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ABSTRACT Nannochloropsis salina is a halotolerant, high-lipid-producing microalga
that is being explored as a biofuel production species. Here, we report an improved
high-quality draft assembly and annotation for the nuclear genome of N. salina strain
CCMP1776.

Nannochloropsis is a genus of eukaryotic microalgae (1) known for high lipid content
and the ability to be maintained in large-volume outdoor cultures (2, 3). It can also

produce auxiliary products such as the pigments astaxanthin, zeaxanthin, and canthax-
anthin and the dietary supplement eicosapentaenoic acid (EPA) (4–7), an omega-3 fatty
acid. Further, Nannochloropsis is tractable for genetic modification (8, 9), with evidence
for homologous recombination in some strains (8). Nannochloropsis salina is a halotol-
erant strain known to accumulate 50 to 70% of its dry weight as lipid under nitrogen
starvation (5, 10), making it an attractive candidate as a biofuel feedstock.

Nannochloropsis salina strain CCMP1776 was initially isolated in 1965 from Skate
Point, Scotland (55.75°N, 4.96°W), and was deposited in the Bigelow culture collection
in 1997.

CCMP1776 was cultivated in f/2 medium at room temperature under �50 micro-
einsteins per meter squared per second and a 24-h light regime. Cultures growing
under linear growth were harvested using centrifugation. Cells were lysed in AP1 buffer
with a single pass through an Avestin Emulsiflex B-15 press at 30,000 lb/in2. Genomic
DNA was purified using the Qiagen DNeasy plant maxikit following the manufacturer’s
protocols.

Genomic DNA from CCMP1776 was sequenced and assembled using a combination
of Illumina (11) and 454 (12) technologies. For this genome, we constructed and
sequenced an Illumina GAII shotgun library, which generated 466 million reads totaling
85 Gb (90� coverage), and 2 paired-end 454 Titanium libraries with an average insert
size of 5 kb, which generated 2,786,633 reads totaling 7.1 Gb of 454 data (16�

coverage). The 454 Titanium standard data and the 454 paired-end data were assem-
bled together with Newbler version 2.3 (091027_1459). The Newbler consensus se-
quences were computationally shredded into 10-kb overlapping fake reads (shreds)
using an in-house script, resulting in 1.5� coverage of this assembly. Illumina sequenc-
ing data were assembled with Velvet version 1.0.13 (13), and the consensus sequence
was computationally shredded into 10-kb overlapping shreds. We integrated the 454
Newbler consensus shreds, the Illumina Velvet consensus shreds, and the read pairs in
the 454 paired-end library using parallel Phrap version 1.080812 (High Performance
Software, LLC). Possible misassemblies were corrected using Gap Resolution (14) and
Dupfinisher (15). The Gap Resolution software is available from the Department of
Energy and the Lawrence Berkeley National Laboratory.

The final genome assembly was 27.6 Mbp contained in 194 scaffolds. The N50 value
of this assembly is 828,788 bp, and the GC content is 54.88%. Genome annotation was
performed using the BRAKER version 2 training and annotation pipeline (16) utilizing
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254 million transcriptomic reads (paired end, 2 � 150 bp). Functional annotation of the
10,522 genes was performed using InterProScan 5 (17) and BLASTp searches against the
UniProt (18) protein BLAST database. This genome will spur the continued develop-
ment of algae for use as biofuel feedstock and provide prerequisite information needed
for genetic manipulation.

Data availability. All sequences have been deposited in NCBI under BioSample

number SAMN10354914 and GenBank accession number SDOX00000000. Genome
assembly and annotations are also available at greenhouse.lanl.gov. The 454 raw
sequencing data are available under NCBI SRA numbers SRR9992831 and SRR9992828.
The Illumina raw reads are available under NCBI SRA number SRR9992830. The tran-
scriptomic reads have been deposited under NCBI SRA number SRR9992829.
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