and prostate cancer (PC-3) cell lines, as described
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previously [28–33]. Twofold-diluted concentrations of Fe3O4-Ce6-FA from 100 to 6.25 µg/mL were
tested, and non-treated cells constituted the control. As shown in Figure 4a, the cell viabilities of all
cells exceeded 95%, indicating that Fe3O4-Ce6-FA displayed no cytotoxicity in all cells, suggesting that
Fe3O4-Ce6-FA nanoparticles may have biomedical applications with excellent biocompatibility.
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Figure 4. Biocompatibility and photodynamic anticancer activities of chlorin e6 and folic
acid-conjugated magnetite (Fe3O4-Ce6-FA) nanoparticles. (a) Cytotoxicity and (b) phototoxicity of
Fe3O4-Ce6-FA nanoparticles in MCF-7 (breast adenocarcinoma) and PC-3 (prostate adenocarcinoma)
cell lines. Quantitative data are expressed as the mean ± standard deviation (n = 4), and the
statistical comparisons were evaluated using Student’s t-test. Significant differences were indicated
by p < 0.05 (*** p < 0.0005 vs. control). (c) Images of MCF-7 and PC-3 cells after staining with
fluorescein isothiocyanate-conjugated Annexin V (Annexin V-FITC) thus demonstrating the membrane
translocation of the cells. The green fluorescence signal was produced by Annexin V-FITC. “FCF”
represents Fe3O4-Ce6-FA nanoparticles. Scale bar = 50 µm. (d) Nuclear fragmentation and caspase-3/7
activity in MCF-7 and PC-3 cells. The cells were stained with Hoechst 33342 to detect nuclear
fragmentation and CellEvent Caspase-3/7 Green Detection reagent to detect caspase-3/7 activity
after 6 h post photodynamic therapy at 20 mW for 30 min. Arrows represent apoptotic bodies of cells.
Scale bar= 30 µm.

2.3. In Vitro Photodynamic Anticancer Activity of Fe3O4-Ce6-FA Nanoparticles

To confirm the photo-killing ability of Fe3O4-Ce6-FA nanoparticles, PC-3 and MCF-7 cell lines were
exposed to LED irradiation for 10 min after incubation with various concentrations of Fe3O4-Ce6-FA
nanoparticles for 2 h. As shown in Figure 4b, cell viabilities of the two cell lines were significantly
decreased with an increase in nanoparticle concentration, and the cell viability of PC-3 cells was
even more drastically decreased compared to that of MCF-7 cells, even at the lowest concentration
of 6.25 µg/mL. This indicated that the photo-killing efficacy of Fe3O4-Ce6-FA nanoparticles was
concentration-dependent. Moreover, Fe3O4-Ce6-FA nanoparticles are more effective than Fe3O4

conjugated with hematoporphyrins (HPs) and FA, as reported previously [30,31]. The PS (Ce6)
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used herein is more applicable for PDT owing to its attributes, which include a high singlet oxygen
quantum yield and long-wavelength absorption band, resulting in deeper light penetration in vivo
compared with HP-conjugated nanoparticles. In other words, the photodynamic anticancer efficacy
of Fe3O4-Ce6-FA nanoparticles was closely associated with singlet oxygen quantum yield and the
concentration of the Fe3O4-Ce6-FA nanoparticles.

Considering the photodynamic anticancer activity of Fe3O4-Ce6-FA nanoparticles, the mechanisms
underlying cancer cell death were evaluated via analysis of the translocation of the plasma membrane,
using an Annexin V-fluorescein isothiocyanate (FITC) apoptosis detection kit, nuclear fragmentation
using a fluorescent dye (Hoechst 33342), and enzyme activities of caspase-3/7 using a CellEvent
Caspase-3/7 Green Detection reagent. First, PC-3 and MCF-7 cells were stained with Annexin
V-FITC reagent post-irradiation after incubation with Fe3O4-Ce6-FA nanoparticles for 2 h to confirm
phosphatidylserine translocation from the intracellular to the extracellular leaflet of the plasma
membrane, which is a hallmark of the early stage of apoptotic cell death. Figure 4c shows the images
of live and apoptotic cells stained with Annexin V-FITC, post-irradiation. Both cell types (MCF-7 and
PC-3) in the Fe3O4-Ce6-FA nanoparticle-treated groups showed green fluorescence, whereas control
cells did not. These results indicate that PDT following treatment with Fe3O4-Ce6-FA nanoparticles
induced cancer cell death via apoptosis.

Additionally, nuclear fragmentation of cancer cells, which is also a hallmark of apoptotic cell
death, was confirmed via staining with Hoechst 33342 dye. As shown in Figure 4d, the nuclei of
both cell types treated with Fe3O4-Ce6-FA nanoparticles were more condensed than those of control
cells, and most nuclei of PC-3 cells rapidly changed to granular apoptotic nuclear bodies. However,
no changes were detected in the control cells of both cell lines. These results also indicated that
irradiation after treatment with Fe3O4-Ce6-FA nanoparticles enhanced apoptotic cell death.

Finally, caspase-3/7 activity, which essentially contributes to apoptotic cell death, were also
evaluated using a fluorogenic substrate highly specific for activated caspase-3 and -7. As shown
in Figure 4d, both cell types (MCF-7 and PC-3) treated with Fe3O4-Ce6-FA nanoparticles showed
strong green fluorescence. Moreover, the PC-3 cells treated with Fe3O4-Ce6-FA nanoparticles showed
morphological changes following irradiation, as indicated by the presence of apoptotic cellular bodies.
These results indicate that cells treated with Fe3O4-Ce6-FA nanoparticles expressed high amounts of
activated caspase-3 and -7 upon irradiation, and that the cells underwent apoptotic cell death. Overall,
the results indicate that Fe3O4-Ce6-FA nanoparticles induced apoptotic cell death.

3. Materials and Methods

3.1. Preparation of Fe3O4-Ce6-FA Nanoparticles

Multifunctional Fe3O4-Ce6-FA nanocomposites were synthesized in accordance with a previously
reported procedure with minor modifications [28]. In brief, FeCl3·6H2O (0.54 g) and NaAc·3H2O
(1.5 g) in 20 mL ethylene glycol (EG) and diethylene glycol (DEG) (1:19) were added in a 200 mL
round-bottom flask, and the mixture was vigorously stirred for 30 min. Thereafter, the yellowish
homogeneous solution formed was sealed in a teflon-lined stainless steel autoclave. The autoclave
was heated to and maintained at 200 ◦C for 10 h and cooled to ambient temperature. The black
precipitate was harvested via magnetic decantation, washed with deionized water and absolute
alcohol several times, and then dried in a vacuum oven at 60 ◦C for 12 h. The photoactive and targeting
functionalities of the Fe3O4 nanoparticles were achieved using a wet chemical process similar to our
previous method [29]. Briefly, 20 mg of precipitated Fe3O4 nanoparticles with 20 nm size were mixed
with a solution of Ce6/EtOH (final concentration, 10−4 M). The Ce6 molecules are easily conjugated
to the surface of magnetite nanoparticles owing to the three terminal carboxyl groups, which initiate
covalent bonding. Furthermore, the Ce6 molecules have a high singlet oxygen quantum yield of
0.77 in solution [34]. This value of singlet oxygen quantum yield is higher than that of the other
photosensitizers such as hematoporphyrin (0.51) [35] and protoporphyrin (0.63) [36]. The solution was
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vigorously agitated for 24 h at room temperature. After the reaction was completed, the product was
washed several times with EtOH. To facilitate targeting functionality, the FA molecules were conjugated
to Ce6-bonded Fe3O4 nanoparticles (Fe3O4-Ce6). Similarly, the washed Fe3O4-Ce6 nanoparticles were
fully dispersed in 20 mL of FA/dimethylsulfoxide (DMSO) solution (3.7 × 10−4 M). The mixture
solution was stirred for another 5 h at 25 ◦C. The Fe3O4-Ce6-FA nanocomposites were separated
via magnetic decantation and washed with DMSO and phosphate-buffered saline (PBS; pH = 7.2)
several times. Thereafter, the resulting nanoparticles were finally dried in vacuum at room temperature
for 24 h. The concentration of HP and FA bonded to the surfaces of the Fe3O4 nanoparticles was
estimated using UV-Vis absorption spectroscopy.

3.2. Physical Characterization of Multifunctional Fe3O4-Ce6-FA Particles

TEM (JEM-2100F, JEOL, Tokyo, Japan) and FE-SEM (SU-70, Hitachi, Tokyo, Japan) were performed
to study the morphology of the multifunctional nanoparticles. The crystallographic structure of the
composite particles was investigated via XRD (X’Pert Pro MPD, PANalytical, Almelo, Netherlands),
using Cu Kα radiation. A vibrating sample magnetometer (VSM; Lakeshore 7300, Lake Shore
Cryotronics, Westerville, OH, USA) was used to obtain magnetization versus magnetic field loop up to
H = 10 kOe at room temperature. Steady-state absorption and PL and PLE spectra were measured
using a UV–Vis spectrophotometer (U-2800, Hitachi, Tokyo, Japan) and spectrofluorometer (F-4500,
Hitachi, Tokyo, Japan), respectively.

3.3. Biocompatibility of Fe3O4-Ce6-FA Nanoparticles

Cytotoxicity of the Fe3O4-Ce6-FA (FCF) nanoparticles was evaluated in L-929 (mouse fibroblasts),
MCF-7 (breast adenocarcinoma), and PC-3 (prostate adenocarcinoma) cell lines, as described
previously [28–33]. Briefly, all cells were seeded in a 24-well plate at 1.5 × 105 cells/mL and incubated
at 37 ◦C in 5% CO2 for 24 h, followed by further incubation with various concentrations (0, 6.25,
12.5, 25, 50, and 100 µg/mL) of FCF nanoparticles after exchanging the media with fresh media, in
the dark. After another 24 h incubation, the viable cells were quantified using Cell Counting Kit-8
(CCK-8; Dojindo Laboratories, Kumamoto, Japan) assay reagent in accordance with the manufacturer’s
instructions after washing three times with Dulbecco’s phosphate-buffered saline (DPBS). The optical
density for each well was measured using a multimode microplate reader (Cytation 3, BioTek
Instruments, Inc., Winooski, VT, USA) with an optical filter at 450 nm, and cell viability was determined
in comparison with the untreated control.

3.4. Photodynamic Anticancer Activity of Multifunctional FCF Nanoparticles

Anticancer activity of the FCF nanoparticles was also assessed in MCF-7 and PC-3 cells on
the basis of cell viability determined using CCK-8 after irradiation, as described previously [33–36].
Each cell type was plated in a 24-well plate at the same concentration and incubated as described
in 3.3. Thereafter, the cells were further incubated with various concentrations (0, 6.25, 12.5, 25, 50,
and 100 µg/mL) of FCF nanoparticles for 2 h in the dark, followed by three washes with DPBS,
replenishment of the media, and irradiation with a red light-emitting diode (LED; FD-332R-N1,
Fedy Technology Co., Shenzhen, China). The LEDs were driven using a constant current buck driver
(LED-2800, TMC Co., Gunpo, Korea) and light intensity was regulated via pulse width modulation
(CB210, Comfile Technology, Seoul, Korea). LED irradiation was applied at a maximum wavelength of
660 nm at 20 mW/cm2. After irradiation for 30 min, cancer cells were further incubated for 24 h, and
cell viability was determined via a CCK-8 assay, as described in Section 3.3.

To evaluate the mechanisms underlying cancer cell death by Fe3O4-Ce6-FA after irradiation,
both cancer cell types pre-cultured for 24 h were further incubated with 12.5 µg/mL of FCF after
replenishing media in the dark. After 2 h of incubation, each cell type was irradiated with LED light at
the same power for 10 min, as described previously in this section, and further incubated for 6 h to
induce cell death. Thereafter, the plasma membranes and nuclei of both cell types were stained with
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an Annexin V-FITC apoptosis detection reagent (Komabiotech Inc., Seoul, Korea), Hoechst 33342 dye
(Invitrogen, Molecular Probes, Eugene, OR, USA), and a CellEvent Caspase-3/7 Green Detection
reagent (Invitrogen) in accordance with the manufacturers’ instructions. After staining each sample,
fluorescence microscopic images were acquired using an automated live cell imager (Lionheart FX;
BioTek Instruments, Inc., VT, USA).

4. Conclusions

In summary, we synthesized Fe3O4-Ce6-FA nanoparticles for FA receptor-targeted PDT. PS and
FA were covalently bound to the surface of the magnetite nanoparticles. The prepared multifunctional
Fe3O4-Ce6-FA nanocomposites had high water solubility and good biocompatibility without any
cytotoxicity. Moreover, Fe3O4-Ce6-FA exhibited more effective anticancer activity via apoptosis in
prostate (PC-3) and breast cancer (MCF-7) cell lines in comparison with Fe3O4 conjugated with HPs.
Thus, the PS (Ce6) used in this study is more useful for PDT applications owing to its ability to
produce a high singlet oxygen quantum yield and deep penetration owing to its long-wavelength
absorption band. However, further in vivo studies are required to verify its biological effects for clinical
applications, although we believe that our study makes a significant contribution to PDT because it
supports the use of chlorin e6 as a PS in multifunctional nanomaterials for effective PTD.
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