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Abstract
In this paper, a practical approach for the total synthesis of kipukasin A is presented with 22% overall yield by using tetra-O-acetyl-

β-D-ribose as starting material. An improved iodine-promoted acetonide-forming reaction was developed to access 1,2-O-iso-

propylidene-α-D-ribofuranose. For the first time, ortho-alkynylbenzoate was used as protecting group for the 5-hydoxy group. After

subsequent Vorbrüggen glycosylation, the protecting group could be removed smoothly in the presence of 5 mol % Ph3PAuOTf in

dichloromethane to provide kipukasin A in high yield and regioselectivity.
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Introduction
Endogenous nucleosides are involved in DNA and RNA synthe-

sis, cell signalling, enzyme regulation and metabolism etc.

[1,2]. Therefore, the synthesis of novel nucleosides to mimic

their physiological counterparts has potential therapeutic signif-

icance, which has led to the development of a large number of

antiviral and antitumor drugs [3,4]. On the other hand, natu-

rally occurring nucleosides, especially marine nucleosides, have

also played an indispensable role in drug discovery, which

make great contribution in the commercialization of cytosine

arabinoside (Ara-C), adenine arabinoside (Ara-A) and AZT, etc.

[5,6]. Nucleosides and their analogues will continue to play an

important role in future drug discovery [7].

In the past decades, exploration of novel naturally occurring

marine nucleosides has made expeditious achievements [8-10].

Some of them showed promising antibiotic, antiviral, antipara-

sitic and antitumor properties. Kipukasins A–G were firstly iso-

lated from solid-substrate fermentation cultures of Hawaiian

Aspergillus Versicolor in 2007 (Figure 1) [11]. Later on,

kipukasins H, I [12] and J [13] were also isolated from the

fungus Aspergillus flavus, which was collected at the South

China Sea and the Sea of Okhotsk, respectively.

Kipukasins are uridine derivatives with unique structural char-

acteristics, which include: (1) a uracil moiety with or without an

N-3 methyl group; (2) a 6-methyl-2,4-hydroxy (or methoxy)-

benzoyl group at C-2’ or C-3’ position; (3) with or without an

acetyl group at 2’-OH position. To the best of our knowledge,

they are the first naturally occurring aroyl nucleosides reported

up to now. The biological assays showed that kipukasin A
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Figure 1: Structures of kipukasins A–J.

Figure 2: Retrosynthetic analysis of kipukasin A.

owned modest activity against Gram-positive bacteria Staphylo-

coccus aureus (ATCC 29213) [11].

During our ongoing biological studies of marine nucleosides,

total syntheses of several marine nucleosides were accom-

plished in our group [14-18]. In the present paper, we reported a

practical approach for the total synthesis of kipukasin A.

Results and Discussion
From the synthetic point of view, it seemed that the most direct

approach for the synthesis of kipukasin A was the regioselec-

tive modification of commercially available uridine (Figure 2,

path a). After carefully assessment, we realized that it would

require several steps of protection and deprotection. Especially

under alkaline conditions, 2’,3’-transesterification is inevitable
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Scheme 1: Synthesis of 2,4-dimethoxy-6-methylbenzoic chloride. Reagents and conditions: (a) POCl3, DMF, 0 °C to rt, 75%; (b) MeI, K2CO3, ace-
tone, rt, 93%; (c) NaClO2, NaH2PO4, DMSO, rt, 81%; (d) (COCl)2, CH2Cl2, refux.

to occur in nucleosides [19-21]. The synthetic route would be

lengthy and cumbersome. Therefore, a practical total synthesis

is in high demand to facilitate the preparation of other

kipukasins and their analogues.

The retrosynthetic analysis is shown in Figure 2 (path b).

Kipukasin A could be constructed by Vorbrüggen glycosyla-

tion [22,23] of a properly protected glycosyl donor 3 with uracil

(4). Neighboring group participation of the 2’-O-acetyl group

stereoselectively facilitate the β-glycosidic bond formation.

Thus, the choice of a suitable protecting group at 5-OH posi-

tion would be crucial for the success. It should fulfill at least

two requirements: (1) it should be stable during the Vorbrüggen

glycosylation; and (2) the deprotection process should be per-

formed under very mild and neutral conditions without any in-

fluence on the 2’-O-acetyl group. At the same time, ester

protection is preferred for Vorbrüggen glycosylations in nucleo-

side syntheses. Very recently, ortho-alkynylbenzoate was suc-

cessfully developed by our group as neighboring participation

group to synthesize 2’-modified nucleosides [24], which could

be removed smoothly in the presence of gold(I) complexes with

high yield and selectivity. The conditions are very mild and

neutral. In the present paper, we continue to use ortho-alkynyl-

benzoate as protecting group for the 5’-OH group to fulfill the

total synthesis of kipukasin A.

According to the retrosynthetic analysis, we firstly started to

synthesis of aroyl building block 9 (Scheme 1). Vilsmeier

formylation of 1,3-dihydroxy-5-methylbenzene (5) gave 2,4-di-

hydroxy-6-methylbenzaldehyde (6) in 75% yield [25,26]. Then

compound 6 could react with methyl iodine in acetone by using

K2CO3 as base. The obtained 2,4-dimethoxy-6-methylbenzalde-

hyde (7) was further oxidized with NaH2PO4/NaClO2 in DMSO

to provide 2,4-dimethoxy-6-methylbenzoic acid (8) in 81%

yield [27,28]. Finally, 2,4-dimethoxy-6-methylbenzoyl chloride

(9) was obtained by refluxing with oxalyl chloride in dichloro-

methane. After removing the solvent and excess oxalyl chloride,

2,4-dimethoxy-6-methylbenzoyl chloride (9) was used directly

in the next step without further purification.

Then we started to synthesize glycosylation donor 16 as the key

building block (Scheme 2). In previous reports, 3,5-O-diacetyl-

1,2-O-isopropylidene-D-ribofuranose (11) was prepared either

from D-xylose [29-31] or from tetra-O-acetyl-β-D-ribose (10)

[32,33]. In 2009, Koreeda reported an iodine-promoted

acetonide-forming reaction of tetra-O-acetyl-β-D-ribose (10)

[33]. In this preliminary paper, 25 mol % of iodine was neces-

sary. After systematic optimization, it was found that 6 mol %

iodine could complete the reaction efficiently in freshly dried

acetone to give 3,5-O-diacetyl-1,2-O-isopropylidene-D-ribofu-

ranose (11) in 88% yield. Then cleavage of the remaining acetyl

groups by K2CO3 in MeOH afforded 1,2-O-isopropylidene-D-

ribofuranose (12) in 93% yield. Subsequently, the reaction of

1,2-O-isopropylidene-D-ribofuranose (12) with 2-iodobenzoyl

chloride (0.9 equiv) gave the corresponding 5-O-benzoyl ester

13 in 80% yield along with a small amount of the 3,5-diben-

zoyl ester. The structure of 5-O-benzoyl ester 13 was unambig-

uously confirmed by X-ray diffraction analysis (Figure 3) [34].

Then Sonogashira cross-coupling with 1-hexyne provided

ribose 14 in 78% yield [35].

Subsequently, using DMAP as acylation catalyst and triethyl-

amine as base, the former synthesized 2,4-dimethoxy-6-methyl-

benzoyl chloride (9) reacted with ribose 14 to 3-O-(2,4-

dimethoxy-6-methylbenzoyl)ribose 15 in 74% yield. Various

spectral analyses (NMR, HPLC) showed no evidence that 2,3-

O-transesterification occurred during the esterification reaction.

After cleavage of the acetonide group with acetic acid/acetic an-

hydride/H2SO4, the key glycosylation donor 16 was obtained in

74% yield as a mixture of isomers (α/β = 1:8) [36].
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Scheme 2: Total synthesis of kipukasin A. Reagents and conditions: (a) I2, acetone, 0 °C to rt, 88%; (b) K2CO3, MeOH, rt, 93%; (c) 2-iodobenzoyl
chloride, pyridine, −10 °C to rt, CH2Cl2, 80%; (d) 1-hexyne, PdCl2(PPh3)3, CuI, Et3N, THF, 50 °C , 78%; (e) 9, DMAP, Et3N, CH2Cl2, 0 °C to rt, 74%;
(f) Ac2O, H2SO4, acetic acid, rt, 74%; (g) uracil, BSA, TMSOTf, MeCN, 75 °C, 89%; (h) 5% Ph3PAuOTf, H2O, CH2Cl2, EtOH, rt, 90%.

Figure 3: X-ray structure of compound 13.

With glycosylation donor 16 in hand, we proceeded to investi-

gate the crucial Vorbrüggen glycosylation with uracil (4). To

our delight, in a similar manner as our described in [17], it

proved to be efficient to give nucleoside 17 with exclusive

β-configuration in 89% yield. At last, using our developed

approach [24], kipukasin A was obtained in 90% yield in the

presence of 5 mol % Ph3PAuOTf in dichloromethane

with H2O (1 equiv) and ethanol (6 equiv). All spectra of

the synthetic kipukasin A were consistent with an authentic

sample.

Conclusion
In summary, the first total synthesis of kipukasin A was accom-

plished with 22% overall yield. The reaction sequence includes:

(1) an improved iodine-promoted acetonide-forming reaction to
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synthesize 1,2-O-isopropylidene-D-ribofuranose (12); (2) a

Vorbrüggen glycosylation facilitating the preparation for

kipukasin derivatives and (3) the first use of ortho-alkynylben-

zoate as protecting group of the 5-hydoxy group, which can be

removed smoothly in the presence of 5 mol % Ph3PAuOTf in

dichloromethane. Biological studies of kipukasin A and the

total synthesis of other kipukasin nucleosides by this estab-

lished approach are ongoing in our group.

Experimental
All reagents and catalysts were purchased from commercial

sources (Acros or Aldrich) and used without purification. DCM

and CH3CN were dried over CaH2 and distilled prior to use.

Et3N was dried over NaH and distilled prior to use. Thin-layer

chromatography was performed using silica gel GF-254 plates

with detection by UV (254 nm) or charting with 10% sulfuric

acid in ethanol. Column chromatography was performed on

silica gel (200–300 mesh, Qing-Dao Chemical Company,

China). NMR spectra were recorded on a Bruker AV400 spec-

trometer, and chemical shifts (δ) are reported in ppm. 1H NMR

and 13C NMR spectra were calibrated with TMS as internal

standard, and coupling constants (J) are reported in Hz. The

ESI-HRMS were obtained on a AB SCIEX Triple TOF 4600

spectrometer in positive ion mode. Melting points were

measured on an electrothermal apparatus and are uncorrected.

Optical rotation values were measured with a Rudolphautopol

IV polarimeter.

Synthesis of 3,5-O-diacetyl-1,2-O-isopropylidene-D-ribofu-

ranose (11): To a solution of 1,2,3,5-O-acetyl-β-D-ribofura-

nose (10, 10.0 g, 31.4 mmol) in dry acetone (100 mL) was

added I2 (0.5 g, 2.0 mmol) at 0 °C under argon. After addition,

the solution was stirred for 5 h at room temperature and

quenched with 40 mL Na2S2O3 (3.0 g, 19.0 mmol). The sol-

vent was evaporated under reduced pressure and distilled water

(200 mL) was added to the residue. After that, the solution was

extracted with CH2Cl2 (100 mL × 3), the combined organic

layer was washed with sat. aq NaHCO3 (100 mL), brine

(100 mL), and dried with anhydrous Na2SO4. After filtration,

the filtrate was evaporated under reduced pressure. The residue

was purified by column chromatography (silica gel, PE/EtOAc

1:2, v:v) to afford 11 as a light-yellow oil (7.6 g, 88%). [α]D
25

+133.3 (c 0.1, acetone) (lit. [37] [α]D
25 +125.9 (c 1.1, CHCl3));

1H NMR (400 MHz, DMSO-d6) δ 5.81 (d, J = 3.7 Hz, 1H),

4.77 (t, J = 4.2 Hz, 1H), 4.67 (dd, J = 9.1, 4.8 Hz, 1H), 4.24 (dd,

J = 12.1, 2.7 Hz, 1H), 4.20–4.15 (m, 1H), 4.05 (dd, J = 12.1, 5.4

Hz, 1H), 2.07 (s, 3H), 2.03 (s, 3H), 1.45 (s, 3H), 1.27 (s, 3H);
13C NMR (101 MHz, DMSO-d6) δ 170.1, 169.7, 112.2, 103.9,

76.8, 75.1, 71.9, 62.4, 26.4, 20.5, 20.4; LRMS (ESI) m/z: 297.2

[M + Na]+;  HRMS (ESI) m/z:  [M + Na]+  calcd for

C12H18O7Na, 297.0945; found, 297.0943.

Synthesis of 1,2-O-isopropylidene-α-D-ribofuranose (12):

The light-yellow oil 11 (7.60 g, 27.7 mmol) was dissolved in

MeOH (60 mL). To the solution K2CO3 (0.60 g, 4.4 mmol) was

added and the reaction mixture was stirred for 2 h at room tem-

perature. The solvent was evaporated under reduced pressure

and the residue was purified by silica gel column to give 12 as a

white solid (4.60 g, 93%). Rf 0.30 (CH2Cl2/CH3OH 10:1, v:v);

mp 90–91 °C (lit. [38] 87–89 °C); [α]D
25 +62.3 (c 0.1, CH3OH)

(lit. [38] [α]D
25 +49 (c 0.94, CHCl3)); 1H NMR (400 MHz,

DMSO-d6) δ 5.65 (d, J = 3.7 Hz, 1H), 4.98 (d, J = 6.7 Hz, 1H),

4.64 (t, J = 5.6 Hz, 1H), 4.43 (t, J = 3.9 Hz, 1H), 3.79–3.56 (m,

3H), 3.41–3.35 (m, 1H), 1.43 (s, 3H), 1.26 (s, 3H); 13C NMR

(101 MHz, DMSO-d6) δ 111.1, 103.3, 80.3, 79.1, 70.5, 60.2,

26.6, 26.4; LRMS (ESI) m/z: 213.3 [M + Na]+, 189.3 [M − H]−;

HRMS (ESI) m/z: [M + Na]+ calcd for C8H13O5Na, 213.0733;

found, 213.0731.

Synthesis of 1,2-O-isopropylidene-5-O-(2-iodobenzoyl)-α-D-

ribofuranose (13): To a solution of 12 (6.60 g, 34.7 mmol) in

dry CH2Cl2 (50 mL) and dry pyridine (7.62 mL) were added

0.2 mL 2-iodobenzoyl chloride (8.4 g, 31.5 mmol) at −10 °C

under argon. After addition, the reaction mixture was stirred

overnight and quenched with iced water (5 mL). The mixture

was washed with sat. NaHCO3 (40 mL), brine (40 mL), and

dried over anhydrous MgSO4. After filtration, the filtrated was

evaporated to dryness under reduced pressure. The remaining

residue was recrystallized by ethanol to obtain 13 as a white

powder solid (10.7 g, 80%). Rf 0.35 (PE/EtOAc 2:1, v:v); mp

126–127 °C; [α]D
25 +26.86 (c 0.18, CH3OH); 1H NMR

(400 MHz, CDCl3) δ 7.99 (d, J = 8.0 Hz, 1H), 7.82 (dd, J = 7.8,

1.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.15 (td, J = 7.7 , 1.6

Hz,1H), 5.84 (d, J = 3.8 Hz, 1H), 4.70 (dd, J = 12.3, 2.5 Hz,

1H), 4.61 (t, J = 4.4 Hz 1H), 4.45 (dd, J = 12.3, 5.2 Hz, 1H),

4.11–4.07 (m, 1H), 3.98 (dd, J = 9.0, 5.1 Hz, 1H), 2.23 (brs,

1H), 1.58 (s, 3H), 1.37 (s, 3H); 13C NMR (101 MHz, CDCl3) δ

166.4, 141.4, 134.8, 133.0, 131.4, 128.0, 113.0, 104.2, 94.3,

78.4, 78.3, 72.2, 64.1, 26.7, 26.6; HRMS (ESI) m/z: [M + Na]+

calcd for C15H17IO6Na, 442.9967; found, 442.9980.

Synthesis of 1,2-O-isopropylidene-5-O-(2-(hex-1-yn-1-

yl)benzoyl)-α-D-ribofuranose (14): To a solution of 13 (9.0 g,

21.4 mmol) in dry Et3N (25 mL) and dry THF (50 mL) was

added CuI (0.41 g, 2.1 mmol), PdCl2(PPh3)3 (2.07 g, 2.1 mmol)

and 1-hexyne (2.68 mL, 23.5 mmol). After addition, the reac-

tion mixture was heated at 50 °C for 1 h. TLC detection showed

the reaction was finished. The reaction mixture was filtered

over a bed of celite. After filtration, the filtrate was evaporated

under reduced pressure. The obtained residue was purified by

silica gel column chromatography (PE/EtOAc 3:1, v:v) to

afford 14 as deep green oil (6.35 g, 78%). Rf 0.43 (PE/EtOAc

2:1,v:v); [α]D
25 +21.33 (c 0.15, CH3OH); 1H NMR (400 MHz,
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DMSO-d6) δ 7.81 (d, J = 7.8 Hz, 1H), 7.90–7.58 (m, 2H), 7.45

(td, J = 7.2, 2.0 Hz, 1H ), 5.71 (d, J = 3.6 Hz, 1H), 5.34 (d, J =

6.9 Hz, 1H), 4.56–4.50 (m, 2H), 4.22 (dd, J = 12.2, 6.1 Hz, 1H),

4.05–4.01 (m, 1H), 3.86–3.81 (m, 1H), 2.45 (t, J = 6.9 Hz, 2H),

1.55–1.50 (m, 2H), 1.47–1.41 (m, 5H), 1.27 (s, 3H), 0.91 (t, J =

7.2 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 165.6, 133.8,

132.0, 131.9, 129.8, 127.8, 123.3, 111.5, 103.5, 95.9, 78.9, 78.8,

76.9, 71.3, 64.1, 30.1, 26.6, 26.3, 21.4, 18.6, 13.5; HRMS (ESI)

m/z: [M + Na]+ calcd for C21H26O6Na, 397.1627; found,

397.1608.

Synthesis of 1,2-O-isopropylidene-3-O-(2,4-dimethoxy-6-

methylbenzoyl)-5-O-(2-(hex-1-yn-1-yl)benzoyl)-α-D-ribofu-

ranose (15): To a solution of 14 (3.0 g, 8.0 mmol) in dry

CH2Cl2 (25 mL) was added DMAP (97.88 mg, 0.8 mmol) and

Et3N (1.05 g, 10.4 mmol). To the mixture benzoyl chloride 9

(2.15 g, 10 mmol) in dry CH2Cl2 (10 mL) was slowly added at

0 °C and stirred overnight at room temperature. The reaction

was quenched with methanol (5 mL) and evaporated to dryness

under reduced pressure. The obtained residue was dissolved in

CH2Cl2 (40 mL), washed with sat. NaHCO3 (40 mL × 2), brine

(30 mL × 2), and dried over anhydrous MgSO4. The obtained

residue was purified by a silica gel column chromatography

(PE/EtOAc 4:1, v:v) to afford 15 as colorless oil (3.3 g, 74%).

Rf 0.46 (PE/EtOAc 3:1,v:v); [α]D
25 +48.18 (c 0.22, CH3OH);

1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 7.8 Hz, 1H), 7.49 (d,

J = 7.2 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 7.26 (t, J = 7.6 Hz,

1H), 6.30 (d, J = 9.7 Hz, 2H), 5.92 (d, J = 3.7 Hz, 1H), 5.03 (t, J

= 4.0 Hz, 1H), 4.94 (dd, J = 9.3, 4.8 Hz, 1H), 4.69 (dd, J = 12.2,

2.4 Hz, 1H), 4.56–4.47 (m, 1H), 4.40 (dd, J = 12.2, 5.4 Hz, 1H),

3.79 (s, 3H), 3.76 (s, 3H), 2.47 (t, J = 7.0 Hz, 2H), 2.35 (s, 3H),

1.63–1.57 (m, 2H), 1.55 (s, 3H), 1.47 (d, J = 7.8 Hz, 2H), 1.36

(s, 3H), 0.92 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3)

δ 167.3, 166.0, 161.8, 158.8, 139.2, 134.4, 131.7, 131.3, 130.4,

127.1, 124.8, 115.1, 113.1, 106.8, 104.6, 96.4, 96.1, 79.1, 77.3,

75.6, 73.2, 63.4, 55.8, 55.4, 30.7, 26.6, 22.1, 20.1, 19.5, 13.7;

HRMS (ESI) m/z: [M + Na]+ calcd for C31H36O9Na, 575.2257;

found, 575.2293.

Synthesis of 1,2-O-diacetyl-3-O-(2,4-dimethoxy-6-methyl-

benzoyl)-5-O-(2-(hex-1-yn-1-yl)benzoyl)-D-ribofuranose

(16): A solution of 15 (2.1 g, 3.8 mmol) in acetic acid (10 mL)

and Ac2O (1.94 g, 19.0 mmol) was added concentrated sulfuric

acid (0.2 mL) dropwise over 10 min. After addition, the reac-

tion mixture was stirred at room temperature for 2 h. TLC

detection showed the reaction was finished. The compound was

diluted with CH2Cl2 (80 mL) and washed with water

(100 mL × 3), sat. NaHCO3 (100 mL × 3), brine (100 mL), and

dried (anhydrous Na2SO4). The obtained residue was purified

by flash column chromatography to afford 16 as colourless oil

(1.68 g, β:α 8:1, 74%). 16-β: Rf 0.30 (PE/EtOAc 4:1, v:v);

[α]D
25 −10.83 (c 0.23, CH3OH); 1H NMR (400 MHz, CDCl3) δ

7.95 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.42 (t, J =

7.6 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 6.31 (d, J = 2.0 Hz, 1H),

6.29 (d, J = 2.2 Hz, 1H), 6.19 (s, 1H), 5.64 (dd, J = 7.3, 4.9 Hz,

1H), 5.57 (d, J = 4.9 Hz, 1H), 4.72 (dd, J = 12.1, 3.1 Hz, 1H),

4.64–4.57 (m, 1H), 4.41 (dd, J = 12.2, 4.9 Hz, 1H), 3.80 (s, 3H),

3.76 (s, 3H), 2.47 (t, J = 7.1 Hz, 2H), 2.29 (s, 3H), 2.07 (s, 3H),

1.95 (s, 3H), 1.64–1.57 (m, 2H), 1.51–1.44 (m, 2H), 0.93 (t, J =

7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 169.4, 169.2,

167.0, 165.8, 162.0, 158.9, 139.2, 134.5, 131.9, 131.4, 130.4,

127.2, 125.1, 114.7, 107.0, 98.4, 96.7, 96.3, 80.0, 79.1, 74.3,

71.1, 63.9, 55.9, 55.5, 30.8, 22.2, 21.0, 20.7, 20.1, 19.6, 13.8;

HRMS (ESI) m/z: [M + Na]+ calcd for C32H36O11Na,

619.2150; found, 619.2147. 16-α: Rf 0.17 (PE/EtOAc 4:1, v:v);

[α]D
25 +10.20 (c 0.15, CH3OH); 1H NMR (400 MHz, CDCl3) δ

7.89 (dd, J = 7.9, 1.1 Hz, 1H), 7.52 (dd, J = 7.8, 1.0 Hz, 1H),

7.43 (td, J = 7.6, 1.4 Hz, 1H), 7.32 (td, J = 7.7, 1.3 Hz, 1H),

6.48 (d, J = 4.6 Hz, 1H), 6.33– 6.32 (m, 2H), 5.59 (dd, J = 6.8,

3.0 Hz, 1H), 5.40 (dd, J = 6.8, 4.6 Hz, 1H), 4.70–4.66 (m, 1H),

4.65 (dd, J = 12.1, 3.0 Hz, 1H), 4.54 (dd, J = 12.1, 3.7 Hz, 1H),

3.81 (s, 3H), 3.78 (s, 3H), 2.48 (t, J = 7.1 Hz, 2H), 2.36 (s, 3H),

2.06–2.05 (m, 6H), 1.63–1.60 (m, 2H), 1.54–1.43 (m, 2H), 0.94

(t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 169.8,

169.5, 167.4, 165.9, 161.9, 158.9, 138.7, 134.5, 131.9, 131.3,

130.2, 127.4, 124.9, 115.3, 106.9, 96.6, 96.4, 94.3, 82.2, 79.1,

70.6, 70.4, 64.2, 56.0, 55.5, 30.8, 22.2, 21.2, 20.5, 20.2, 19.6,

13.8; HRMS (EI) m/z: [M + Na]+ calcd for C32H36O11Na,

619.2150; found, 619.2150.

Synthesis of 1-(2’-O-acetyl-3’-O-(2,4-dimethoxy-6-methyl-

benzoyl)-5’-O-(2-(hex-1-yn-1-yl)benzoyl)-β-D-ribo-fura-

nosyl)uracil (17): To a suspension of uracil (0.24 g, 2.2 mmol)

in dry MeCN (15 mL) was added BSA (1.36 g, 6.7 mmol). The

mixture was heated at 50 °C for 20 min. After cooled to room

temperature, a solution of 16 (1.00 g, 1.7 mmol) in dry MeCN

(5 mL) along with TMSOTf (1.30 g, 5.9 mmol) were added to

the above reaction mixture at 0 °C. The solution was stirred for

5 min before heating to 75 °C for 3–4 h. Then the reaction mix-

ture was poured into cold sat. NaHCO3 solution (30 mL). It was

extracted with CH2Cl2 (50 mL). The combined organic layer

was washed with sat. aq NaHCO3 (100 mL × 2), brine

(50 mL × 2), and dried with anhydrous Na2SO4. After filtration,

the filtrate was evaporated under reduced pressure. The residue

was purified by silica gel column chromatography (DCM/

CH3OH, 10:1) to give nucleoside 17 as a white solid (0.96 g,

89%). Rf 0.43 (CH2Cl2/CH3OH 30:1,v:v); mp 69–70 °C; [α]D
25

−3.10 (c 0.28, CH3OH); 1H NMR (400 MHz, CDCl3) δ 9.53 (s,

1H), 7.88 (d, J = 7.4 Hz, 1H), 7.54 (d, J = 7.4 Hz, 1H), 7.46 (t, J

= 7.6 Hz, 1H), 7.40–7.33 (m, 2H), 6.33 (s, 2H,), 6.19 (d, J = 6.1

Hz, 1H), 5.67–5.64 (m, 1H), 5.52 (d, J = 8.1 Hz, 1H), 5.42 (t, J

= 5.9 Hz, 1H), 4.72 (dd, J = 12.4, 2.5 Hz, 1H), 4.64 (dd, J =
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12.4, 3.1 Hz, 1H'), 4.58–4.55 (m, 1H), 3.81 (s, 3H), 3.80 (s,

3H), 2.46 (t, J = 7.0 Hz, 2H), 2.32 (s, 3H), 2.05 (s, 3H),

1.63–1.55 (m, 2H), 1.51–1.41 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H);
13C NMR (101 MHz, CDCl3) δ 169.7, 166.9, 166.0, 163.1,

162.1, 159.1, 150.5, 139.3, 134.5, 132.2, 131.4, 129.8, 127.6,

124.6, 114.4, 107.1 103.4, 96.8, 96.4, 86.7, 80.6, 78.9, 73.0,

71.1, 63.8, 56.0, 55.5, 30.7, 22.1, 20.6, 20.2, 19.5, 13.7; HRMS

(ESI) m/z: [M + Na]+ calcd for C34H36N2O11Na, 671.2217;

found, 671.2214.

Synthesis of kipukasin A: To a solution of nucleoside 17

(0.60 g, 0.92 mmol) in dry CH2Cl2 (15 mL) was added H2O

(1.0 equiv), and ethanol (6.0 equiv) under an argon atmosphere.

The mixture was stirred at room temperature for 20 minutes. A

freshly prepared solution of Ph3PAuOTf in CH2Cl2 (5 mol % in

1.0 mL) was added, and stirring was continued at room temper-

ature for 5 hours until nucleoside 17 was consumed as moni-

tored by TLC. The reaction mixture was filtered with celite.

After filtration, the filtrate was evaporated to dryness under

reduced pressure. The obtained residue was recrystallized in

petroleum ether (5 mL) to provide kipukasin A as a white

powder solid (387 mg, 90%). Rf 0.36 (CH2Cl2/CH3OH

25:1,v:v); mp 95–96 °C; [α]D
25 −37.50 (c 0.12, CH3OH) (lit.

[11] [α]D
25 −26 (c 0.12, CH3OH)); 1H NMR (400 MHz,

CDCl3) δ 9.32 (s, 1H, NH), 7.81 (d, J = 8.2 Hz, 1H, H-6), 6.33

(s, 2H, H-3'', H-5''), 6.14 (d, J = 6.7 Hz, 1H, H-1'), 5.79 (d, J =

8.1 Hz, 1H, H-5), 5.68 (dd, J = 6.4, 2.8 Hz, 1H, H-3'), 5.56 (dd,

J = 6.6, 5.7 Hz, 1H, H-2'), 4.33–4.32 (m, 1H, H-4'), 3.96 (s, 2H,

H-5'), 3.81 (s, 6H, OMe-2'', OMe-4''), 3.32 (s, 1H, -OH), 2.32

(s, 3H, Me-6''), 2.06 (s, 3H, Me-6'); 13C NMR (101 MHz,

CDCl3) δ 170.1 (C-6'), 167.3 (C-7''), 163.4 (C-4), 162.1 (C-2''),

159.1 (C-4''), 150.7 (C-2), 140.9 (C-6), 139.2 (C-6''), 114.7

(C-1''), 107.1 (C-5''), 103.4 (C-5), 96.4 (C-3''), 87.4 (C-1'), 84.0

(C-4'), 73.2 (C-2'), 72.1 (C-3'), 62.2 (C-5'), 56.0 (OMe-4''), 55.5

(OMe-2''), 20.7 (Me-6'), 20.3 (Me-6''); HRMS (ESI) m/z: [M +

Na]+ calcd for C21H24N2O10Na, 487.1329; found, 487.1327.
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