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Visible‑NIR hyperspectral 
classification of grass based 
on multivariate smooth mapping 
and extreme active learning 
approach
Xuanhe Zhao1, Xin Pan1*, Weihong Yan2 & Shengwei Zhang3,4,5

Grass community classification is the basis for the development of animal husbandry and dynamic 
monitoring of environment, which has become a critical problem to further strengthen the intelligent 
management of grassland. Compared with grass survey based on satellite remote sensing, the 
visible near infrared (NIR) hyperspectral not only monitor dynamically in a short distance, but also 
have high dimensions and detailed spectral information in each pixel. However, the hyperspectral 
labeled sample for classification is expensive and manual selection is more subjective. In order to 
solve above limitations, we proposed a visible-NIR hyperspectral classification model for grass based 
on multivariate smooth mapping and extreme active learning (MSM–EAL). Firstly, MSM is used to 
preprocess and reconstruct the spectrum. Secondly, by jointing XGBoost and active learning (AL), 
the advanced samples with the largest amount of information are actively selected to improve the 
performance of target classification. Innovation lies in: (1) MSM global enhanced preprocessing 
spectral reconstruction algorithm is proposed, in which isometric feature mapping is effectively 
applied to the grass hyperspectral for the first time. (2) EAL framework is constructed to solve the 
issue of high cost and small number for hyperspectral labeled samples, at the same time, enhance 
the physical essence behind spectral classification more intuitively. A field hyperspectral collection 
platform is assembled to establish nm resolution visible-NIR hyperspectral dataset of grass, Grass1, 
containing 750 samples, which to verify the effectiveness of the model. Experiments on the Grass1 
dataset confirmed that compared with the full spectrum, the time consumption of MSM was reduced 
by 9.471 s with guaranteed overall accuracy (OA). Comparing EAL with AL, and other classification 
algorithms, EAL improves OA 22.2% over AL, and XAL has the best performance value on Kappa, 
Macro, Recall and F1-score, respectively. Altogether, the lightweight MSM–EAL model realizes 
intelligent and real-time classification, providing a new method for obtaining high-precision inter 
group classification of grass.

In China, abundant grassland resources, accounts for about 41 percent of the total land area1. Grassland plays a 
significant role in protecting the ecological environment, developing animal husbandry, and spreading grassland 
culture2. Ecosystems are damaged due to overgrazing, industrial manufacturing and natural disasters, causing 
environmental problems. In recent years, although the state has strengthened the management and maintenance 
of grassland resources, problems such as lacking of fine forage resources, grassland degradation, and conflicts 
between grass and livestock still endanger the balance of the ecosystem3,4. The classification of grass community 
is the basis for related researches such as dynamic monitoring of environmental changes and biomass estimation. 
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It has become a core issue to further strengthen the intelligent management of grassland, and has far-reaching 
significance for realizing the sustainable development of grass resources.

Recently, the survey and monitoring of grassland is mainly based on satellite remote sensing, but it has certain 
limitations of low overall resolution and high cost. The high-resolution visible-NIR hyperspectral acquired at a 
close range can overcome above shortcomings. After the twenty-first century, with the continuous development 
and maturity of hyperspectral images (HSI) technology and related theories, it has broad application prospects in 
the field of grassland ecology5. Hyperspectral for parameter detection has the advantages of multiple bands, high 
sensitivity and non-destructiveness6,7. It facilitates grass classification with study at close range. McCann C. et al. 
applied HSI for quantitative comparison of variations in vegetation health and land. Classification using histo-
grams of biophysical parameters to determine the main categories are presented in the dataset8. Marcinkowska-
Ochtyra A. et al. have explored the different grass growth stages of Molinia caerulea and Calamagrostis epigejos 
with spectral bands and high spatial resolution. Using random forest (RF) classification, it was estimated that 
the best analysis dates of two species of grass were M. caerulea Kappa (0.85) in August and C. epigejos Kappa 
(0.65) in September9. Recently, Kang X. et al. adopted unmanned aerial vehicle HSI to predict the aboveground 
biomass of grassland, and quantifying the spectrum through characteristic parameters to ensure the prediction 
accuracy10. At present, grassland surveys mainly concentrate on coverage calculation and degradation, and there 
are few reports on hyperspectral identification of multiple types of grass.

The application of hyperspectral and machine learning has promoted the research and development of various 
intelligent recognition models11. Ai W. et al. applied HSI technology in the rapid identification of microplastics in 
farmland soil. The study established three models including decision tree (DT), support vector machine (SVM), 
and convolutional neural network (CNN). These results show that the CNN model based on the S-G smoothing 
filter obtains the best effect, the classification accuracy reached 92.6%12. Zhao X. et al. proposed a multi-step 
approach based on HSI and continuous wavelet analysis (CWA) to discriminate the plant stresses. The research 
constructed the identification model of the three tea plant stresses via the RF algorithm. The overall accuracy 
of the approach reached 90.26–90.69%13. Cui Y. et al. screened of maize haploid kernels based on near infrared 
spectroscopy quantitative analysis. The modeling is realized through partial least square (PLS) regression, and 
the average accuracy above 90%14. It can be seen that exploring an accurate and efficient classification model is 
still the focus of research.

Therefore, this study aims to classify the multi-category grasses in the field efficiently based on visible-NIR 
hyperspectral imaging technology and machine learning. We constructed the multivariate smooth mapping 
and extreme active learning (MSM–EAL) model, and achieved high-precision classification of grass species 
by optimizing it. Three parts are containing in the proposed model. Firstly, we assembled a hyperspectral field 
system to collect nm-level resolution HSI at the close-range to build a typical dataset of grass in the field. Then, 
we proposed a spectral reconstruction MSM algorithm to select representative spectral. Finally, the MSM–EAL 
model is established to achieve the timely and effective classification of grass. The novelty and contributions of 
this paper are as follows:

1.	 The field hyperspectral acquisition system was assembled to build a multi-category grass population near-
ground HSI dataset Grass1.

2.	 A global enhanced preprocessing spectral reconstruction algorithm MSM was proposed to address the clas-
sic problems of feature selection and computational complexity of hyperspectral data. We reconstructed a 
relatively complete grass visible-NIR spectral dataset based on the smooth manifold projection technique 
Isomap. Furthermore, the result of full spectrum (FS) and MSM on the model were compared, validating 
the positive effect of MSM.

3.	 The EAL framework based active learning was constructed to solve the problem of small number and high 
cost for hyperspectral labeled samples, and alleviate the difficulty of model classification to a certain extent. 
Furthermore, it enhances the physical essence within spectral classification more intuitively. The self-con-
structed Grass1 dataset collected by our laboratory verified the validity of the MSM–EAL.

Materials and methods
Study area.  Grassland herbage samples are from Shaerqin base, institute of grassland research of CAAS 
(Chinese Academy of Agricultural Sciences). We obtained the permission of the institution to take HSI of the 
grassland sample. Our work did not cause damage to grassland. Researcher Weihong Yan of the institute pro-
vided us with relevant information about grassland. The land use type in the study area is mainly grassland, 
which is composed of forage species, most of which are representative species of typical grassland. We take this 
area as an example to conduct research on grass classification. By enriching the relevant recognition technology, 
it can also be used as a reference for the pastures of other grasslands. The grass species Grass1 for the experiment 
is shown in Table 1. The official introduction of plant materials is detailed in the flora of China15.

The field hyperspectral platform.  We assemble a system for collecting HSI in the field: HyperSpec©PTU-
D48E HSI instrument, high-precision scanning PTZ, tripod, data analysis software Hyperspec, etc. The light 
source is natural light. The imaging instrument is in line scanning mode. Table 2 shows the technical parameters.

Data collection.  In July 2021, the data was collected during the lush grass growth period. Collect data from 
11:00 a.m. to 2:00 p.m. every day. At this time, it is sunny, cloudless and the wind force does not exceed level 2. 
So as to ensure the consistency of the acquisition time line and avoid the influence of different degrees of light on 
the reflectivity as far as possible. The measuring points are arranged facing the sun and the opposite direction of 
the shadow. We collect data from different angles of the grassland, which is based on the growth of various types 
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of forages, and selects relatively concentrated places within the study area. Each shot is a single category of grass. 
The image resolution is 1166 × 1004 pixels (Fig. 1). The imaging spectrometer is fixed with scanning head when 
shooting. Data acquisition and transmission are executed on Hyperspec software. Then save it as a BIL file. The 
ENVI5.3 software was used to extract the forage spectrum to establish the dataset Grass1. Well balanced regions 
with a clear image, uniform spectral distribution are selected for further segmentation. The average value of 
spectral reflectance of grass pixels was taken as the reflectance spectrum of a single type of grass.

Methodology.  In Fig. 2, we present the framework of visible-NIR hyperspectral classification of grass based 
on multivariate smooth mapping and extreme active learning (MSM–EAL). Specifically, we first introduce the 
proposed MSM algorithm for global enhanced spectral reconstruction, which utilizes smooth manifold pro-
jection technology to alleviate the problems of difficult feature selection and redundant data. Then, the EAL 
framework is proposed to address the matter of hyperspectral labeled samples and spectral classification. In the 
following, each step of this method will be presented in detail.

The proposed MSM algorithm.  In the process of field HSI acquisition, on the one hand, the surface 
distribution of grass is uneven and the plant height is different, causing certain scattering effect and coverage 
spectrum change. On the other hand, HSI is easy to be disturbed by external natural factors such as light, wind 
and shadow, resulting in a certain degree of distortion. Multiplicative scatter correction (MSC) is a scattering 

Table 1.   Samples information for Grass1 dataset.

NO Name Samples

C1 Medicago sativa L.cv.Aohan 50

C2 Medicago ruthenica Sojak cv. Zhilixing 50

C3 Elymus canadensis L. 50

C4 Hordeum brevisubulatum (Trin.) Link 50

C5 Medicago varia Martin. cv. Caoyuan No.3 50

C6 Onobrychis viciaefolia Scop. cv. Mengnong 50

C7 Trifolium repens L. 50

C8 Melilotoides ruthenica 50

C9 Agropyron cristatum (L.) Gaertn 50

C10 Lespedeza bicolor Turcz 50

C11 Medicago falcata L. 50

C12 Elymus sibiricus Linn 50

C13 Avena sativa L. 50

C14 Festuca rubra L. 50

C15 Bromus ciliatus L. 50

Total – 750

Table 2.   Technical parameters of hyperspectral instrument.

Index Parameter

Spectrometer detector model Andor Luca

PTZ/scanner serial port number COM4

PTZ/scanner type DP PTU-D48E

Spectral range/nm 400–1000

Number of spectral channels 750

Pixel mixing times 6

Band number 125

Spectral resolution/nm 4.8

Average times 3

Time of exposure/ms 12

Horizontal angle (°) 2.4

Tilt angle (°) − 8.4

Starting angle (°) − 15

Scan length (°) 30

Scanning step (°) 0.02

Number of scans 1499
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correction effect, which helps to eliminate the scattering effect caused by the above reasons and enhance the 
spectral variability. The moving window smooth spectral matrix (Nirmaf) belongs to the smooth effect, which 
improve the signal-to-noise ratio of the spectrum and reduce the influence of random noise16,17. Preprocessing 
methods are different and related to each other. We design an enhanced preprocessing multivariate smooth (MS) 
method that fusing MSC and smooth Nirmaf to target grass spectral signal features. In the follow-up, a model 
will be established to verify the validity of MS.

Most of the high-dimensional spatial data have the characteristics of being embedded in a manifold body, 
so the manifold learning isometric feature mapping (Isomap) based on spectral theory is adopted. Isomap pre-
serves the global geometric features of the initial data and extracts features by reconstructing the underlying 
smooth manifold of HSI. It is nonlinear dimensionality reduction based on linear and multidimensional scaling 
transformation18. Isomap has been applied in image and HSI classification19,20, but there is no report on visible-
NIR hyperspectral classification of grass.

In view of the above, we proposed the multivariate smooth mapping (MSM) spectral reconstruction algo-
rithm, which can be represented as follows:

where Pj, bj, and Cj represent the raw reflectance value of spectrum j, baseline shift amount, and weight fac-
tor, respectively, k and nj represent the polynomial degree and offset, respectively. MSMz is the feature cube 

(1)MSMz =

(
Pj − bj

)
(2n+ 1)+ nj ·

∑n
j=−n CjPk+j

nj(2n+ 1)
+ VZF

1
2

Z

Figure 1.   True color map of grass samples.

Figure 2.   Proposed MSM–EAL framework for grass HSI classification.
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reconstructed to Z dimension from the spectrum calculated by 2n + 1 moving window width, V eigenvector 
matrix and F eigenvalue matrix.

In Isomap equidistant mapping, the shortest path of edge Pi Pj needs to be solved, and the representation 
matrix is:

where d (Pi, Pj) is the weight of the edge Pi Pj calculated from the neighborhood graph G and its side Pi Pj.

The proposed EAL framework.  Labeling hyperspectral samples is expensive in terms of time and cost, 
at the same time, the lower spatial resolution and more bands increase the difficulty of labeling. Active learning 
(AL) provides an efficient labeling strategy, which only needs to label a relatively small number of samples to 
learn a more accurate model21. The pool-based AL selects the most informative samples according to the query 
strategy for limited labeling through iteration, so as to facilitate model improvement. Commonly used query 
strategies are uncertainty criteria, such as least confidence22, the bayesian active learning disagreement (BALD), 
the entropy sampling23, etc.

Due to there is still an over-fitting problem, different strategies such as hybrid prediction and regularization 
need to be used for non-recursive datasets24. The research25 proposed that extreme gradient boosting algorithm 
(XGBoost) based on gradient boosting. As a classification method, XGBoost has been successfully applied in 
Kaggle competition and other fields. Its most important feature for visible-NIR hyperspectral classification is 
that can easily and directly classify according to features, and the physical interpretation of features can help 
understand the electronic nature behind spectral classification. XGBoost is a machine learning algorithm based 
tree structure that integrates multiple weak classifiers to achieve flexible and high-precision classification. It is an 
upgraded version of gradient boosting decision tree. The optimization process of XGBoost entailed: (1) Expand-
ing the objective function to the second order, and finds a new objective function for the new base model to 
improve the calculation accuracy. (2) L2 regularization term is added to the loss function to prevent over-fitting. 
(3) Using blocks storage structure realize automatic parallel computing26,27. The algorithm steps are as follows:

The objective function:

In formula (3), the first and second terms are the loss function term and the regularization term, respectively. 
Where,

γ and λ are regularization parameters which are used to adjust complexity of the tree.
Next, second derivative Taylor expansion of the objective function. Where gi and hi are the first derivative 

and second derivative, respectively.

Final objective function:

Equation (9) can be used as the fraction of tree cotyledons, and the tree structure is directly proportional to 
the fraction. If the result after splitting is less than the maximum value of the given parameter, the cotyledon 
depth stops growing24,28.

AL solves the problems of limited number and high cost of grass hyperspectral labeling samples. The default 
model of traditional AL is logistic regression, which is mostly studied on the ideal public dataset. However, the 
actual data has more uncertain noise, which still poses a certain challenge to AL. Consequently, we propose the 
extreme active learning (EAL) framework to minimize the classification cost of visible-NIR hyperspectral. The 
framework replaces the logistic regression model with XGBoost. Taking advantage of AL, XGBoost can improve 
performance with less training marker samples. By jointing of XGBoost and AL, EAL provides significantly better 
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results than AL in field Grassl dataset recognition. Additionally, based on the characteristics of XGBoost, EAL 
more intuitively enhances the physical essence behind spectral classification than AL. Algorithm 1 summarizes 
the workflow of EAL framework.

Algorithm 1  Extreme Active Learning, EAL.

1: repeat
2: Update XGBoost classifier initially:
  a. Create tree group structure and minimize the loss function is Softmax. 

b. Model prediction with initial labeled samples.

  = ―1) + ( ),

The sum of t-1 times prediction and t-th tree prediction.

3: for round = 1, ..., 5 do
4: Active query of unlabeled samples:

a. Query U unlabeled spectrum features with instance uncertainty.

b. Trace back to unlabeled samples and labeled.

c. Add newly labeled samples to the previous ones.

d. Remove queried samples from the unlabeled pool.

5: Update classifier using current labeled samples.
6: Display the number of queries and performance.

7: end for
8: until reaching the stop criterion. 

Random forest (RF) and decision tree (DT) were used to compare with EAL. RF and DT are frequently used 
in the field of grassland remote sensing9,29. Furthermore, RF, DT and XGBoost have the same point is that are 
learning algorithms based on tree structure. DT determines the direction by judging the conditions of the deci-
sion node12. RF is an integrated learning of multiple decision trees30.

Experimental results
All experiments use PyCharm2019.2.5, python (3.8.8) performed on Intel(R) Core(TM) i5-6500, 3.20 GHz CPU, 
8 GB RAM, which is provided by the Center of Information and Network Technology of Inner Mongolia Agri-
cultural University. The established Grass1 visible-NIR hyperspectral dataset is used to evaluate the performance 
of MSM–EAL model. All quantitative comparisons used three commonly evaluation indicators, namely overall 
accuracy (OA), kappa coefficient and time-consuming. The results reported are the average of 5 runs. In each 
run, the initial labeled samples are randomly without fixing the random seeds. The statistical tests of confusion 
matrix (CM), Recall rate, Macro and F1-score were also carried out.

MSM reconstruction spectrum.  MSM implements the MS optimization spectrum for the various 
grasses original spectrum of 400–1000 nm (Fig. 3). From horizontal analysis, each spectrum is interleaved. At 
400–900 nm, the variation trend of the original spectral curve of 15 species of grasses is unanimous. Among 
them, the spectra overlap seriously at 440–690 nm, and there are similarities among C7, C10 and C13 spectra at 
691–890 nm. At 900–1000 nm, there are two trends in the original spectral curve. The first (C2, C6, C10, C12) 
spectrum decreases. The second (C1, C3-C5, C7-C9, C11, C13-C15) spectrum increased. From longitudinal 
analysis, the spectral reflectance of C2 is the highest, which is about 933 nm. C2, C6, C10 and C12 produce 
troughs at the same position. C1, C3–C5, C7–C9, C11 and C13–C15 produce peaks at about 940 nm. It can be 
seen that the spectra of different types of grasses are different, but the positions of peak or trough are the same. 
After MS processing, the spectral shape changes to a certain extent, which reduces the error caused by spectral 
drift and increases the correlation and smoothness between data. MS makes the absorption peak of the spectrum 
more obvious and maintains great similarity with the original spectrum shape, which lays a foundation for the 
realization of spectral quantitative analysis.

The essential of MSM spectrum reconstruction is the value of dimension. The setting range of dimension 
components is 1–20, and the optimum is determined according to the root mean square error (RMSE). In Fig. 4, 
the RMSE with smallest value 1.608 lies in 10 components. Simultaneously, the reconstructed spectrum is highly 
similar to the original one.

MSM–EAL classification.  MSM–EAL model mainly includes the following two parts. AL is used to imple-
ment the sample labeling strategy. Relevant important parameters are set as follows. The samples selection crite-
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ria is the query instance uncertainty, which selects the sample with the least confidence in the predicted value as 
the query instance. The smaller confidence of data is more difficult to distinguish, so it has more labeling value. 
The number of iterations is 5. When the number of queries equal 60, it is set as the stop criterion. The initial-
ize label pool set 9.90%, i.e. 52. Each class contains at least one instance. Another 473 samples were randomly 
selected and set as unlabeled sample pool. The remaining 30% of dataset was reserved for testing.

XGBoost is used for classification. Use XGB classifier and automatically optimize parameters through Grid-
search. Adjust and optimize all important parameters before experimental settings (Table 3).

MSM–EAL model was established and compared with MSC, Nirmaf and FS to verify its effectiveness (Table 4). 
The evaluation indicators are OA, kappa and time consuming. The results shown that, (1) Contrast with MSC 
and Nirmaf, OA of MS increased by 16% and 17.3%, respectively, indicating the scientific rationality of MS grass 
spectral pretreatment method. (2) Comparing FS and MSM, the former has many bands and large memory 
consumption. If it is classified directly, it will increase the time complexity. The latter obtains representative and 
comprehensive features after spectral reconstruction. MSM operation speed is improved that time consumption 
reduced 9.471 s under the condition of ensuring accuracy. And MSM–EAL has the highest OA of 96.8%. The 
results confirm that MSM fits for spectral processing.

In this study, an active extreme gradient classification strategy EAL is proposed to solve the problems of 
hyperspectral data limited labeling and classification effect. Based on Table 5, the EAL framework has better 
classification ability than AL, which the OA increased by 22.2%, and has achieved good performance in five 
general indicators. Although the large number of EAL network parameters requires more time consuming, it 
can be accepted for the obviously improved accuracy. Subsequently, the comparative experiment was conducted 
with RF and DT. RF and DT have the same number of labeled samples as EAL and AL. Overall, EAL has certain 
advantages over AL, RF, and DT in classifying HSI with limited labeled samples under the same spectral dimen-
sion. In addition, it also verifies the importance of learning when the information of the sample is restricted.

Figure 3.   The average reflectance spectral curve of Grass1 (a raw, b MS).

Figure 4.   The RMSE with different components.
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Discussion
The parameters of the grass visible-NIR hyperspectral classification model based on multivariate smooth map-
ping and extreme active learning are carefully selected. The performance of the proposed method MSM–EAL, 
is tested from six aspects of OA, Kappa, Macro, Recall, F1 and Testing time. The experimental results on Grass1 
dataset show the precision and stability of MSM–EAL, whose recognition effect is substantially better than some 
existing advanced algorithms9,29 (Tables 4, 5). This suggests that MSM–EAL is suitable for grass visible-NIR 
hyperspectral classification. The specific reasons are as follows.

According to the high-dimensional characteristics of hyperspectral data, a MSM spectral reconstruction 
algorithm is proposed. The structural features of low dimensional bottom manifold are extracted by Isomap to 
obtain the best spectral set and simplified model. The visualization effect before and after MSM spectral recon-
struction is shown in Fig. 5. The data structure is reduced in the same proportion, the intra class distance is 
shortened, and the clustering effect and inter class separability are enhanced. The data distribution shows some 
linear laws with less overlap. The essential characteristics of grass have been better extracted after MSM, which 
alleviates the time complexity of high-dimensional data on the model.

XGBoost redefines the objective function by optimizing the loss function term with second order Taylor and 
adding L2 regularization term to prevent over fitting problem. Meanwhile, it helps to understand the physical 
essence of the features behind spectral classification. In MSM–EAL, all the 10 reconstructed features have high 
importance scores, of which f0 being the most important (Fig. 6). MSM reconstructs data of the manifold spectral 
features, removes the data in the sample set that does not contribute significantly to distinguishing samples, and 
obtains typical features. The above factors improve the accuracy of spectral classification.

Table 3.   The optimal parameters of XGBoost.

Parameter Setting

Booster gbtree

N estimators 160

Max depth 5

Min child weight 1

Subsample 0.6

Colsample bytree 0.6

Reg alpha 1e−05

Reg lambda 1

Eta 0.1

Learning rate 0.1

Nthread 4

Scale pos weight 1

Seed 27

Num. class 15

Table 4.   EAL framework classification results after different spectral processing.

Method OA/% Kappa Time/s

MSC-FS-EAL 80.8 0.794 60.822

Nirmaf-FS-EAL 79.5 0.780 303.146

MS-FS-EAL 96.8 0.966 57.660

MSC-Isomap-EAL 80.8 0.794 50.475

Nirmaf-Isomap-EAL 79.5 0.780 47.187

MSM–EAL 96.8 0.966 48.189

Table 5.   Comparison of classification results with the EAL, AL, RF and DT algorithms.

Method OA/% Kappa Macro Recall F1 Time/s

EAL 96.8 0.966 0.966 0.969 0.968 48.189

AL 74.6 0.726 0.641 0.712 0.680 11.544

RF 52.0 0.489 0.453 0.569 0.439 3.284

DT 50.6 0.473 0.514 0.540 0.448 1.079
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Figure 7 shows the confusion matrix (CM) of 15 grass species in the Grass1 dataset. The classification accuracy 
of 87% category and 60% category grasses reached more than 90% and 100%, respectively. It indicates that the 
proposed model can better learn the spectral characteristics of various ground objects. The accuracy of Lespe-
deza bicolor Turcz is relatively low, 82%, because its internal structure spectrum is slightly similar to Elymus 
sibiricus Linn and Agropyron cristatum (L.) Gaertn., which is easy to be confused in recognition. However, the 
global average classification accuracy is more than 96%. Consequently, this model plays a positive role in the 
classification of highly similar grass categories.

Conclusions
In this study, the MSM–EAL classification model was proposed and verified to enrich the hyperspectral research 
methods of multi category grasses and explore a micro intelligent visible-NIR hyperspectral classification model. 
MSM–EAL fully captures the essential spectral characteristics of grasses. The experimental evaluation of the 
established Grass1 dataset shows that the model has well recognition ability, the OA is 96.8%, which can be 
applied to the quantitative analysis of visible-NIR spectra of grasses. The novelty of this study is as follows: (1) 
a multi-category visible-NIR hyperspectral dataset Grass1 is established. (2) A global enhanced preprocessing 

Figure 5.   3D map of spectral feature (a raw spectrum, b MSM reconstructed spectrum).

Figure 6.   Ranking of feature importance scores after spectrum reconstruction.
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spectral reconstruction algorithm MSM is proposed, which effectively extends the smooth manifold projection 
Isomap to the field of grass hyperspectral. (3) We construct EAL framework based on AL to solve the issue of 
limited labeled samples in grass hyperspectral classification. Simultaneously, more intuitively enhance the physi-
cal essence behind spectral classification.

So far, the classification of grass community by visible-NIR hyperspectral is still in infancy. In all quantita-
tive comparisons, adding grass categories can improve the richness of datasets, but it has high requirements for 
classifiers. The balance between the two factors still needs to be discussed. Furthermore, MSM–EAL needs to be 
further optimized and the impact of training sample ratio on classification performance needs to be evaluated.

Data availability
The datasets generated and analyzed during the current study are not publicly available due that we have signed a 
confidentiality agreement with correlation department. At present, the project has not been completed as a whole. 
We have no right to public relevant hyperspectral data sets. However, it can be obtained from the corresponding 
author on reasonable request. Our study complies with Inner Mongolia Autonomous Region of China and China 
guidelines. It is supported by national, central and local funds.
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