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ABSTRACT Microbiome data have several specific characteristics (sparsity and composi-
tionality) that introduce challenges in data analysis. The integration of prior information
regarding the data structure, such as phylogenetic structure and repeated-measure study
designs, into analysis, is an effective approach for revealing robust patterns in micro-
biome data. Past methods have addressed some but not all of these challenges and fea-
tures: for example, robust principal-component analysis (RPCA) addresses sparsity and
compositionality; compositional tensor factorization (CTF) addresses sparsity, composi-
tionality, and repeated measure study designs; and UniFrac incorporates phylogenetic in-
formation. Here we introduce a strategy of incorporating phylogenetic information into
RPCA and CTF. The resulting methods, phylo-RPCA, and phylo-CTF, provide substantial
improvements over state-of-the-art methods in terms of discriminatory power of under-
lying clustering ranging from the mode of delivery to adult human lifestyle. We demon-
strate quantitatively that the addition of phylogenetic information improves effect size
and classification accuracy in both data-driven simulated data and real microbiome data.

IMPORTANCE Microbiome data analysis can be difficult because of particular data fea-
tures, some unavoidable and some due to technical limitations of DNA sequencing
instruments. The first step in many analyses that ultimately reveals patterns of similarities
and differences among sets of samples (e.g., separating samples from sick and healthy
people or samples from seawater versus soil) is calculating the difference between each
pair of samples. We introduce two new methods to calculate these differences that com-
bine features of past methods, specifically being able to take into account the principles
that most types of microbes are not in most samples (sparsity), that abundances are rel-
ative rather than absolute (compositionality), and that all microbes have a shared evolu-
tionary history (phylogeny). We show using simulated and real data that our new meth-
ods provide improved classification accuracy of ordinal sample clusters and increased
effect size between sample groups on beta-diversity distances.

KEYWORDS beta-diversity, phylogenetics, compositional data analysis

In recent decades, microbial sequencing data have been analyzed by a growing com-
munity of scientists to address a wide range of topics from human health to environ-

mental monitoring. However, such data have specific properties that make proper analysis
using conventional methods challenging. Specifically, microbial sequencing data are highly
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sparse (very few species/genes shared between samples), nonnormally distributed, and
compositional in nature (1–3).

The comparison of microbiome sequencing data among samples is commonly per-
formed through dimensionality reduction on a distance matrix that represents the
beta-diversity between each pair of samples. There are many different metrics that
quantify beta-diversity, each of which attempts to overcome a unique challenging
characteristic of microbiome sequencing data. For example, methods such as Bray-
Curtis (4) and Jaccard (5) produce similarities that are quantitative and qualitative,
respectively. Although these methods are simple, essentially operating off the overlap
in set membership (Jaccard) or weighted membership (Bray Curtis), their equations
make particular assumptions of the data being examined, which can produce nuisance
similarities in the context of microbiome data and artifacts in downstream steps such
as dimensionality reduction (6). Briefly, these assumptions include the following: all
organisms are equally related, the data are noncompositional, the data are dense, the
data require rarefaction (or some method to account for variation in sampling effort),
and samples are independent.

Using UniFrac distances for estimating beta-diversity integrates phylogenetic informa-
tion, which overcomes the assumption that all species are equally related and greatly
improves the ability to discriminate between sample groups (7, 8). However, the UniFrac var-
iant that utilizes weighted membership requires rarefaction, assumes dense data, and does
not account for the compositional nature of the data. Weighted membership methods such
as Aitchison distance utilize the centered log-ratio transformation (CLR) to account for the
compositional nature of the data and have been adapted to incorporate phylogenetic infor-
mation (i.e., Ratio and Information UniFrac) (9, 10). These metrics still assume the data are
dense and require the imputation of missing values, often through the addition of a pseu-
docount. Robust principal-component analysis (RPCA), builds upon the ideas of Aitchison
PCA, but instead treats all unobserved values as missing through an adaptation of the CLR
that is robust to missing data (RCLR) (11). RPCA has also been adapted to account for
repeated-measure study designs through Compositional Tensor Factorization (CTF) (12).
However, both RPCA and CTF fall short in the assumption that all organisms are equally
related. In total, each of these metrics addresses different combinations of challenges posed
by microbiome data, often yielding varying results and convoluting the field (Table S1 in
the supplemental material).

Here, we propose an extension to RPCA and CTF, called phylogenetic-RPCA and -CTF
(phylo-RPCA -CTF), that accounts for the evolutionary relationships among the microbes
present within a sample. This is accomplished through a postorder transformation of a fea-
ture table, a data layer that underpins the classic Fast UniFrac (13) algorithm, combined
with the RCLR transformation that underpins both RPCA and CTF. This yields a dimension-
ality reduction and beta-diversity metric that explicitly accounts for the relationships
among features in addition to the sparsity and compositional nature of the data.

RESULTS
Description of phylogenetic RPCA. In order to integrate a community’s phylogeny

into the RCLR transformation and therefore into RPCA and CTF, we borrow the count
arrays from the Fast UniFrac algorithm (13). First, we are given a table of count data
where each feature (i.e., microbe, ASV, gene) in the table corresponds to tips in a phy-
logenetic tree (Fig. 1A). Second, following the methodology of Fast UniFrac, all internal
nodes are exposed in the table by aggregating the descendants under each node in
the phylogeny (Fig. 1B). Third, the aggregated table is closed and the branch lengths
of each node and tip in the tree are multiplied. Missing values are treated as missing
and the robust centered log-ratio transformation is applied only to the observed values
(Fig. 1C). In the case of cross-sectional study designs, RPCA can be applied, and in the
case of repeated measures studies, CTF. After dimensionality reduction through RPCA,
the data can be viewed as a compositional biplot where the arrows represent the fea-
ture loadings along a principal component axis, which include both tips and internal
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nodes of the tree (14). These loadings are then used to identify key features that con-
tribute to the ability to discriminate between sample groups. Subsequently, we use
these features as the numerator and denominator in a log-ratio. In this case, the nu-
merator and denominator correspond to the sum of counts across all the tips lower in
the hierarchy (Fig. 1D and E). Moreover, the log-ratio of zero is undefined; therefore,
log-ratios of sparse microbiome data often rely on an aggregation of many features
(15). The log-ratio of the sum of tips under two internal nodes provides an intuitive so-
lution to provide a dense ratio and prevent sample drop-out from missing or imputed
zero values.

Simulations. To benchmark the impact of phylogenetic weighting for RPCA, we cre-
ated data-driven simulations based on microbiome samples from the Earth Microbiome
Project 500 (EMP500). We simulated a shotgun metagenomics data set based on animal,
saline, and nonsaline environments (16) (Fig. S1) (see Materials and Methods for details).
Data-driven simulations were chosen as a proof-of-concept to see how both sequencing
depth and the proportion to which a phylogeny can impact phylo-RPCA.

The simulated data were generated such that the majority of microbial features
(e.g., ASV or genome) are most abundant in one of three sample groups (i.e., animal,
saline, and nonsaline environments), with an additional subset of features shared
between two or all groups. The representative phylogeny, taken from the EMP500 data
set, was artificially sorted such that the postorder traversal of the tips match the order
of the sample clusters. Next, we generated data ranging from 200 to 2 million sequen-
ces per sample in addition to desynchronizing the level of association between the
phylogenetic information and sample clusters by randomly sorting 0%, 25%, 75%, or
100% of the tip IDs of the phylogenetic tree 10 times. In order to produce a compari-
son with no possible phylogenetic information retained, a random phylogeny contain-
ing the tip IDs of the original tree was produced for comparison. For each simulation,
we ran phylo-RPCA as well as RPCA without any phylogenetic information (Fig. 2A). Of
note, the greater the percentage of phylogeny tip IDs that were randomly shuffled, the
less the three sample groupings separated (Fig. 2B). In order to quantify these observa-
tions, output distance matrices representing beta-diversity were compared via permu-
tational multivariate analysis of variance (PERMANOVA) pseudo-F-statistic, and ordina-
tions via supervised k-nearest neighbor (KNN) classification cross-validation (50:50
split) evaluated through the area under the precision-recall curve (PR-AUC) and area
under the receiver operator characteristic curve (ROC-AUC) (17).

We observed that with perfectly aligned phylogeny and sample clustering, phylo-
RPCA provides a 600-fold increase in the F-statistic effect size and a 66% decrease in
the PR-AUC and ROC-AUC. A decrease in sequencing depth led to a 10-fold decrease in

FIG 1 Overview of the algorithm underlying phylo-RPCA and phylo-CTF. The input of a table of count data and a phylogeny representing the features of
the table (A). First, the table is expanded to represent all nodes up to the root of the phylogeny through summing up each node (B), second, the closure
of the expanded table is multiplied by the branch lengths following Hamady 2010 (13), and the data is then transformed with the rclr (C) and then RPCA is
performed. The output provides a phylogenetic biplot where arrows are both leaves and internal nodes of the input phylogeny (D) whose direction can
inform log-ratios of aggregated leaves counts (E).
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the F-statistic and a 36% decrease in the PR-AUC and ROC-AUC. This observation is
consistent with previous evaluations of RPCA (11). Similarly, large decreases in the F-
statistic, as well as the PR/ROC-AUC, were observed between the fully synchronized
and no phylogeny at all. However, in the case of a random phylogeny, RPCA and
phylo-RPCA are similar in performance (Fig. 2C). This demonstrated a proof-of-concept
that through disrupting the phylogeny, some phylogenetic signal is better than none
and that even poorly constructed or representative phylogenies provide some benefit.

Case studies. Next, we compared the discriminatory ability of phylo-RPCA and phylo-
CTF to state-of-the-art beta-diversity metrics, using two 16S rRNA gene amplicon sequenc-
ing data sets. The first, a cross-sectional data set, compared the skin microbiomes of sub-
jects across a gradient of urbanization in South America, represented by village (n subjects,
164) (18). The second, a repeated-measures data set, follows the fecal contents of infants
from birth across the first 2 years of life between two birth modes, vaginal or cesarean sec-
tion (C-section) delivery (n subjects, 43 with monthly sampling) (19).

FIG 2 As phylogeny becomes more synchronized with the samples’ clusters, the additional benefit of phylogenetic information in RPCA increases. A data-
driven simulation of shotgun microbiome data of three sample groups, based on EMP500 data, with reduced sequencing depth across plots from 2,000,000
to 200 reads (A). Comparison of phylogenetic RPCA sample clustering with a randomly generated tree and as a percentage of the tips of the phylogenetic
tree, originally perfectly representing the features clustering the samples, are randomly shuffled 10-fold (B). Comparison across simulation read depth
(colors from low to high) and phylogenetic-feature-sample cluster synchrony (x axis) for PERMANOVA F-statistic (left), area under the precision-recall curve
(PR-AUC, middle), and area under the receiver operator characteristic curve (right) (C).
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Of the many possible beta-diversity metrics, we compared phylo-RPCA and phylo-CTF to
a selection of widely-used metrics: Jaccard (5), Bray-Curtis (4), Aitchison (9), Ratio-UniFrac
(10), Information-UniFrac (10), and UniFrac ranging in the amount of weighting of abundan-
ces from unweighted (20) to weighted through varied alphas of generalized UniFrac (0 to 1
in increments of 0.1 where 0 is similar to unweighted UniFrac and 1 is weighted UniFrac)
(21). We also included the nonphylogenetic counterparts RPCA (11) and CTF (12) in the com-
parison. Following the same regime as the simulation data, each metric was elevated
through both PERMANOVA F-statistic and KNN classification cross-validation (50:50 split)
evaluated by PR-AUC (ROC-AUC was not compared due to unbalanced sample groups). In
both data sets, the best performing metrics were phylo-RPCA and phylo-CTF followed by
their nonphylogenetic counterpart (i.e., RPCA and CTF) with a 2-fold improvement in the F-
statistic and a 14% improvement in PR-AUC in both cases. Moreover, Ratio-UniFrac outper-
formed Aitchison, and UniFrac outperformed Jaccard, their respective nonphylogenetically
weighted comparable metrics. In total, compared to all other metrics, phylo -RPCA and -CTF
provided markedly improved results (Fig. 3A and B).

One major benefit of phylogenetic RPCA and CTF is that all the internal nodes are
provided in the feature loadings, providing a guide to the importance of phylogenetic
partitions along the principal component axis where samples are also separated. This
allows us to rank each internal node in relation to the samples and their phenotypes in
the metadata. We provide an interactive plugin to allow this exploration - of a phyloge-
netic tree and node importance - through a combination of Emperor (22) and Empress
(23) called Empire (interactive plots can be explored here and here for the cross-sec-
tional and repeated-measures data respectively). To validate the association observed
in the feature/node loadings, log-ratios of all aggregated features/tips below two
nodes can be used (see Materials and Methods for more details).

In order to demonstrate this, we first explore the repeated measures data set. The infants
who were born by C-section separate from those vaginally born along the first PC axis
(Fig. 4A). By coloring the associated phylogeny with the PC1 feature/node loadings from
phylo-CTF we can see associations of phylogenetic partitions more associated with C-section
or vaginally born infants by larger positive and negative PC1 values in the tree (Fig. 4B). In
particular, the log-ratio of the positively loaded C-section-associated internal node n3142
(lowest common ancestor, order Erysipelotrichales) and negatively loaded vaginally-associ-
ated node n839 (lowest common ancestor, order Bacteroidales) in the numerator and de-
nominator, respectively, recapitulates the separation by birth mode seen in the ordination
(Fig. 4C). The order Bacteroidales has been previously observed in a higher abundance in
vaginally born infants compared to those born by C-section (24).

This same process can be applied to the cross-sectional data. For example, the position
in the ordination where PC1 separates by village and the degree of urbanization (Fig. 4D)
can be projected onto the phylogeny to identify key phylogenetic partitions (Fig. 4E). In
particular, the ratio of the highly loaded node n673 (lowest common ancestor, order
Erysipelotrichales) to n1029 (lowest common ancestor, genus Rothia) significantly sepa-
rates the villages in the same direction as the ordination (Fig. 4F). In particular, representa-
tion of the order Erysipelotrichales was also significantly increased in the more urbanized
villages relative to Rothia. In this way, phylo-RPCA and -CTF can be used to identify evolu-
tionary breakpoints, presented in log-ratios of highly loaded internal nodes of the phylog-
eny, that help explain the separations observed in the ordinations.

DISCUSSION

Here we demonstrated that there is an additive improvement in estimating beta-diver-
sity and performing dimensionality reductions on microbiome sequencing data by explicitly
accounting for the evolutionary relationships among microbes, sparsity, and the composi-
tional nature of the data. We showed through simulations that phylogenetic tree integration
improves, and in the worst case does not hinder, the ability to compare microbial commun-
ities between samples. In addition, phylo-RPCA and -CTF quantitatively improved the ability
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to discriminate between sample groups compared to their nonphylogenetic counterparts
and techniques for estimating beta-diversity commonly used in the field.

Importantly, because the phylo-RPCA/CTF provides internal node detail that is
linked to sample information, one can identify groups of features based on phyloge-
netic partitions that are associated with sample clusters. These phylogenetically
grouped features provide a more precise alternative to log-ratios of taxonomic
groups. In either case of aggregated log-ratios, it is critical to prevent overlapping
features between the numerator and denominator sums in the log-ratio, because
doing so produces misleading results (25).

While the advances here are important, there are still numerous challenges and consider-
ations when utilizing phylo-RPCA or -CTF. First, the increased feature space dramatically
increases the runtime. In the case of large tables (e.g., N features . 10,000), including those
used in the case studies, the increased runtime could be prohibitive depending on resour-
ces available to the researcher (Table S2). Future work will address this problem; however,
one option now is to use the provided methods for a phylogeny-guided pruning of the fea-
ture space (see Materials and Methods for more details). Second, both RPCA and CTF algo-
rithms currently require recalculation with new samples, and is an active area of research

FIG 3 Phylogeny improves discriminatory power in cross-sectional data and in repeated measure data compared to existing methods. Comparison of
phylogenetic RPCA/CTF (green) against nonphylogenetic version (light-green), Aitchison PCA (blue), Jaccard (orange), phylogenetically informed unweighted
UniFrac, and generalized UniFrac with alpha varying level of abundance weighting (colored in reds from least to most weighted by abundance). Compared by
PERMANOVA F-statistic on beta-diversity distances (left column), 10-fold KNN classification cross-validation was evaluated through the area under the
precision-recall (right column). Comparison of cross-sectional data by hand skin bacterial communities from McCall et al. compared across villages
representing an urbanization gradient from Peru to Brazil (A). Repeated measure comparison of fecal bacterial communities from ECAM data set compared
across age and compared by birth mode (B).
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FIG 4 Phylogenetic-RPCA and -CTF resolve ordinal and phylogenetically aggregated log-ratios in birth-mode (top) and westernization gradients by
village (bottom) respectively. Phylo-CTF ordination PC1 (y axis) colored by birth mode (A), Bacterial and Archaeal phylogeny colored by PC1 feature

(Continued on next page)
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(26). Third, as described previously, the low-rank assumption of RPCA, CTF, and many other
dimensionality reduction methods can be misleading in high-rank data (6, 11, 12). Finally,
the CTF algorithm is aware of repeated measures, but does not encode the order of those
measures; future work is required to adapt the algorithm to be aware of the order present
in longitudinal study designs. Moreover, there are many future directions for incorporating
other forms of prior knowledge into these methodologies.

MATERIALS ANDMETHODS
Phylogenetic RPCA and CTF. Phylogenetic RPCA and CTF assume two inputs being a phylogenetic

tree and a matrix of counts where the features of the matrix are all represented in the phylogeny. The
phylogenetic tree is denoted as Ph!;Ki where the nodes of the tree are ! ¼ v1; v2; . . . va and the branch
weights A ¼ e 1; e 2; . . . e b . The count matrix is denoted as xi,j with x1; x2; . . . xi as the features correspond-
ing to leaves of the tree for each sample xj.

As we previously published (11), the approximate clr transform only defined on nonzero counts cir-
cumvents the problem of partially observed (sparse) data. The robust clr transform is given as

rclr xð Þ ¼ log
x1

gr xð Þ ; . . . ; log
xD
gr xð Þ

� �
(1)

gr xð Þ ¼
Y
i2Xx

xi

 !1=jXx j
(2)

where xi is the abundance of taxa i, Xx is the set of observed taxa in sample x, and gr xð Þ is the geometric
mean only defined on observed taxa. This can be redefined in total by the following where yij is defined
only where xij . 0.

yij ¼ logxij2
1

jXxi: j
X
k2Xxi:

xk2
1

jXx:j j
X
i2Xx:j

xk (3)

In order to incorporate the phylogenetic weights, we follow from Fast UniFrac first defined in (13).
First, we represent each node of the phylogenetic tree in xi,j by calculating the observed counts of every
node up the tree and the counts if its descendants. This gives a matrix of xa,j where xi,j with x1; x2; . . . xi
corresponds to ! ¼ v1; v2; . . . va . The total weight is defined as the sum of the branch lengths W e ið Þ,
which is vectorized and defined as Vl. In Fast UniFrac the distance between sample x and x

9
is given as

dU x; x9
� �

¼

Xm
i¼1

Vl � x� x9ð Þ

Xm
i¼1

Vl � x � x9ð Þ

We can adapt this methodology to the rclr transformation. The phylogenetic-rclr transform is given
by:

yaj ¼ logðVl � xajÞ2 1
jXVl �xa: j

X
k2XVl �xa:

xk2
1

jXx:j j
X
a2Xx:j

xk (4)

Beta-diversity calculation and dimensionality reduction of the phylogenetic-rclr transformed values,
are performed through the same methodology as introduced in the original RPCA and CTF algorithms
for cross-sectional and repeated measure study designs, respectively (11, 12).

Simulation benchmarks. Data-driven simulations were used to benchmark characteristics of the
data while making the fewest assumptions of the microbial distributions as possible. We utilized a
previously published procedure introduced in the original RPCA and CTF manuscripts (11, 12). The
EMP500 data set was chosen due to the large range in sequencing depths, environments sampled,
and distinct three clusters (animal, saline, and nonsaline environments) (16). The software used to
generate the simulations is available at https://github.com/gibsramen/BIRDMAn_Jr. Briefly, a micro-
bial proportion table was drawn in three blocks, replicating the EMP500 data, through the following
distributions (25):

FIG 4 Legend (Continued)
loadings that also separate the respective sample groups PC1 for phylo-CTF (B), and log-ratio of high (numerator, colored by a purple dot in the
phylogeny) and low (denominator, colored by a green dot in the phylogeny) value loadings identified in the respective phylogenies and sample
groupings for phylo-CTF (C). Phylo-RPCA PC1 (x axis) and PC2 (y axis) colored by village across urbanization gradient (D), phylogeny colored by
PC1 feature loadings (E), log-ratio of high (numerator, colored by a purple dot in the phylogeny) and low (denominator, colored by a green dot in
the phylogeny) value loadings identified in the respective phylogenies and sample groupings for phylo-RPCA (F).
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xij ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2

p exp
m i2gjð Þ2
2s 2

� �
(5)

pij ¼ xij
Rkxkj

(6)

The pij were induced with both normally and randomly generated noise. In order to simulate the
final subsampled count table yij, a Poisson-log normal (PLN) distribution was applied given by

l ij ¼ npij (7)

yij ¼ PLN l ij; fð Þ (8)

The parameters of the simulation were optimized to replicate the EMP500 data set. Moreover, the
EMP500 phylogenetic tree was post order sorted and the tip IDs were assigned to the features in the
order by which they grouped into each simulated block. Next, sequencing depth was simulated from
200 to 2 million reads/sample. At each sequencing depth, the phylogenetic tree IDs were shuffled at a
proportion of 0, 25, 75, and 100%. A randomly generated phylogenetic tree was produced through
ngesh (v. 1.1.1) on fast mode using otherwise default parameters with the original phylogenetic tree tip
IDs as input (27). This procedure was repeated 10 times. Each simulation was then processed with phylo-
genetic-RPCA or RPCA and compared through PERMANOVA (17) F-statistic or KNN classification on the
beta-diversity distances and ordinations respectively. To assess the classification accuracy, KNN classifica-
tion was performed with 10-fold 50:60 cross-validation evaluating area under curve and average preci-
sion-recall (APR) prediction accuracy at each fold iteration via scikit-learn (v.0.21.2) (28).

Case studies. The two real data sets were acquired from and processed through the default Qiita analy-
sis. The skin urbanization study (18) was filtered to retain features greater than 10 total counts across all sam-
ples, and the ECAM data (19) were filtered for singletons. Each data set was rarefied for noncompositional
metrics through QIIME2 (v.2021.2) (29) to retain at a minimum 75% of the samples, which was 11939 and
29420 for ECAM and the skin data set, respectively. For each data set Jaccard, Bray–Curtis, Weighted UniFrac,
Unweighted UniFrac, Aitchison, RPCA, and CTF distances were calculated through QIIME2 (v.2019.7). Ratio
and Information UniFrac were calculated in R (https://github.com/ruthgrace/R_Scripts/blob/master/UniFrac.r).
PERMANOVA on distances between subject groupings was performed through scikit-bio (v.0.5.5) (30).
Dimensionality reduction on distances was performed through PCoA via scikit-bio (v.0.5.5). The first three
components of each dimensionality reduction were evaluated through KNN classification via scikit-learn
(v.0.21.2). To assess the classification accuracy, KNN classification was performed with 10-fold 50:60 cross-vali-
dation evaluating area under curve and average precision-recall (APR) prediction accuracy at each fold itera-
tion via scikit-learn (v.0.21.2). The phylogenetic log-ratios were chosen through Empress community plots
and calculated with Qurro both through QIIME2 (v.2021.2).

Data availability. The software to perform this analysis is available under an open-source license and can
be obtained at https://github.com/biocore/gemelli, and all benchmarking code/analysis can be found at https://
github.com/cameronmartino/phylo-rclr-benchmarking. The sequences and biom tables for the EMP500, ECAM,
and Urbanization data sets can be found on Qiita (https://qiita.ucsd.edu/) (31) under study IDs 13114, 10249, and
10333 and at EBI or BioProject under ERP125879, ERP016173, and ERP107551.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 1.3 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.01 MB.
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