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Abstract: The translational motion of polymers is a complex process and has a big impact on polymer
structure and chemical reactivity. The process can be described by the segment velocity autocorrelation
function or its diffusion spectrum, which exhibit several characteristic features depending on the
observational time scale—from the Brownian delta function on a large time scale, to complex details
in a very short range. Several stepwise, more-complex models of translational dynamics thus
exist—from the Rouse regime over reptation motion to a combination of reptation and tube-Rouse
motion. Accordingly, different methods of measurement are applicable, from neutron scattering for
very short times to optical methods for very long times. In the intermediate regime, nuclear magnetic
resonance (NMR) is applicable—for microseconds, relaxometry, and for milliseconds, diffusometry.
We used a variation of the established diffusometric method of pulsed gradient spin-echo NMR to
measure the diffusion spectrum of a linear polyethylene melt by varying the gradient pulse width.
We were able to determine the characteristic relaxation time of the first mode of the tube-Rouse
motion. This result is a deviation from a Rouse model of polymer chain displacement at the crossover
from a square-root to linear time dependence, indicating a new long-term diffusion regime in which
the dynamics of the tube are also described by the Rouse model.

Keywords: diffusion; PGSE; NMR; Rouse; reptation

1. Introduction

Molten polymers are macromolecular systems with complex translational dynamics of entangled
chains and their segments being characterized by a large span of spatial and temporal scales.
These dynamics are an important factor in the functionality and reactivity of the molecules. High-density
entanglements, chain-bonds and cross-links prevent the formulation of an explicit theory of translational
dynamics, even on larger intra-molecular length scales. In general, translation is described in a 6N
phase space (N is the number of Kuhn segments of the chain) and studied by computer simulations [1,2].
Simpler models with fewer parameters can be set up. The simplest one-parameter model describing
the chain motion is center-of-mass Brownian self-diffusion. In this model, the self-diffusion coefficient
relates the chain center-of-mass mean square displacement (MSD) to the diffusion time:

〈
r2

〉
= 6Dct.

Compared to the coefficients of simple liquids, this coefficient is several orders of magnitude smaller.
This approach considers a polymer melt as a simple liquid and is suitable only on a long-time
scale. Measurements of diffusion on a shorter time scale show anomalous diffusion [3–5], indicating
translation more complex than that described by the Brownian model. In this case, the self-diffusion
coefficient is not a constant but depends on the diffusion time and can suitably be described by its
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diffusion spectrum. The diffusion spectrum is the Fourier transformation of the chain segment velocity
autocorrelation function.

To describe anomalous diffusion on a shorter time scale, the Rouse model [6] is used. In the Rouse
model, the polymer chain is approximated by a string of Kuhn segments, connected by bonds modeled
as springs, diffusing in viscous surroundings described by its effective friction drag ζ. No topological
effects of the surrounding chains are considered. The MSD of a segment along a chosen axis is expressed
as a sum of modes [7]:

〈∆z2
R(t)〉 = 2Dct +

4
3

N∑
p=1

〈X2
p〉

(
1− e−

p2t
τR

)
(1)

Here, N is the number of Kuhn segments of length a, Dc = kBT
Nζ , kB is the Boltzmann constant,

〈X2
p〉 =

Na2

2π2p2 is the squared amplitude of displacement of the p-th mode, and τR =
2〈X2

1〉

3Dc
is the Rouse

relaxation time of the chain. This model can be further simplified for the case of a long chain [7] to

〈∆z2
R(t)〉 ≈

4
√
π

3
〈X2

1〉

√
t
τR

(2)

Intermolecular entanglements in a dense polymer prevent the lateral motion of a chain and localize
it inside a curved tube. The Rouse model can be used to model a shorter part of the chain, with Ne Kuhn
segments, between the adjacent entanglements in the short time limit. In the intermediate time regime,
segments reach the tube walls, and their motion is restrained. The polymer chain can only move along
the tube in a reptation process [8,9]. As the polymer chain is released from the tube, the correlation
with the initial conformation is lost. The described progression in translational mechanisms causes
successively different time dependencies of the MSD: proportional to t1/2 at short times, to t1/4 and
back to t1/2 in the intermediate reptation regime, and to t for the chain disengagement [10]. Considering
the collective motion of chains as a single chain moving in a fixed tube is a simplification. In real
polymers, adjacent chains also move, causing constraint release [11,12], and the tube itself behaves
as a coarser-grained Rouse chain [8,13], with the relaxation time proportional to the lifetime of the
obstacles. The combined model of chain reptation inside the tube, exhibiting Rouse motion, predicts
the segmental MSD starting as t1/2 and evolving to a t time dependency. According to [11], the longest
relaxation time for the tube-Rouse motion τ in a mono-dispersed polymer melt is equal to the terminal
time of the chain’s reptation in the tube, which amounts to almost equal contributions of both processes
to the MSD t1/2 dependence.

An alternative to the description of the MSD in the time domain is the transformation of
the translation dynamics to the frequency domain, where it is described by the power spectrum
D(ω) = −ω̂2/2 FT[〈∆ẑ2(t)〉], where FT is the Fourier transformation. As the MSD exhibits different
translational modes expressed through changes in the power of the MSD time progression, so does
D(ω). It starts as a constant Dc at low frequencies and increases as ω1/2 and ω3/4 in the tube/reptation
regime. It passes into the Rouse regime at the frequency 2π/τR and exhibits ω1/2 dependence again
until it levels off at high frequencies [14,15]. The tube/reptation model replaces the many-chain problem
by a single chain moving in a tube of topological constraints exerted by the surrounding chains.
This model oversimplifies the actual dynamics, because the surrounding chains are not static but are
moving as well. This motion is responsible for the constraint release and relaxation of the tube [11,12].
The tube relaxation time for constraint release, or tube reorganization, is determined by obstacle
lifetime [8]. Various models account for the impermanence of entanglements [16–18]. The theory of
constraint release involves tube dilation and tube-Rouse motion [13]. In this model, the constraint
release is considered as a Rouse motion of the tube with coarser segments and slower relaxation than
the Rouse motion of the chain. The chain relaxation in polymer melts results from two independent
and concurrent processes: reptation inside the tube and tube-Rouse motion as the tube reorganization.
The diffusion spectrum at low frequencies starts from a constant for both processes and changes to the
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ω1/2 at inverse values of the longest relaxation time of each process. In the case of a mono-dispersed
polymer melt, the tube reorganization is slower than reptation and must have a small effect on the
diffusion properties [16,17]; nevertheless, tube reorganization significantly affects the viscoelastic
properties of the polymer melt, presumably because of the difference between the spectrum of the
tube-Rouse modes and the spectrum of reptation [11].

The structural and dynamical properties of polymers predicted by the models are in qualitative
agreement with experimental data resulting from different methods, some of which are not limited to a
macroscopic, rheological scale and offer insight into the chain dynamics on the segmental scale [12].
In a polymer melt, the chains exhibit a complex hierarchy of dynamic processes. Very fast and local
conformational rearrangements on the picosecond scale can be measured by neutron scattering [19].
Slow, diffusive and cooperative motion extending into the range of seconds can be observed by methods
of nuclear magnetic resonance (NMR), optical methods or viscosity measurements in rheology [20].
NMR is sensitive to polymer dynamics on a wide range of time scales; for example, the diffusion
coefficient can be measured in the interval from milliseconds to seconds [3], either indirectly with NMR
relaxometry [10,21–23] or directly by measuring the effect of spin-bearing-molecule displacement on
the gradient spin-echo (GSE) attenuation in the applied magnetic field gradient [3,10].

The chain translation dynamics influence NMR relaxation because the dipolar coupling between
adjacent spins depends on mutual orientation. The orientational fluctuations mirror the segmental
dynamics through the magnetic dipole–dipole correlation function [24,25]. The correlation function
includes intramolecular and intermolecular contributions. Intramolecular interactions fluctuate due
to molecular rotation. Intermolecular couplings also depend on the relative translational motion
of the chains. The presence of internal field gradients (conditioned by voids in polymer melts)
in high-molecular-mass polymers has been suggested in [10] based on an accelerated transversal
relaxation rate obtained from free induction decay, which is effectively reduced by the application of a
Carr–Purcell–Meeboom–Gill pulse sequence. Other phenomena can lead to accelerated relaxation,
e.g., dipole–dipole interactions not averaged by molecular motion arising due to the anisotropy of the
motion of the chain segments, which is typical for entangled polymer chains. Reorientational
and translational dynamics must be discerned in order to study polymer dynamics by NMR
relaxometry. This is achieved by different techniques, e.g., by the isotope dilution technique in
field-cycling and transverse NMR relaxometry [10,26], by combining NMR relaxometry and dielectric
spectroscopy [27,28], or by double-quantum NMR experiments [22,23,29]. Different models and
approximations of polymer dynamics have been discussed in the context of different spin relaxation
studies, failing to provide an exact form of the correlation function; however, these experiments
generally confirm the scaling laws of the reptation model [25].

GSE methods can be roughly divided into two classes, modulated and pulsed GSE. Modulated
GSE (MGSE) uses an applied magnetic field gradient modulated in a way to harmonically change
spin dephasing, thus measuring the diffusion spectrum at the modulation frequency [30]. Pulsed
GSE (PGSE) employs (two) short gradient pulses separated by a defined time interval. In the limit
of short pulses, this time interval can be considered as the diffusion time. The first applied gradient
pulse defocuses spins, encoding their position in their phase; the second, decoding pulse refocuses all
stationary spins in the spin echo. The moving spins do not refocus completely, causing the attenuation
of the echo, which thus becomes sensitive to translational motion. If the time between the pulses,
the diffusion time, is longer than the terminal relaxation time, defined as the asymptotic viscous
decay of the polymer in rheology, the PGSE method can provide the polymer center-of mass diffusion
coefficient in the polymer melt [4]. PGSE can also measure anomalous diffusion. The shortest diffusion
time interval is limited by the strongest applicable gradients, and the longest diffusion time interval
is limited by the decoherence of spins (transversal relaxation). This puts the limits of the segment
displacement that can be detected by GSE NMR somewhere in the range of several hundred nanometers,
assuming the self-diffusion coefficient of the high-molecular-weight polymer melt is on the order
of 10−15–10−12 m2

·s−1. Polymer chain reptation displacements are smaller than 100 nm and are not
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detectable with a conventional PGSE experiment. Conflicting reports on the self-diffusion N scaling
power follow from poorly determining the center-of-mass diffusion coefficient without considering the
crossover to the anomalous diffusion regime at the same time [3].

Internal gradients, caused by susceptibility mismatches or paramagnetic centers, can cause artifacts,
leading to the overestimation of the self-diffusion coefficient. There are common NMR diffusion
techniques that can be used to reduce artifacts by internal gradients, such as bipolar gradients [31].
However, when the background gradients are spatially non-uniform, molecular diffusion introduces a
temporal modulation of the background gradients, defeating the simple bipolar gradient suppression
of background gradients in diffusion-related measurements. Several other methods have thus been
proposed to minimize the effect of the internal gradient [32–35], among which is also the method
presented in the paper [14], where the data from the PGSE measurements are explained with a crossover
to the anomalous diffusion regime in polymer melts with the addition of the internal gradient effect.
In certain cases, the effect of internal gradients can provide valuable information on the dynamics,
topology or composition of the material studied [36]. Measurements of molten polydisperse polymers
provide a diffusion coefficient that scales as N2 for polymers with numbers of Kuhn segments larger
than the entanglement number and as power N for those below [4]. However, the subsequent PGSE
measurements of very mono-dispersed molten polymer [37,38] do not confirm this result but provide
a scaling power larger than 2 for the total range of polymer lengths without any crossover to the power
1 for short chains. These conflicting data could result from a mis-defined crossover to the anomalous
diffusion regime as shown in [30]. There are also reports that crossover is mis-defined because a
strong internal susceptibility magnetic field at the interstices of voids in a polymer melt spoils the
measurement [12,15]. Internal gradients are, aside from paramagnetic centers, caused by voids in
the melt. Voids in polymer melts are statistically varying formations, which can be characterized
by their sizes and mean lifetimes. For example, in polybutadiene, these voids are adjacent to the
reptating chain segments and characterized by a diameter ~0.5 nm. However, such voids can affect the
diffusion NMR experiment only if the diameters of the voids and mean lifetimes are at least of the
order of magnitude of the covered diffusion paths and the diffusion times, respectively [39]. A method
that also avoids the effects of the internal gradient is the MGSE method. Its results for self-diffusion
measurements of mono-dispersed molten polymers [37,38] provide scales for the total range of polymer
lengths and the transition into the regime of entanglement at Kuhn steps, which are below theoretical
predictions. A test of the tube/reptation model by measuring the diffusion of nanoscopic strands of
linear, mono-disperse poly (ethylene oxide) embedded in artificial cross-linked methacrylate matrices
is described in [40]. PGSE studies of polymer dynamics are well described by the Rouse model in
the case of dilute and semi-dilute polymers [41–44]. However, the PGSE measurements of diffusion
in dense polymers do not clearly support the tube/reptation model [5,10,37,45]. The MGSE method,
which measures the velocity autocorrelation spectrum, shows that in a polymer melt, the tube-Rouse
motion has a prevailing role at long diffusion times, and this indicates faster tube reorganization than
expected [30].

NMR measurements in a magnetic gradient field are sensitive to the MSD, 〈∆z2
〉, in the direction

of the applied magnetic field gradient G = ∇|B|, here taken to be along the z axis. The attenuation of
the spin echo is given by:

ln
S0

S
=

1
π

∫
∞

0
|q(ω)|2D(ω)dω (3)

where S is the spin-echo amplitude, S0 is the amplitude of the echo without the applied gradient
(in the limit G→ 0) and |q(ω)|2 is the sampling function tailored by the gradient–radiofrequency pulse
sequence. The gradient sampling function for the Hahn-echo PGSE sequence is given by [34]:

|q(ω)|2 = 16γ2G2 sin2 ωδ
2 sin2 ω∆

2

ω4
(4)
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Here, G is the strength of the gradient, γ is the gyro-magnetic ratio, δ is the width of the gradient
pulse and ∆ is the time interval between the leading edges of the two gradient pulses. The gradient
sampling function Equation (4) is shown superimposed on the diffusion spectrum given by Equation (5)
in Figure 1.
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Figure 1. The diffusion spectrum D(ω) of a polymer melt and the sampling function |q(ω)|2 of the
pulsed gradient spin-echo (PGSE) sequence.

This paper presents a study of anomalous self-diffusion in a linear polyethylene melt by the
PGSE method. A special short diffusion time sensitivity is achieved by the variation of the gradient
pulse width δ, contrary to usual measurements of anomalous diffusion with variable inter-pulse
separation ∆. By changing only δ, artifacts induced by internal gradients can also be reduced as
described by Equation (A2) in [14]. Measurements with PGSE are more effective for long diffusion
times or, conversely, the low-frequency part of the diffusion spectrum. A problem arises if we want
to measure the diffusion spectrum at high frequencies, as a short ∆ together with strong magnetic
gradients must be used to achieve the desired attenuation of the spin echo. This is experimentally hard
to implement. Additional attenuation caused by the background or internal magnetic field gradient
and the effect of transverse relaxation must also be accounted for when the inter-pulse separation
is changed. Here, we set out to verify the results of the measurements of a polymer melt diffusion
spectrum with the MGSE method reported in [15] by an alternative method of PGSE. The results in [15]
show that the observed dynamics in the low-frequency range belong to tube-Rouse motion [13] and
can be described by the formula

D(ω) = Dc + Ds
ω2τ2

1 +ω2τ2 (5)

where Dc is the center-of-mass diffusion coefficient, Ds is the diffusion rate of the tube segments and
τ is the tube-Rouse time, corresponding to the characteristic time of the crossover. This spectrum is
shown in Figure 1 and overlaid with the gradient sampling function of the PGSE sequence.

For the diffusion spectrum model given in Equation (5), the spin-echo attenuation Equation (3) becomes:

ln
S0

S
= γ2G2δ2

(
∆ −

δ
3

)
Dc + γ2G2τ3Ds

[
2e

∆
τ

{
1 +

(
δ
τ
− 1

)
e
δ
τ

}
−

(
e
δ
τ − 1

)2
]
e−

δ+∆
τ . (6)

The standard evaluation of the diffusion data measured with the PGSE is calculating the effective
diffusion coefficient De, defined with:

ln
S0

S
= −bDe, (7)
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where the b factor is given by b = γ2G2δ2
(
∆ −

δ
3

)
. The effective diffusion coefficient is a constant for

all possible parameters in the case of Brownian diffusion, but in the case of anomalous diffusion, it is
interpreted as a time-dependent diffusion coefficient, in our case, given by:

De = Dc +
τ3

δ2
(
∆ − δ

3

)Ds

[
2e

∆
τ

{
1 +

(
δ
τ
− 1

)
e
δ
τ

}
−

(
e
δ
τ − 1

)2
]
e−

δ+∆
τ . (8)

2. Results and Discussion

Polyethylene melt diffusion was measured by the PGSE method. In the experiment, the spin-echo
amplitude was recorded by varying the gradient pulse width δ at several different strengths of
the applied gradient pulse. Figure 2a shows the spin-echo amplitude and (b) the derived effective
self-diffusion coefficient as defined in Equation (7), both as a function of the gradient pulse width δ
and for all the applied gradient strengths. The effective diffusion coefficient in Figure 2b clearly shows
signs of anomalous diffusion.
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Figure 2. Measurements of polyethylene melt self-diffusion with the PGSE and a fixed diffusion time
∆ = 80 ms at temperature 426 K: (a) The echo amplitude as a function of the applied gradient pulse
width for different applied gradient strengths; (b) The effective diffusion coefficient as a function of the
applied gradient pulse width. Included are the least-square fits of the model in Equation (9) with the
best-fit parameters for all the data (solid line) and excluding the shortest δ points (dashed line).

The model describing the data is given by Equation (8), and a few simplifications can be made,
since it is reasonable to assume from previous measurements [30] that ∆� τ, to obtain a simpler model:

De = Dc +
2τ3

δ2
(
∆ −

δ
3

)Ds

[
e−

δ
τ +

(
δ
τ
− 1

)]
. (9)

Both models return the same fitting parameters with the measured data. A least-square non-linear
fit of the model to the data gives the parameters presented in Table 1.

Table 1. Parameters of the effective diffusion model of Equation (9) of the polyethylene melt SRM 1482
at 426 K.

Parameter Estimate Standard Error t-Statistic p-Value

Dc 7.0 × 10−13 m2/s 8.0 × 10−14 m2/s 9.3 2.2 × 10−7

Ds 5.8 × 10−11 m2/s 7.0 × 10−10 m2/s 0.51 0.62
τ 0.75 ms 0.60 ms 1.25 0.23
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The only value estimated with high certainty is the chain diffusion coefficient Dc. Both the tube
segment diffusion coefficient and the relaxation time appear in the model (Equation (9)) together as
τ2Ds to the first order of τ/δ, and any change in one can be compensated by an according change
in the other and does not significantly alter the fit. Thus, the δ used in the measurements should be
accordingly short, or at least one of the parameters should be determined separately. The results for
the chain diffusion coefficient match within the error with the results in [14] and [46]. The result for
the relaxation time matches the tube displacement per obstacle lifetime Leq/

√
τob, if the number of

Kuhn segments between the entanglements Ne is 25 (compared to the 120 total number of segments
per chain) since Leq =

N
Ne

a and τ = N2

N2
e
τob.

The dashed line in Figure 2b represents the best fit of the De model to the data without the points
measured at δ = 1 ms. The fitting parameters in this case differ significantly: Dc = 3.3× 10−13 m2/s,
Ds = 1.8× 10−11 m2/s and τ = 3.8 s. This demonstrates the sensitivity of the model to the input data
without measurements at a short-enough δ, which should be short enough to include the increase in
De at a short δ. It also demonstrates that caution using the approximation ∆ � τ for the model in
Equation (9) is warranted, since τ was determined to be longer than ∆ in the case of short δ data points
being excluded.

We have shown here that the PGSE method enables the measurement of the segmental translation
of polymeric chains by the variation of the gradient pulse width. This approach can also effectively take
into account the effect caused by the internal gradient, which commonly affects PGSE measurements
but requires knowledge of the interplay between the molecular motion and the buildup of spin phase
structure during the magnetic field gradient action. By combining the PGSE sampling function and
the segmental diffusion spectrum rendered from the model of tube-Rouse motion [13], we obtain
the dependence of the PGSE signal attenuation on the gradient pulse width. The data obtained
by the measurements of molten polyethylene well fit the predictions and provide evidence of the
tube-Rouse motion model proposed in [13]. The model, which was already confirmed for other polymer
samples by the MGSE method [30], reveals the tube segmental motion in the range of milliseconds.
The sample polymer data Mw and Mn indicate a sharp distribution of fragment sizes; thus, the effects
of polydispersity, which may cause a deviation from the model, can be neglected in our case.

This study presented here is a reevaluation of the study in [14]. The study of polymer diffusion
by the MGSE method [30] shows slow dynamics that can be attributed to the reorganization of the
polymer tube with temporal and spectral resemblance to Rouse motion. This description matches
the theory of tube-Rouse motion put forward in [13]. In [14], PGSE measurements were used to
trace the crossover of the chain Rouse dynamics from

√
t to t dependence because of the constraint

release. The constraint release was originally termed tube reorganization by Pierre-Gilles de Gennes,
where the obstacle lifetime determines the tube relaxation times [8]. Various models account for the
impermanence of entanglements [16–18], among which is also the theory of constraint release involving
the tube dilation and tube-Rouse motion [13]. In this theory, the constraint release is considered as
the tube-Rouse motion, and the relaxation time is proportional to the lifetime of the obstacles [13].
In the previous paper [14], we followed a quite common approach to considering polymer chain
dynamics described by the Rouse model in the range where the dynamics cross from square-root to
linear time dependence in the MSD [47], to explain the anomalous effective diffusion obtained from
the PGSE measurements in polymers. In the original experiment, the internal gradient artifacts were
not suppressed by any of the numerous methods, because the system was considered homogenous
enough and the measurements fitted well to the model used for the larger part of the measured interval.
However, the results deviate from the model in the limit of the short δ. In [14], it was proposed that
the deviation was a result of internal gradients (caused by a susceptibility mismatch) adding to the
effect of the external applied gradient. An extra term based on internal gradients was added to the
attenuation factor, resulting in a better fit. According to [39], this would require unrealistic conditions,
and a search for a better explanation was fruitful, since the results are here satisfactorily described
with the new tube-Rouse model and without recourse to the effect of the internal gradient. This is also
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in accordance with subsequent measurements with the MGSE method [30], which indicate that the
polymers in the millisecond time range exhibit some new dynamics that are not related to the motion of
the polymer chain inside the tube, but can be explained by the theory of polymer tube reorganization,
where the tube behaves in a similar way to a chain, and therefore, this motion can be called tube-Rouse
motion [13]. In this paper, we show that the new interpretation fits better to the results of our PGSE
measurements. We show that the data can be well fitted to this model of tube dynamics, and this is a
deviation from the previous results based on long-chain approximation (Equations (4) and (6) in [14]).

3. Materials and Methods

We studied a sample of linear polyethylene Standard Reference Material 1482 with a narrow
molecular weight distribution (Mn = 11, 400 g mol−1, Mw = 13, 600 g mol−1) prepared by NIST,
Washington, DC, USA. Measurements were performed on a melted polyethylene sample at 426 K.

The measurements were performed on a home-made pulsed NMR spectrometer (Ljubljana,
Slovenia) at a 60 MHz proton NMR frequency and equipped with a magnetic field gradient coil system
described in [48]. The PGSE sequence is shown in Figure 3. The widths of the π/2 radiofrequency (RF)
pulses used were 1.2 microseconds. The π RF pulse was applied symmetrically between the gradient
pulses. The gradient pulse followed the RF pulse with a delay short enough to be neglected in the
signal analysis. The same is true for the echo following the second gradient pulse; however, the echo
followed the second gradient pulse with a delay large enough that no artifacts were introduced because
of the finite gradient fall time. The PGSE attenuation dependence on the duration of the gradient pulses
was measured by changing the pulse width δ from 1 to 15 ms, with the diffusion time (the interval
between the gradient pulses) fixed at ∆ = 80 ms. The measurements were performed with the gradient
fields 4.38, 3.04 and 1.34 T/m.
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