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Alzheimer’s disease (AD) is a common neurodegenerative disorder without an

effective treatment, and results in an increasingly serious health problem.

However, its pathogenesis is complex and poorly understood. Nonetheless,

the exact role of dysfunctional glucose metabolism in AD pathogenesis

remains unclear. We screened 28 core glycolysis-related genes and

introduced a novel metric, the glycolysis index, to estimate the activation of

glycolysis. The glycolysis index was significantly lower in the AD group in four

different brain regions (frontal cortex, FC; temporal cortex, TC; hippocampus,

HP; and entorhinal cortex, EC) than that in the control group. Combined with

differential expression and over-representation analyses, we determined the

clinical and pathological relevance of glycolysis in AD. Subsequently, we

investigated the role of glycolysis in the AD brain microenvironment. We

developed a glycolysis-brain cell marker connection network, which revealed

a close relationship between glycolysis and seven brain cell types, most of

which presented abundant variants in AD. Using immunohistochemistry, we

detected greater infiltrated microglia and higher expression of glycolysis-

related microglia markers in the APP/PS1 AD model than that in the control

group, consistent with our bioinformatic analysis results. Furthermore, the

excellent predictive value of the glycolysis index has been verified in different

populations. Overall, our present findings revealed the clinical and biological

significance of glycolysis and the brain microenvironment in AD.
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Introduction

Alzheimer’s disease (AD) is one of the most common age-

related neurodegenerative diseases, and is clinically characterized

by progressive cognitive decline with memory impairment (1). Its

symptoms usually begin with mild cognitive impairment (MCI).

However, cognitive difficulties and dysfunction in complex daily

activities occur with disease progression (2). The clinical diagnosis

of AD presents with neuropathological changes, such as

extracellular amyloid plaques composed of the amyloid b (Ab)
peptide, intraneuronal neurofibrillary tangles (NFTs) composed

of hyperphosphorylated tau protein, the binding of

Apolipoprotein E to Ab, the activation of immune mediators

(including reactive astrogliosis and microgliosis), and reductions

in synaptic density (3, 4). According to epidemiological findings,

AD was the seventh leading cause of death in the United States in

2020 and 2021 (5, 6), and is estimated to affect approximately 6.5

million Americans aged ≥65 years today. Compared with heart

disease, stroke, and human immunodeficiency virus, whose death

rate decreased from 2000 to 2019, deaths from AD reportedly

increased by >145% (7). AD has become an escalating burden on

the society; nonetheless, there is still no cure.

In recent years, the relationship between dysfunctional

glucose metabolism and AD has attracted considerable

attention (8–11). Under normal physiological conditions, the

human brain constitutes only 2% to 3% of the body weight of

adults; however, its metabolism accounts for 25% of whole-body

glucose utilization (12, 13). The brain requires a high supply of

energy, but has little capacity for energy production; thus,

scientists have postulated the interesting “selfish brain theory”

(14–16). Similar to other tissues, glucose is metabolized in the

brain by classical pathways, including glycolysis, tricarboxylic

acid cycle, hexose monophosphate shunt, and electron transport

chain (17). Glucose metabolism is significantly impaired under

the pathological conditions of AD. Using positron emission

tomography, previous clinical studies demonstrated that

cerebral glycolysis is reduced in individuals with early AD and

positive Ab, with or without MCI (8, 9, 18, 19). In addition,

several clinical features of individuals with type 2 diabetes

mellitus are closely related to AD, such as modest cognitive

deficits, mood disorders, and cerebral atrophy (20–23). Intrinsic

brain insulin resistance is one of the potential mechanisms

underlying AD (10). At the molecular level, a growing number

of glycolysis-related proteins are dysfunctional in AD. For

instance, a redox proteomics study revealed that glycolytic

enzymes, i.e., aldolase, a-enolase, triosephosphate isomerase

(TPI), glyceraldehyde-3-phosphate dehydrogenase and

phosphoglycerate mutase 1, undergo an oxidative modification

in AD brain tissues (24). Another study demonstrated that

bolstering NAD+/NADH using nicotinamide riboside,

potentially via glycolysis, may contribute to AD treatment

(25). These findings suggested that glycolysis may play an

important role in AD; thus, we systematically aimed to
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investigate the clinical and biological significance of glycolysis

in AD.

We aimed to demonstrate the wide downregulation of

glycolysis in multiple brain regions of patients with AD.

Meanwhile, we curated a glycolysis-related 28-gene set

and designed a single-sample gene set enrichment analysis

(ssGSEA)-based metric, the glycolysis index. Differentially

expressed genes (DEGs) between normal and AD brain tissues

and between AD samples with low and high glycolysis indices

were selected for the over-representation analysis. Moreover,

we investigated the relationship between glycolysis and the

brain microenvironment in patients with AD. Using

immunohistochemistry (IHC), we further confirmed our

bioinformatic analysis results that there were greater infiltrated

microglia and higher expression of glycolysis-related microglia

marker Spalt Like Transcription Factor 1 (Sall1) in the APP/PS1

AD model than that in the control group at the protein level (26).

Eventually, we verified the predictive performance of the

glycolysis index in the normal population. Collectively, we

demonstrated the clinical and biological significance of

glycolysis in AD and presented potential targets for its

interaction with the brain microenvironment.
Methods and materials

Data collection

Weaccessednormalized gene expressionprofiles anddifferential

expression analysis results from four different brain parts (frontal

cortex, FC; temporal cortex, TC; hippocampus, HP; and entorhinal

cortex, EC) from postmortem donors with and without AD using

AlzData (27) (http://www.alzdata.org/index.html) as well as their

corresponding clinical information. Microarray data [GSE84422

(28)] of 2,004 brain samples with Braak neurofibrillary tangle

scores were obtained from the Gene Expression Omnibus (GEO)

datasets (https://www.ncbi.nlm.nih.gov/gds/) as a validation dataset,

whichwas divided into three sub-datasets using differentmicroarray

platforms. We transformed the probes of different platforms into

gene symbols usingBioMart (29). In addition,wedownloadedRNA-

seqdataof normal brain tissues in transcripts per kilobasepermillion

mapped reads format from the Genotype-Tissue Expression project

(30) (https://gtexportal.org/home/) v8 data. Duplicate gene symbols

were summarized using the median values.
Glycolysis index calculation

We searched and downloaded seven glycolysis-related gene sets

(glycolytic process through fructose-6-phosphate, REACTOME:

glycolysis, Kyoto Encyclopedia of Genes and Genomes (KEGG):

glycolysis gluconeogenesis, BIOCARTA: glycolysis pathway,

HALLMARK: glycolysis, WP: glycolysis and gluconeogenesis, and
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WP: glycolysis in senescence) from the Molecular Signatures

Database (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp)

(31). After applying GSEA to four AlzData datasets using the seven

gene sets, we selected the 28 leading genes in at least half (two) of the

datasets as the core glycolysis genes. The glycolysis indexwas defined

as the enrichment score (ES) of the ssGSEA algorithmusing the core

glycolysis genes. GSEA and ssGSEA were performed using the R

(v4.1.0) package clusterProfiler (32) (v4.0.5) and Python (v3.9.1)

package gseapy (v0.10.2), respectively.
Differential expression analysis

We performed differential expression analyses between

normal and AD brain tissues, and between AD samples with

low and high glycolysis indices using the R package limma (33)

(v3.48.3). We combined the four parts of AlzData datasets for

the analyses. Parts of the brain, age, and sex were included as the

covariates. The different groups are divided by the median values

of glycolysis index into different brain regions, respectively. As

the continuous values, ages were converted to natural cubic

splines with one degree of freedom according to the user guide of

the limma.
Over-representation analysis

We performed gene ontology (GO) and KEGG enrichment

analyses using the R package clusterProfiler (32) (v4.0.5). Gene

symbols were transformed as the Entrez gene ID before analyses

using the R package org.Hs.eg.db (v3.13.0). Genes that existed in

all four AlzData datasets were used as the background genes.
Brain cell markers/signatures collection

The marker genes of several brain cells, including astrocytes,

endothelial cells, microglia, neural stem cells, neurons,

oligodendrocytes, oligodendrocyte progenitor cells (OPC), and

Purkinje cells, were obtained from the CellMarker (34) database

(http://biocc.hrbmu.edu.cn/CellMarker/index.jsp). We obtained

a brain single-cell RNA-seq dataset [GSE67835 (35)] from GEO

datasets, which contains six brain cell types (astrocytes,

endothelial cells, microglia, neurons, oligodendrocytes, and

OPC) following filtration, and could be adopted as a signature

matrix for cell abundance deconvolution.
Cell abundance estimation

We used the proportion of immune and cancer cells [EPIC

(36)], immune cell abundance identifier [ImmuCellAI (37)], and

CIBERSORTx (38) to estimate the abundance of immune cells in
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AlzData samples. In addition, based on the previously

mentioned brain single-cell sequencing data, we used

CIBERSORTx for predicting custom brain cell abundance.

EPIC was implemented using the R package EPIC (v1.1.5),

and ImmuCellAI and CIBERSORTx were performed using

their respective web tools. The file format was prepared in

accordance with the guidelines of the corresponding tool. For

CIBERSORTx, quantile normalization was disabled and the

program was run in an absolute mode. As a supplement, we

used ES to estimate the relative abundance of microglia in the

sample using microglia marker genes and ssGSEA.
Network construction

Separately, we calculated the expression correlations among

genes from seven glycolysis-related gene sets and brain cell

marker genes from CellMarker using four AlzData datasets. P-

values were adjusted using the Benjamini and Hochberg method.

Co-expression with a false discovery rate (FDR) <0.05 was

considered significant, and we required it to have identical

correlation directions in all datasets with significant results. In

addition, we extracted the protein-protein interaction (PPI)

information from the STRING (39) database, where high-

confidence interactions with scores >0.7 were retained. We

used gene pairs with significant/high-confidence results in at

least four of the five metrics (four datasets and one interaction)

for subsequent network construction and functional validation.

The network was constructed using Cytoscape (40) (v3.8.2) in

Java (v11.0.9.1).
Immunohistochemistry

Specific pathogen-free male C57BL/6J mice and APP/PS1

mice (22-24 weeks old, 20–25 g) were purchased from the

Changzhou Cavens Laboratory Animal Co., Ltd. (Jiangsu,

China). The animals were subjected to adaptive feeding for 1

week. Following anesthesia, mice brains were fixed by cardiac

perfusion with phosphate buffered saline (PBS), and

subsequently with 4% paraformaldehyde (PFA). The brains

were removed and stored overnight in 4% PFA at 4°C. The

tissues were dehydrated using graded ethanol in xylene and

embedded in paraffin wax. Sections (5mm) were cut in the

paraffin sagittal plane and mounted on glass slides. We

performed immunohistochemical staining on the sections

following deparaffinisation. Paraffin sections were blocked

against endogenous peroxidase activity with 3% H2O2 and

subjected to antigen retrieval, followed by blocking.

Subsequently, the sections were incubated overnight with

antibodies against ionized calcium-binding adapter molecule 1

(Iba1) (1:1000, ab178846, Abcam) and Sall1 (1:200, ab41974,

Abcam) at 4°C. The following day, the sections were washed
frontiersin.org
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with PBS, stained with secondary antibodies, developed with

3,3′-diaminobenzidine chromogenic solution, counterstained

with hematoxylin, dehydrated, and mounted. Two observers

reviewed and independently quantified the expression levels

using the percentage of positive cells and the average optical

density using Alpathwell software (Servicebio, Wuhan, China).

All animal experimental protocols were approved by the Animal

Experiments and Experimental Animal Welfare Committee of

the Capital Medical University.
Statistical analysis

We performed two-sided Wilcoxon rank-sum tests to

evaluate the differences between the two groups of

continuous values. The Spearman’s correlation test was

conducted to calculate the significance of the correlations

between the groups of continuous values. We used the

analysis of variance (ANOVA) and linear models to test if

the correlation between the two indicators was independent of

other factors. All statistical analyses were performed using R

(v4.1.0), Python (v3.9.1), and GraphPad Prism 9 (v9.0.0 for

macOS). Statistical significance was set at P-values or

FDR <0.05.
Results

The clinical relevance of glycolysis index
in AD

To investigate the clinical relevance of glycolysis in AD, we

initially selected seven glycolysis-related gene sets from

MSigDB, some of which have been previously considered.

GSEA was performed on AD vs. control brain samples in

expression profiles of four brain regions, namely the FC, TC,

HP, and EC, from AlzData datasets using the aforementioned

gene sets. The majority of glycolysis gene sets were significantly

downregulated in at least one brain region in AD samples,

compared with control brain tissues (Figures 1A–C and

Supplementary Figure 1). For a downregulated gene set, the

leading edge subset consisted of the genes ranked after the

trough in the figure, which were the core genes causing the

downregulation of this pathway. Thus, we filtered the genes

identified as the GSEA leading-edge subsets in at least two

brain regions (Figure 1D). The above core glycolysis genes were

pooled to constitute a novel gene set of 28 genes, which was

used to perform ssGSEA for calculating the ES as the

glycolysis index.

To observe the clinical relevance of the glycolysis index,

we initially applied this algorithm to the control and AD

samples in four datasets from AlzData. The glycolysis indices
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were significantly lower in the AD group than that in the

control group in all brain regions (Figure 1E). Subsequently,

we used multivariate logistic regression models to predict AD

with glycolysis index, age, sex, different brain regions, Ab
precursor protein (APP), microtubule associated protein tau

(MAPT), and Presenilin 1/2 (PSEN1/2) gene expression as

covariates. The glycolysis index still had significant results

after adjust ing the effects of the above covariates

(Supplementary Table S1). Furthermore, using microarray

data (GSE84422) from the GEO dataset as a validation

dataset, we evaluated the prognostic value of the glycolysis

index for patients with AD. Principal component analysis was

performed on the combined expression profiles of 3 datasets.

The results showed that the samples using different probe sets

can be distinguished by the first principal component alone

(Supplementary Figure 2). In 1991, Braak and Braak proposed

Braak NFT stages, which were based on the distribution and

severity of neurofibrillary tangles and neuropil threads (41).

We analyzed the correlations between the glycolysis index

and different Braak NFT stages. The glycolysis index

decreased with higher stages of AD (Figure 1F). Eventually,

the Spearman’s test was used to analyze the correlation

between glycolysis indices and Braak stages in different

brain regions, respectively. The results of the middle

temporal gyrus, frontal pole and HP are significant in two

probe sets (Supplementary Figure 3). Remarkably, we

compared the ability of the glycolysis index and 7

glycolysis-related gene sets to distinguish between AD and

controls, and the correlation with Braak stages. The results

showed that glycolysis index has the most significant ability to

distinguish between AD and controls in three of the four

brain regions and was significantly correlated with Braak

stages in two of the three data sets (Supplementary Table

S2). We also observed the correlation of glycolysis index with

Neuritic Plaque Density, APP, MAPT and PSEN1/2. The

neuritic plaque density was defined as the average of

neuritic plaque densities measured in five regions, including

middle frontal gyrus, orbital frontal cortex, superior temporal

gyrus, inferior parietal lobule, and occipital cortex. There was

no or a weak negative correlation between the glycolysis index

and Neuritic Plaque Density (Supplementary Figure 4A).

Considering that they both are correlated with AD and

Braak stages, they may be independent AD markers,

respectively. Due to the lack of corresponding clinical data,

the expression levels of APP and MAPT genes were used to

represent the levels of Ab42 and phospho tau (42). The

expression levels of two other AD markers, PSEN1/2, were

also included in the study. The results showed that these 4

genes were significantly correlated with glycolysis index in at

least one brain region (Supplementary Figures 4B–E). In

other words, the glycolysis index may serve as a reliable

prognostic indicator in patients with AD.
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A B
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FIGURE 1

Glycolysis index and its clinical relevance in AD (A-C) GSEA analysis on AD vs. control samples of the glycolysis gluconeogenesis (KEGG) gene
set in FC. (A) Glycolysis and gluconeogenesis (Wikipathways) in FC and (B) glycolysis (Hallmark) in TC (C) The green curve denotes the running
ES for the gene set as the analysis moves down the ranked list of genes. Positive correlation, NES >0; Negative correlation, NES <0. Adj. P,
adjusted p-value. These callouts also apply to the Supplementary Figure 1. (D) The 28 core glycolysis genes. Cells in red denote the genes
identified as leading edge genes in these brain regions. (E) AD samples reveal lower glycolysis indices than that in the control in different brain
regions. ***p<0.001. (F) The trends of glycolysis index in different Braak NFT stages using the GSE84422 dataset. Blue dots represent the
individual samples. NES, Normalized enrichment score; GSEA, gene set enrichment analysis; AD, Alzheimer’s disease; FC, frontal cortex; TC,
temporal cortex; ES, enrichment score; NFT, neurofibrillary tangles; and KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Screening of glycolysis-related genes
and pathways in AD

To characterize the transcriptomics of glycolysis-related

genes in AD, we performed the differential expression analysis

of the expression profiles from AlzData. The brain region, age,

and sex were set as the covariates to exclude their influence.

Subsequently, we screened 272 DEGs (FDR<0.05, |log2 FC|>0.5)

between normal and AD brain tissues, and 1,389 DEGs

(FDR<0.05, |log2 FC|>0.5) between AD samples with low and

high glycolysis indices (Figure 2A, B and Supplementary Table

S3). These 195 overlapping genes served as glycolysis-related

DEGs in AD (Figure 2C). Furthermore, to explore the signaling

pathways involved in glycolysis-related DEGs in AD, we
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conducted GO and KEGG enrichment analyses of the

glycolysis-related DEGs. These genes were principally

associated with the functions of the nervous system, including

the regulation and transmission of synaptic and membrane

potentials (Figure 2D). In addition, the KEGG enrichment

analysis revealed that the signaling pathways of these genes

were predominantly composed of the synaptic vesicle cycle,

retrograde endocannabinoid signaling, and GABAergic

synapses (Figure 2E). Thus, glycolysis-related DEGs play an

important role in the neurodegenerative process of AD

pathogenesis. Notably, we detected some immune-related

pathways, such as rheumatoid arthritis, thus raising the

question of the association between glycolysis and the brain

microenvironment in AD.
A

B

D

E

C

FIGURE 2

Screening glycolysis-related genes, and their relevant signaling pathways and functions in AD (A) Volcano plots of DEGs in AD vs. control
samples. (B) Volcano plots of DEGs between AD samples with low and high glycolysis indices. The genes with FDR <0.05 and |log2 FC|>0.5 are
considered significant. (C) Venn diagram of the overlapping genes between the two differential expression analyses. (D) The GO enrichment
analysis of intersection DEGs. (E) The KEGG enrichment analysis of intersection DEGs. DEG, differentially expressed genes; AD, Alzheimer’s
disease; FDR, false discovery rate; GO, gene ontology; and KEGG, Kyoto Encyclopedia of Genes and Genomes.
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The role of glycolysis in the brain
microenvironment of AD

According to previous studies, almost all cell types in the

brain, such as neurons, astrocytes, microglia, oligodendrocytes,

and endothelial cells, play important roles in AD development

(43–47). Therefore, we investigated the correlation between

glycolysis and different cell types in the AD brain

microenvironment. First, we estimated the abundance of

immune cells in AlzData samples using the following

decomposition tools: EPIC, ImmuCellAI, and CIBERSORTx

(36–38) (Figure 3A and Supplementary Figure 5). However,

these tools were designed for estimating the tumor

microenvironment by default; nonetheless, the cells in the

tumor microenvironment were not similar to those in the

brain. For example, microglia are the resident macrophages of

the brain but are not exactly identical to macrophages in the

tumor. To obtain the cell-type content estimates closer to the

true situation in the brain, we used CIBERSORTx in the custom

cell-type mode, which can build a personalized model from

brain single-cell expression profiles for deconvolution. To this

end, we used a brain single-cell RNA-seq dataset from GEO

datasets containing astrocytes, endothelial cells, microglia,

oligodendrocytes, OPCs, and neurons. In a follow-up study,

we principally focused on the estimation of brain cells using the

custom CIBERSORTx model. By applying Spearman’s

correlation analysis, the glycolysis index was positively

correlated with cell subtypes, including neurons, follicular

helper T cells, activated natural killer cells, cluster of

differentiation 8 T cells, cluster of differentiation 4 T cells, and

T helper type 1 cells. By contrast, it was negatively correlated

with microglia, macrophages, astrocytes, OPC, endothelial cells,

oligodendrocytes, and B cells. Meanwhile, the relative

abundance of brain cells negatively correlated with the

glycolysis index, including astrocytes, endothelial cells,

microglia, oligodendrocytes, and OPC was higher in AD, and

vice versa (e.g., neurons) (Figure 3A, B and Supplementary

Figure 6). These results were also significant upon excluding

the effects of different brain regions using ANOVA or a linear

model, and on using the absolute abundance instead of relative

abundance. Subsequently, we focused on the relationship

between glycolysis and microglia in AD. To confirm the

findings based on the custom CIBERSORTx model, we

collected the cell markers of microglia from the CellMarker

(34) database, and calculated the ES of these marker genes in AD

and control data using ssGSEA. Similar to the above

phenomena, the expression of microglial markers was

significantly higher in the EC, FC, and HP of AD, and

negatively correlated with the glycolysis index (Figures 3C, D).

In summary, these results show that glycolysis plays a vital role

in the AD brain microenvironment.
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Glycolysis-related brain cell markers
revealed the potential relationship
between glycolysis and the brain
microenvironment of AD

To further explore the relationship between glycolysis and the

brain microenvironment in AD, we conducted a co-expression

analysis and PPI analysis between the genes from seven glycolysis-

related gene sets and marker genes of seven brain cells (astrocytes,

endothelial cells, microglia, neural stem cells, neurons,

oligodendrocytes, and OPC). Consequently, we constructed a

glycolysis-brain-cell gene connection network (Figure 4A and

Supplementary Table S4). Moreover, we used glycolysis-related

brain cell markers in AD to perform GO and KEGG analyses

(Figures 4B, C). Specifically, as brain cell markers, these genes were

highly correlated with the regulation of the development of several

types of brain cells, such as endothelial cells and oligodendrocytes. In

addition, someof the genes play roles in thenegative regulationofAb
formation, consistent with our findings that AD brains display a

downregulation in glycolysis. In addition, the mitogen-activated

protein kinase (MAPK) signaling pathway was significantly

enriched. A previous study demonstrated that the inhibition of

p38a MAPK expression could promote beta-site APP cleaving

enzyme 1 degradation and reduce neuronal Ab generation in AD

(48).Moreover,P38aMAPKisconsideredapromising target forAD

therapy (49).Hence, ourfindings illustrated the complex interactions

between glycolysis and the brain microenvironment of AD, and

corroborated previously described results. We focused onmicroglial

markers to better understand the relationship between glycolysis and

the immune microenvironment in patients with AD. For example,

SALL1, themicrogliamarker gene,washigher inADbrains than that

in the control, besides being negatively correlated with the glycolysis

index in the EC, FC, and TC (Figures 4D, E). Remarkably, we also

performed the same analysis for activated microglia markers (50).

Similar to SALL1, the results showed that most activated microglia

markers were also higher in the AD brain than in the control, and

negatively correlated with glycolysis index. Neither had significant

opposite results that activated microglia markers were lower in the

AD brain or positively correlated with glycolysis index

(Supplementary Table S5). Thus, glycolysis may influence the brain

microenvironment of AD in multiple ways, and a series of target

biomarkers may play important roles in basic scientific research and

drug design.
Validation of glycolysis-related microglia
markers in the APP/PS1 AD model

To validate the results of bioinformatic analyses, we

investigated the abundance of microglia and the expression of

Sall1, a glycolysis-related microglia marker, in the AD model and
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FIGURE 3

The association between glycolysis and the brain microenvironment (A) Heatmap depicts the abundance of six brain cells calculated by
CIBERSORTx in AD and control samples. Rho: the Spearman’s rho between the abundance and glycolysis index. The significance of the
differences between AD and control are measured by the directed log P values of the Wilcoxon’s rank-sum tests. A positive value denotes
higher abundance in the AD group. (B) Relative abundance of six brain cell types in different brain regions between control and AD samples.
(C) The quantification of microglia using the ES of microglia marker genes in different brain regions. (D) Spearman’s correlation analysis between
the glycolysis index and the ES of microglia markers. Different colors indicate different regions, and it is the same as the color in (C). *p<0.05,
***p<0.001. AD, Alzheimer’s disease; ES, enrichment score.
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FIGURE 4

Mining of glycolysis-related brain cell markers (A) The correlations between glycolysis-related genes and various brain cell marker genes. The
thickness of the line denotes the number of metrics supporting the correlation. The red line denotes a positive correlation, whereas the blue
line denotes a negative correlation. (B) The GO enrichment analysis of glycolysis-related brain cell markers. (C) The KEGG enrichment analysis
of glycolysis-related brain cell markers. (D) Boxplots of SALL1 expression in different brain regions between the control and AD samples. (E)
Spearman’s correlation analysis between the glycolysis index and SALL1 expression. **p<0.01, ***p<0.001. AD, Alzheimer’s disease; GO, gene
ontology; SALL1, Spalt Like Transcription Factor 1; and KEGG, Kyoto Encyclopedia of Genes and Genomes.
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control group. APP/PS1 mice were previously reported as an ideal

model for AD and have a C57BL/6J background; thus, we selected

APP/PS1 and C57BL/6J mice as our research objects (51, 52).

First, using IHC, we detected Iba1 expression levels in different

brain regions of APP/PS1 AD and C57BL/6J mice. Iba1 is a

common marker for microglia; its expression levels were

significantly higher in the FC, TC, and HP of AD, thereby

indicating greater infiltrated microglia in different AD brain

regions (Figures 5A, B). Second, we detected Sall1 expression

levels in different brain regions to determine the expression

level of glycolysis-related microglial markers at the protein level.

Compared with the control group, Sall1 expression levels

were significantly increased in the FC, TC, and HP in AD mice

(Figures 5C, D). Thus, there were greater infiltrated microglia and

higher expression of Sall1 in the APP/PS1 AD model than that in

the control group, consistent with our aforementioned analyses.
The predictive value of glycolysis index
in normal samples

In addition to the pathological significance of the glycolysis

index, we investigated its predictive value in normal brains. In

contrast to males, lower glycolysis indices were observed in females

(Figure 6A), consistentwith previous studies demonstrating a higher

incidenceofAD inwomen (53). The Spearman’s test of the glycolysis
Frontiers in Immunology 10
index in different age groups indicated that the glycolysis index

decreased with age, and was lowest in the most common age of AD

(Figure 6B). Eventually, different brain regions presented a diverse

distribution of the glycolysis indices (Figure 6C), thus suggesting

brain regions with lower indices may pose a higher risk of AD and

require greater attention in future studies. These results confirmed

the clinical and predictive value of the glycolysis index in AD.
Discussion

AD was first proposed by the German neuropathologist Alois

Alzheimer in 1906, and researchers have discovered a spectrum of

neuropathologicalmanifestations (54,55). It is challenging to identify

patients with AD at an early stage, and currently there is no effective

cure (56). Instead, several patients have to receive palliative care.

Researchers have widely studied and proven the mechanism of Ab;
nonetheless, vaccines and elimination targeting Ab do not

successfully prevent AD progression (57, 58). This necessitates

exploring the pathogenesis of AD for early diagnosis. Current

research actively focuses on identifying potential novel therapeutic

targets for AD (59), whereas the mechanism of impaired glucose

metabolism provides new insights into this field.

In this study, we observed downregulated glycolytic processes

in four different brain regions in AD models. Impaired glucose

metabolism may contribute to neuronal degeneration and
A

B D

C

FIGURE 5

The expression of Iba1 and Sall1 in C57BL/6J mice and APP/PS1 AD model mice (A, C) IHC staining for Iba1 and Sall1 in different regions
between the control and AD samples. (B, D) The expression levels of Iba1 and Sall1 in different regions between the control and AD samples,
n=4. *p<0.05, **p<0.01. AD, Alzheimer’s disease; SALL1, Spalt Like Transcription Factor 1; and Iba1, ionized calcium-binding adapter molecule 1.
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cognitive impairment in patients with AD (11, 60–62).

Interestingly, decreased glycolysis presumably decelerates the

aging process but plays a pathogenic role in AD (63). This

could be attributed to TPI dysfunction and mutations, which is

one of the regulatory enzymes in glycolysis. TPI converts

dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-

phosphate (GAP), following which its structure changes,

thus resulting in decreased activity (64). This leads to reduced

GAP production and the increased accumulation of DHAP.

Reduced GAP production causes the underproduction of

NADH, which results in mitochondrial dysfunction in AD;

meanwhile, increased DHAP accumulation contributes to the

accumulation of advanced glycation end products (AGEs),

which stimulate Ab aggregation and affect the cognitive

functions in patients with AD (65–67). Impaired glucose

metabolism can induce various pathophysiological cascades,

such as Ab accumulation, tau hyperphosphorylation,
Frontiers in Immunology 11
inflammation, AGEs, and excitotoxicity (68). The detailed

mechanism requires further elucidation; however, the 28 core

glycolysis genes may play a key role in the glycolysis-related

pathogenesis of AD. A study from Australia demonstrated that

the suppression of the dihydrolipoamide dehydrogenase gene

could inhibit Ab pathogenicity and may be simultaneously

considered a potential therapeutic target (69). Previous studies

applied the striatal amyloid plaque density to predict Braak NFT

stages in AD (70). Currently, there are no studies on the

prediction of Braak NFT stages in AD using indicators of

glycolysis, and we used the glycolysis index to identify the Braak

NFT stages in AD. Our study quantified the level of glucose

metabolism using the glycolysis index and demonstrated its

clinical relevance and prognostic significance in AD.

Several cell types in the brain are intimately involved in AD

pathogenesis and glycolysis. Impaired astrocytic glycolysis decreases

L-serine, thus leading to cognitive impairment in AD (71).
A B

C

FIGURE 6

Distributions of glycolysis indices in normal brain tissues (A) The sex difference of glycolysis indices. (B) Glycolysis indices in different age
groups. (C) Distributions of glycolysis indices in the different parts of the brain. ***p<0.001.
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Moreover, oligodendrocyte glycolytic deficiency through the

dynamin-related protein 1- hexokinase 1- NLR family pyrin

domain containing 3 signaling axis contributes to white matter

degeneration and cognitive impairment in AD (72). Microglial

activation was induced by Ab, followed by the secretion of pro-

inflammatory cytokines, which changed into an innate immune-

tolerant state within 5 days, thus exhibiting glycolysis impairment

(73). Herein, we examined the connection between glycolysis and

seven brain cell types to investigate the underlying mechanism in

the AD brain. The resulting network systematically clarified this

relationship at the gene level, which could explain the functioning of

the glycolytic process in the brain microenvironment of AD. For

example, the glycolysis-related gene SEH1-like is required for

oligodendrocyte differentiation, myelination, and post-injury

remyelination in the central nervous system (74). In another

study, MIF, an oligodendrocyte-related marker, led to a higher

rate of glycolysis (75). Decreased activities of thiamine-dependent

enzymes exist in AD, which contributes to the dysfunction of

glucose metabolic and inflammatory processes (76–78). We

investigated the relationship between glycolysis and the immune

microenvironment, focusing on seven microglial markers.

Microglia are an important part of the brain’s inflammatory

response and play a role in the phagocytosis of Ab plaques in AD

(79). There are several reports on the role of microglia in AD (80–

82). We screened seven key microglial markers, most of which were

related to neurodegenerative diseases. Chemokine (C-C motif)

ligand 2 (CCL2) may be involved in the pathways recruiting

microglia in chronic traumatic encephalopathy, a progressive

neurodegenerative disease. In addition, the negative correlation

with Ab42 in males suggests that higher CCL2 recruits more

microglia to phagocytose the plaques (83). Joly-Amado et al.

revealed that CCL2 overexpression promotes an increase in

pathogenic tau and harmful glial inflammation (84). In addition,

inhibitors targeting receptor of the colony-stimulating factor-1

ac t iv i t y can reduce microg l i a l pro l i f e ra t ion and

neurodegeneration, slow neuronal damage and disease

progression, and prevent cognitive decline in AD (85–87).

Beschorner et al. confirmed that the expression of excitatory

amino acid transporter 1 (also termed SLC1A3) in activated

microglia reflects a potential neuroprotective function (88).

Remarkably, one study revealed that inhibition of SALL1 could

reduce the level of CDH1 (89). The other research showed that

upregulation of CDH1 could inhibits 6-phosphofructo-2-kinase/

fructose-2,6-bisphosphatase isoform 3, and further inhibit glycolysis

(90). These findings indicate a close relationship between glycolysis

and the brainmicroenvironment in AD, thereby offering novel drug

targets for future therapies.

In summary, our results demonstrated the clinical significance

of the glycolysis index and elucidated potential molecular

connectors that linked the brain microenvironment and

glycolysis in AD. Glycolysis-related genes displayed broad

interactions with abundant brain cell markers, which may play
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a crucial role in AD brain function. Furthermore, we not only

revealed the clinical relevance and excellent prognostic value of

the glycolysis index using high-throughput transcriptomic data

but also validated the expression of glycolysis-related microglia

marker Sall1 in APP/PS1 mice. Essentially, our findings provided

novel insights into AD pathogenesis and may provide potential

novel therapeutic targets for its treatment. However, several

limitations of this study should be noted. First, the influence of

chronic diseases, smoking, and other factors could not be excluded

due to the lack of corresponding clinical data. Second, the

glycolysis index was validated in 3 sub-datasets of one AD

cohort. The results need to be further validated in more AD

cohorts. Finally, the function and the exact mechanism and

pathway of SALL1 in glycolysis need to be further investigated

using biochemical experiments.
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